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A general theory for the detection of the core-level electronic excitation in anisotropic systems using angular

integrated electron energy-loss spectroscopy sEELSd has been presented. Magic angle conditions, at which

spectra are independent of specimen orientation, are proved to be valid for all anisotropic systems. Discrep-

ancies in the magic angle determination are thoroughly investigated from the theoretical point of view. The

magic angle electron energy loss spectroscopy sMAEELSd can be directly interpreted as spherical averaged

spectroscopy. From the explicit expression for the EELS cross section for all the anisotropic systems, a magic

specimen orientation is also found to exist in certain low symmetry systems, where spectra acquired are also

equivalent to the fully orientationally averaged spectra. Our analysis provides a useful guide for the experi-

mental determination of electronic structure information in anisotropic systems, including their dichroic

signals.

DOI: 10.1103/PhysRevB.71.125109 PACS numberssd: 79.20.Uv, 03.65.Nk, 34.80.Dp, 71.15.Ap

I. INTRODUCTION

Anisotropic systems differ from isotropic ones in that
their response to an applied force or field depends not only
on the magnitude but also on the orientation of these
influences.1 For electron energy loss spectroscopy sEELSd or
x-ray absorption spectroscopy sXASd, a good example is the
carbon 1s core electron excitation in graphite.2–7 Excitation
into the unoccupied states of p symmetry is only allowed if
the applied field is along the direction normal to the graphite
sheet sdefined to be the local z axisd. Excitation into the
unoccupied states of s symmetry can only occur if the ap-
plied field lies in the plane of the graphite sheet sdefined to
be the local x-y planed. As a consequence, the intensities of
these two excitations depend on the specimen orientation in
general. Concerning electronic excitation, many important
systems show anisotropy such as familiar layered materials
like graphite and BN,8 non-central symmetric semiconduct-
ing compounds such as GaN,9 superconductors such as
YBaCuO sRefs. 10–14d and MgB2.15–18 Some nanostructures
such as nanotubes and nanoonions can be considered as
roll-up versions of layered materials, so the local anisotropy
also changes with the spatial location of the probe.19,20 In
addition, shape or local field effects may turn an isotropic
transition into an anisotropic one.21

Anisotropic response is a gift to the experimentalists as it
offers further insight into the electronic excitation process. It
can also be used to determine the local orientation of the
anisotropic materials22,23 or their internal magnetic field.24 In
this paper, we focus on the complexity anisotropy brings to
EELS measurements, which now also depend on the precise
orientation of the specimen. In EELS, the applied field re-
sponsible for electronic excitation is parallel to the direction
of the momentum transfer vector q of the incident electron in
the inelastic scattering.25 As shown in Fig. 1, by virtue of
momentum conservation, both the magnitude and the direc-
tion of the vector q are functions of the electron scattering
angle u.

In the angular integrated spectroscopy with a centered cir-
cular detector, a standard experimental condition particularly
useful for achieving high spatial resolution and high signal to
noise ratio,14 excitations induced by the applied fields are
summed over a range of q directions.26–28 There exists a
number of theoretical investigation of the partially angular
integrated EELS cross section as a function of the beam con-
vergence angle and the detector collection angle as well as a
function of the specimen orientation, but usually only for the
simplest uniaxial system.19,26–31 Among them, Menon and
Yuan28 showed both experimentally and theoretically that
there exists a magic angle sMAd at which the EELS fine
structure is independent of the specimen orientation. Study
of EELS fine structure at such magic angle conditions may
be called magic angle electron energy loss spectroscopy
sMAEELSd. This is very important for nano-scale EELS
analysis as the variation observed in MAEELS can be di-
rectly interpreted in terms of the variation in the underlying

FIG. 1. In an inelastic scattering, the momentum transfer vector

q is determined by the initial and final wave-vector k0 and k f. The

angle between the two wave vectors is defined as the scattering

angle u. In the parallel illumination case, u always equals b defined

as the angle between the wave vector of scattering electrons k f and

the optical axis.
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electronic excitations. Their work predicts the magic angle
for a parallel beam illumination sMAid is 4uE, where uE is
the characteristic angle and has an approximate form uE

=E /2E0 sthe more accurate definition is given by Ritchie and
Howie32d, with E being the energy-loss and E0 the energy of
incident fast electrons. There have been many different deri-
vations for magic angle conditions, however, there is still a
controversy as to its precise values.10,19,26–29,33 It is also not
sure whether MAEELS at different magic angle conditions
are equivalent, or whether the physical meaning of MAEELS
is well understood. In addition, the existence of magic angle
condition in other lower symmetry systems has not been
properly investigated. Therefore, a detailed and general
analysis of the core-level EELS in anisotropic systems is
required.

The paper is organized as follows. In Sec. II, we present a
thorough analysis of core-level EELS cross section in aniso-
tropic systems and we derive a definition for magic angle
conditions valid for all anisotropic systems. In Sec. III, we
show that the spectral information obtained at the magic
angle is equivalent to orientationally averaged spectra. We
also investigated the different approaches for magic angle
conditions analysis reported in the literature and showed that
they were all based on the same theoretical assumptions. The
reasons for the discrepancies in magic angle values are in-
vestigated. In Sec. IV, we concentrated on analyzing the
EELS cross sections for more commonly encountered or-
thogonal systems. We found there is a so-called “magic ori-
entation” in which the spectral fine structure is also equiva-
lent to the rotationally averaged spectra. The relationship
between these MAEELS and other more established forms of
magic angle spectroscopies such as XAS and magic angle
spinning nuclear magnetic resonance sMAS-NMRd is dis-
cussed. By expressing the cross section in terms of MAEELS
and the remaining dichroic signals, we also provide experi-
mentalists with a new prospect for the study of dichroism in
anisotropic systems.

II. GENERALIZED THEORY

There are two ways to study the electronic excitation
cross section in anisotropic systems: the macroscopic ap-
proach is to use the dielectric function and the microscopic
approach is to calculate directly the quantum mechanical
transition matrix element. Both approaches have been re-
ported in the literature of the analysis of anisotropic EELS
sRefs. 10, 19, 26, 27, 29, 33, and 34d and physically they
should yield the same result. To facilitate comparison of
these reports, we will also make our derivation using both
approaches. It is known that the quantum mechanical ap-
proach can reveal the microscopic physics involved, but be-
cause of the need for accurate wave functions, it does not
always yield useful experimental results. On the other hand,
the dielectric approach is a phenomenological description of
materials response that can be measured accurately, even
though the microscopic origin of the electronic transitions
may be obscured.21

A. Dielectric formalism

Here we start with the dielectric approach where the cal-
culation is relatively straightforward, because the informa-

tion required is not the detailed form of excitation but the
overall effect in terms of the response to a perturbation de-
scribed by35

Di = o
j

«0«ijE j , s1d

where D, the electric displacement, is related to the electric
field E by the well-known «ij the dielectric function of the
material system. «ij is a “metric tensor,” sRef. 36d, defined in
terms of a reference frame where the orthogonal principal
axes are aligned with the major symmetry directions of the
physical system. For convenience, we have defined this ref-
erence frame as the sample frame sx ,y ,zd.

The imaginary part of s−1/«d is known as the energy-loss

function.25–28 It provides a complete description of the re-
sponse of the medium through which the fast electron is
traveling. The double differential cross section used to esti-
mate the intensity of EELS in an anisotropic system can be
expressed as:25,27

ds2sqd
dEdV

=
4me

na0h2 ImS−
1

o
i,j

qi«
ijq jD , s2d

where me is the mass of the fast electron and q the momen-
tum transfer vector of the fast electrons in the inelastic scat-
tering process ssee Fig. 1d, n the number of atoms per unit
volume of the material, a0 the Bohr atomic radius, h the
Plank constant, qi and q j the projection of q in the sample
frame. Note that the components of the dielectric function
are assumed not to be a function of q, and this assumption
corresponds to the dipole approximation in the quantum me-
chanical analysis of single electron transitions.35

We will restrict our discussion to core electron excitations
in which we use the approximation25–27 for «1=Res«d and

«2=Ims«d, «1<1 and «2<0. Equation s2d can then be sim-

plified to

ds2sqd
dEdV

=
4me

na0h2o
i,j

qi«2
ijq j

q4 . s3d

From now on, we will be only interested in the EELS which
is obtained by integrating Eq. s3d over the angular range
determined by the collection condition, i.e., the convergence
semi-angle a0 for a convergent beam and the collection
semi-angle b0 for the centered collection detector. This gives
the partial angular integrated cross section as follows:

ds

dE
sa0,b0,Õd =

4me

na0h2o
i,j

SE dV
qiq j

q4 D«2
ij

=
8pme

na0h2k0
2o

i,j

Wijsa0,b0,Õd«2
ij . s4d

Here the weighting factor Wij depends both on the specimen

orientation Õ and the experimental condition used, i.e., a0

and b0. In order to separate out these two effects, we have
transformed the representation of q from the sx ,y ,zd or-

thogonal coordinate of the sample frame to the sX ,Y ,Zd or-

thogonal coordinate of the laboratory frame, with the Z axis
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defined to be optical axis of the electron beam. We denote
the components of q in the sX ,Y ,Zd frame as qi8 sFig. 2d.
Two representations of q are related to each other through
the rotational transformation matrix R as:

qm = o
i

qi8Rmi. s5d

For transformation between two orthogonal coordinate sys-
tems, the rotational matrix element Rij is defined to be the
direction cosine between the basis vector e8 in the sX ,Y ,Zd
frame and the basis vector e in the sx ,y ,zd frame:1,36

Rij = ei · e j8. s6d

Substituting Eq. s5d into Eq. s4d, we get the expression for
the weighting factor as:

Wijsa0,b0,Õd =
k0

2

2p
o
m,n

SE dV
qm8 qn8

q4 DRmiRnj . s7d

In this way we have successfully separated out the orienta-
tion factors, in the form of the product of matrix elements,
from the integral within the bracket which is solely deter-
mined by the experimental setup. By inspection, we can see
that the integration over the full azimuthal angle of vector q

of the integrand with the cross-indices vanishes because of
the rotational symmetry. This means that the integral has the
simplified forms as follows:

E dV
qm8 qn8

q4

=5E dV
qi

2

q4 =
2p

k0
2 jisa0,b0d sm = n = 3d

1

2
E dV

q
'

2

q4 =
2p

k0
2 j'sa0,b0d sm = n = 1 or 2d

0 sm Þ nd ,

6
s8d

where we have introduced the notations qi and q' to denote

the components of q that are parallel and perpendicular
to the incident beam direction, respectively sFig. 1d and k0 is
the magnitude of the wave vector for the fast electron
beam. The factor 2p /k0

2 is used to make the reduced integral
variable ji and j' dimensionless.

Putting the integral expression in Eq. s8d back into Eq.
s7d, the weighting factor can be written as:

Wijsa0,b0,Õd = jiR3iR3j + j'sR1iR1j + R2iR2jd . s9d

If we rearrange the product of the matrix element by ap-
plying the orthogonal property of the transformation matrix1

as SmRmiRmj =dij, and through explicit calculation using Eq.
s6d, we can obtain a more revealing definition for the weight-
ing factor

Wijsa0,b0,Õd = j'dij + sji − j'dcos xi cos x j , s10d

where the xi is the angle between the optical axis sthe Z

directiond of the laboratory frame and the ith basis vector in
the sample frame. It is clear that the second term in Eq. s10d
gives the information about orientation of the sample, so the
magic angle condition is defined by

jisa0
MA,b0

MAd = j'sa0
MA,b0

MAd . s11d

Note that our derivation has not exploited any special
symmetry properties of the dielectric function, for example,
some specific symmetry property possessed by a crystal
structure. Hence the magic angle condition is valid for all
anisotropic systems, i.e., it not only applies to single crystals,
but also to amorphous materials, powders, or nanostructures
as long as an effective dielectric function tensor can be de-
fined and measured.

B. Quantum mechanical theory

The dielectric function approach is very useful in treating
practical problems. However, to understand the microscopic
origin of the electronic transition responsible, it is better to
work explicitly in terms of a quantum mechanical theory.
With the widespread use of ab initio quantum mechanical
calculation methods, proper treatment of the electronic exci-
tation will become routine.37–39 It is vital to know how to
relate them to measurements where specimen-orientation is
an additional variable.

In quantum mechanics the inelastic scattering of high en-
ergy electrons can be described adequately by the first Born
approximation as:40,41

ds2sqd
dEdV

=
4

a0
2 ·

1

q4 ukf uexps− iq · rduilu2, s12d

where a0 is Bohr atomic radius, and vector r is the coordi-
nate of the electrons in the sample, the initial and final states
of which are represented by kiu and kf u, respectively. Since

we have not considered the screening of the fast electron
Coulomb potential by other electrons inside the material, this
expression is only applicable to core electron excitations.
Because of the inverse q-dependence, electron scattering is
concentrated at small angles. We can then expand the matrix
element in terms of q and only retain the first non-zero term

FIG. 2. The projection of the momentum transfer vector q in the

sample frames sx ,y ,zd and in the laboratory frame sX ,Y ,Zd. The

components qi sqi8d are equivalent to q ·ei sq ·ei8d, where the ei sei8d
are the basis vectors of the reference frame. Two sets of components

of q are related by the transformation matrix R whose elements are

defined in terms of dot product of the basis vectors of the two

reference frames.
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which is the dipole approximation,25 to obtain

ds2sqd
dEdV

<
4

a0
2 ·

1

q4 ukf usq · rduilu2 =
4

a0
2o

i,j

qiq j

q4 kxilkx jl
*. s13d

After projecting q in the sample frame sx ,y ,zd mentioned

above, one can see the connection between Eq. s13d and Eq.
s4d by identifying Ims«ijd with kxilkx jl*. The rest of the deri-

vation can follow the procedure used in the dielectric formal-
ism. Thus, we should arrive at the same conclusion as Eq.
s7d, so the magic angle condition should be the same as Eq.
s11d, i.e., ji =j'.

C. The solution of the magic angle condition

The magic angle condition refers to the convergence and
collection semi-angles, a0 and b0, respectively, which define
the experimental setup where Eq. s11d is satisfied. We recall
that the fast electron has the simple energy-momentum rela-
tion E0="2k0

2 /2m so the energy-loss process must satisfy the
following energy and momentum relations:

E = E0 − E f =
"2sk0

2 − k f
2d

2m
, s14d

q = k0 − k f s15d

or

q2 = k0
2 + k f

2 − 2k0k f cos u . s16d

The simplest test case for magic angle conditions is for an
experimental setup involving parallel beam illumination. In
this case, the scattering angle involved sud is just the function

of the semi-angle sbd, defined to be the angle between the

wave vector of the scattered electrons and the electron opti-
cal axis. For an axially centered circular detector, the maxi-
mum and minimum values of the momentum transfer are
given by:

qmin = k0 − k f = k0uE, s17ad

qmax = k0
2 + k f

2 − 2k0k f cos b0. s17bd

Using the above expressions for q to calculate the integral,
following Paxton et al.,33 one obtains the result for the re-
duced integrals defined in Eq. s8d as:

ji = A =
1

8

2m

"2

E2

E0
S 1

qmin
2 −

1

qmax
2 D +

1

2

E

E0

ln
qmax

qmin

+
1

8

"2

2m

1

E0

sqmax
2 − qmin

2 d , s18ad

j' =
B − A

2
=

1

2
Sln

qmax

qmin

− jiD . s18bd

This complex solution for the parallel beam illumination
can be simplified because we are interested in the
small-angle region where dipole approximation holds, so we
can use the small angle approximation for q's,k0ud and

qis,qmin=k0uEd to obtain a more simplified form for the re-

duced integrals

ji = A <
b̂0

2

2sb̂0
2 + 1d

, s19ad

j' =
B − A

2
<

1

4
Flns1 + b̂0

2d −
b̂0

2

b̂0
2 + 1

G , s19bd

where we have used the reduced collection angle

b̂0=b0 /uE. We can solve the magic angle condition using the
magic angle relation ji =j', i.e., B=3A. Within the small
angle approximation, this is satisfied for b0

MA=3.97uE, or 4uE

approximately as shown initially for a uniaxial system.28 In
Fig. 3, the magic angle solution for the parallel beam illumi-
nation setup is plotted as a function of uE, with and without
small angle approximation. Both are very similar indeed.

D. Convergence angle effect of the magic angle

condition

In many cases, explicitly for a focused probe system used
for high resolution microanalysis or implicitly because of the
need to increase the illumination level at the sample, a
slightly convergent beam is deployed and the magic angle
solution for the parallel illumination condition becomes in-
applicable. To take into account the convergence effect, we
need to re-examine the momentum conservation relation
shown in Eq. s16d. This vector relation can be decomposed
according to the vector components parallel and the perpen-
dicular to the electron optical axis. In the small-angle ap-
proximation ssee Fig. 4d, the parallel version of this relation
is a scalar equation:

qi ; − qZ = k0uE s20d

and perpendicular components of q are defined as follows:

FIG. 3. The magic angle is a function of the uE in the parallel

illumination case under the small angle approximation, i.e.,

b0
MA=3.97uE sdashedd, and for cases not limited by the small angle

approximation ssolidd, i.e., solution of Eqs. s11d and s18d.
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qX = k0sa cos f − b cos wd

qY = k0sa sin f − b sin wd s21d

q
'

2 = qX
2 + qY

2 = k0
2u2,

where f and w are azimuth angles for wave vectors of the
incident and scattered electrons, respectively, and u is the
scattering angle between the direction of the incident elec-
tron and that of the scattered electron. The latter is related to
a sbd, the angle between the incident sscatteredd electron and

the electron beam axis, by spherical trigonometry ssee the
appendixd:

u2sa,b,f − wd = a2 + b2 − 2ab cossf − wd . s22d

Then, the reduced integral defined in Eq. s8d has the follow-
ing form:

ji = A8, s23ad

j' =
B8 − A8

2
, s23bd

where

A8 =
1

2p2a0
2E

0

a0

adaE
0

2p

dfE
0

b0

bdb

3E
0

2p

dw
uE

2

fuE
2 + u2sa,b,f − wdg2

, s24ad

B8 =
1

2p2a0
2E

0

a0

adaE
0

2p

dfE
0

b0

bdb

3E
0

2p

dw
1

uE
2 + u2sa,b,f − wd

. s24bd

Thus the solution of Eq. s11d is equivalent to B8=3A8. Equa-
tion s23d is equivalent to Eq. s19d when the convergence
angle a0 approaches zero. The numerical result is plotted as
a contour in Fig. 5. Our result agrees with the result given by
Souce et al.19 in their determination for a uniaxial system
through a more tedious integration. It is worth pointing out
that an earlier prediction by Menon and Yuan28 for the magic
angle condition in the convergent beam case is incorrect be-
cause it did not perform the actual azimuthal angular integra-
tion for both the incident beam and the scattered beam.

A striking feature of the solution shown above is the sym-
metry, that is, the interchangeability between the beam con-

FIG. 4. Momentum vector dia-

gram of the inelastic scattering

under the small angle approxima-

tion sad and its projection in the

plane perpendicular to the optical

axis sbd. The convergence angle

effect has been taken into

consideration.
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vergence range a0 of the incident electron and angular range
b0 of the collection of scattered electrons. This is already
evident in Eq. s22d. This can be traced to the small-angle
approximation. Figure 4 shows that the surface of the Ed-
ward sphere described by the fast electrons becomes a plane
of constant energy in the small angle approximation. It has
been argued that dependence on a0 and b0 are not
symmetrical,28 because the interchange of a and b produces
another momentum transfer vector which has the same par-
allel vector component but with a perpendicular component
which is pointing in the opposite direction. Thus in a general
case, the interchangeability of the convergence and the col-
lection angles may not be valid. But in angular integrated
spectroscopy, and in the small angle approximation, cross
section depends only on the square modulus of q fsee Eq.
s8dg, hence the interchangeability holds.

III. DISCUSSION

Our theoretical analysis not only gives us a definition of
the magic angle conditions, valid for an arbitrary anisotropic
system, but it also gives a general expression. This allows us
to investigate in more detail the physical meaning of the
magic angle conditions as well as understanding the discrep-
ancy between the various reported magic angle analyses.

A. General expression of EELS cross section in anisotropic

systems

A general expression can be worked out by substituting
the result of Eq. s10d back into Eq. s4d. This gives the cross
section for the partially angular integrated electron energy-
loss spectrum for core electron excitation in any anisotropic
material systems in terms of their macroscopic dielectric
function as:

ds

dE
sa0,b0,Õd =

8pme

na0h2k0
2Fj' ImfTrs«dg

+ sji − j'do
i,j

cos xi cos x j«2
ijG , s25d

As the trace of the dielectric function “metric tensor” Trs«d
s=o j«

j jd is invariant with respect to rotational transformation,

the first part of the expression does not change with speci-
men orientation. The second part has a pre-factor that van-
ishes at the magic angle conditions. So the cross section for
core electron excitation using MAEELS is

ds

dE
sa0

MA,b0
MAd =

8pme

na0h2k0
2j

'

MA ImfTrs«dg . s26d

B. Physical meaning of the magic angle effect

Another way to write Eq. s25d is as follows:

ds

dE
sa0,b0,Õd =

8pme

na0h2k0
2Hsji + 2j'd

ImfTrs«dg
3

+ sji − j'd

3o
i,j

scos xi cos x j −
1

3dijd«2
ijJ . s27d

As before, the factor sji −j'd gives the magic angle condi-

tion. However, if we rotate the crystal over all possible ori-

entations sÕd, the averaged value of the angular dependent

factors can be written as:36

scos xi cos x jd =
1

3dij . s28d

This means that the second term in Eq. s27d drops out when
the cross section is averaged over all orientations, even if the
magic angle condition is not satisfied, i.e.,

ds

dE
sa0,b0d =

8pme

na0h2k0
2Hsji + 2j'd

ImfTrs«dg
3

J . s29d

Thus we demonstrated that the spectrum obtained at
magic angle condition is equivalent to that obtained by ori-
entational averaging. This reason can be explained math-
ematically as follows.

In normal orientational averaging, the orientation can re-
fer either to that of the specimen or the external perturbation,
i.e., the orientation of the applied field defined by the mo-
mentum transfer vector q in EELS. We can distinguish the
averaging over the azimuth angle from 0 to 2p, from aver-
aging over the polar angle from 0 to p. In MAEELS, the
azimuth angle averaging is achieved by using an axially
placed circular detector. The remaining orientational averag-
ing of q over the full polar angle range is not possible to
achieve in EELS experiments, but the equivalent result may
be obtained by integrating over a limited range of polar
angles because electron scattering is skewed toward the
small angle. However, it is not always possible to find the
appropriate polar angular range, hence the existence of
magic angle condition is not automatically assured.

FIG. 5. The contour expression for magic angles condition in

EELS of anisotropic core electron excitation.
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C. Comparison with other analysis

Now we can compare our prediction for the magic angle
value with other derivations ssee Table Id and analyze the
reasons for the diversity of the predicted values.

Menon and Yuan28 and Souche et al.19 both derived their
values by working out the anisotropic spectral response in a
uniaxial system, but otherwise their conclusions are identical
with our general result.

Most interesting is that of Paxton et al.,33 who tried to
derive a general theory for the magic angle condition. In
their paper, the momentum transfer vector q is projected in
the laboratory frame sX ,Y ,Zd defined above, so we have the

quantum mechanical transitional matrix element as:

ukf usq · rduilu2 = ukf uqXX + qYY + qZZuilu2

= qX
2kXl2 + qY

2kYl2 + qZ
2kZl2 + 2qXqY RefkXl

3kYl*g

+ 2qYqZ RefkYlkZl*g + 2qZqX RefkZlkXl*g ,

s30d

where kXl2= ukf uXuilu2, and kXl= ukf uXuilu, the kYl2, kZl2, kYl,
and kZl have a similar definition. As discussed above, using

the weighting given in Eq. s8d, the angular integrated cross
section can be written as:

ds

dE
sa0,b0,Õd ~ j' · skXl2 + kYl2d + ji · kZl2. s31d

If j'=ji =j0, then we have:

ds

dE
sa0

MA,b0
MAd ~ j0 · skXl2 + kYl2 + kZl2d . s32d

Paxton et al.33 derived the magic angle condition by insisting
that the isotropic spectra are given by this equation without
giving detailed explanation. To show that it is orientation
independent, we first consider a case where the specimen
frame coincides with the laboratory frame, then

kXl2 + kYl2 + kZl2 = kxl2 + kyl2 + kzl2. s33d

As the latter is proportional to the trace of the imaginary part
of the dielectric function, it is invariable to rotation. So Pax-
ton et al.33 chose the correct magic angle condition, and
should arrive at the same value for the magic angle as we do.
But for reasons we could not understand, they concluded that
the MAi is about 1.36uE. We believe that it is a trivial mis-
take.

The derivation of Daniels et al.29 has some similarity to
our Eq. s30d, but they have used the substitution in the beam
direction coordinate sX ,Y ,Zd as:

qX = qXY cos f ,

s34d
qY = qXY sin f ,

X = rXY cos f8,

s35d
Y = rXY sin f8,

where the rXY was defined as the magnitude of vector
rXY—the position vector of the sample electron in the X-Y
plane where the collection detector lies, and qXY has a similar
definition. However, Daniels et al.29 assumed that fÞf8, so
their subsequent calculation cannot be correct.

Zhu et al.11 correctly recognized the importance of the
rotationally symmetry of the experimental setup, i.e., that the
cross term as shown in Eq. s8d should vanish in integrating
over azimuthal angle, so they focused on estimating the
weighting of the cross section along the polar angular range
as:

q̄i = q̄', s36d

where

q̄i =E qiS d2s

dEdu
DdVYE S d2s

dEdu
DdV .

The normalization factor in the denominator is just the
equivalent expression for the isotropic system and we can
define it as N. In the small angle approximation, we have:

q̄i =
k0

N
E

0

2p

dwE
0

b0

udu
uE

su2 + uE
2d

, s37ad

q̄' =
k0

N
E

0

2p

dwE
0

b0

udu
u

su2 + uE
2d

. s37bd

In fact q'=k0ū where ū is the so-called mean scattering
angle defined in Egerton’s book,25 and has a value

ū=2uEsb̂0−arctan b̂0d / lnsb̂0
2+1d, and qi =k0uE. For example,

in his definition ū=uE and we can resolve b0
MA<1.76uE ac-

cording to this relation. For comparison, our equivalent inte-
grals defined in Eqs. s8d and s11d can be rewritten under the
small angle approximation as

ji = E
0

b0

udu
uE

2

su2 + uE
2d2

, s38ad

j' =
1

2
E

0

b0

udu
u2

su2 + uE
2d2

. s38bd

Thus the guess of Zhu et al. is incorrect numerically. By a
similar argument, Gloter et al.34 guessed a different weight-
ing of transition with q parallel to the beam direction and
estimated it with sq ·k0d2 /q2k0

2. They also used the isotropic

angular distribution as the normalized factor. Remarkably,
their guess is correct for parallel illumination case, but their
expression cannot correctly account for the convergence ef-
fect because it does not consider the scattering when the

TABLE I. The predicted values of the magic collection angle for

the parallel illumination case.

Authors Zhu11 Menon28 Paxton33 Souche19 Daniels29

MAisb0
MA /uEd 1.8 4 1.36 3.97 1.98
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incident and scattered electron beams are not in the same
plane as the beam optical axis.

In summary, we have analyzed the reasons for the differ-
ent prediction of magic angle values, and found all the dis-
crepancies can be understood for either by the numerical
mistakes or over-simplification in the derivation. Given that,
a comparison between the experimental measurement and
our theoretical prediction should reveal either the simplicity
of the original assumptions we all share or the experimental
difficulty in achieving the required conditions.

The existence of the “magic angle” effect has been experi-
mentally demonstrated by Menon and Yuan in their 1998
paper28 by showing that the C 1s absorption edge shape
swhich contains a strongly anisotropic core electron transi-
tion from the C 1s absorption edge to the anti-bonding
p-dominated conduction bandd is invariant of graphite speci-
men orientation. This is done using a convergent probe in-
side a scanning transmission electron microscope. Daniels et
al29 did a more systematic work and also confirmed the ex-
istence of the “magic angle” effect.

Daniels et al.29 also experimentally determined that the
actual value of the magic angle for collection semi-angle for
C 1s core loss signal is 1.5–1.8 mrad for a parallel illumi-
nation by incident electrons of 200 kV, or 2.1–2.5 uE. If we
use the relativistic expression uE

rel of Ritchie and Howie32 to
account for high energy nature of the 200 kV electrons,42

i.e., uE
rel<0.84 mrad, then we have b0

MA=1.8–2.2 uE
rel. Both

estimates are different from our theoretical value. Given the
above discussion, we are confident that this discrepancy can-
not be accounted for by our model as some claimed. It sug-
gests that further improvement to our model may be neces-
sary. We can list a number of factors that might modify the
prediction in our model, such as non-dipole transition,25 the
coherent scattering effect,43 the channeling effect,25 or the
full relativistic effect.44 However, these factors may affect
the exact values of the magic angle, but not the conclusion
that the magic angle effect, if it exists, applies to all aniso-
tropic systems and that the spectra collected under the magic
angle condition represent an orientation average.

One way to confirm that the spectra acquired at the magic
angle are equivalent to a rotationally averaged spectrum is to
compare the spectra acquired from a spherically nanopar-
ticles with concentric shells made of grapheme layers45 with
that acquired from graphite single crystal at the magic angle
conditions.28 At the moment, this comparison is not feasible
because the spectral resolutions of the existing spectra are
very different.

IV. APPLICATIONS

A. “Magic” orientation in the orthogonal systems

Here we concentrate on the most commonly encountered
orthogonal system where the cross term in the dielectric ten-
sor is zero. The cross section Eq. s25d can be rearranged as:

ds

dE
=

8pme

na0h2k0
2Ho

j

W j j«2
j jJ =

8pme

na0h2k0
2Hs2j' + jid

ImfTrs«dg
3

+ sji − j'do
j

scos2 x j −
1

3 d«2
j jJ . s39d

Again the first part is rotationally invariant so it represents
the isotropic spectrum. The second part contains information
about the specimen rotation. The first bracket represents the
factor responsible for the magic angle condition. The inter-
esting point is the existence of other factors scos2 x j −1/3d
inside the summation over j. This suggests that the second
part will also vanish if all the brackets within the summation
sign equal to zero. They uniquely define a specific specimen
orientation sx j =54.7° d which we may label as the “magic”

orientation. Again the spectrum so obtained equals that ob-
tained at the magic angle condition or by orientational aver-
aging. This is understandable as cos x j is the projection of
the jth basis vector on the optical axis, so each principal
symmetry electronic excitation contributes equally. By rota-
tion symmetry about the beam direction, the same result
holds for the more general case involving convergence illu-
mination.

In uniaxial systems whose dielectric function has only
two variables «i and «', the angular integrated cross section
as shown in Eq. s39d becomes

ds

dE
=

8pme

na0h2k0
2Hs2j' + jid

«2
i

+ 2«2
'

3
+ sji − j'd

3scos2 x3 −
1

3 ds«2
i

− «2
'dJ . s40d

Clearly, the “magic” orientation defined above is reduced
to a “magic angle” between the z axis of the sample and the
optical axis, i.e., x3=54.7° in uniaxial systems. Although we
may distinguish this “magic angle” of specimen orientation
with the magic angle for the beam convergence and collec-
tion in both cases, the acquired spectra are again equivalent
to spherically averaged spectra and hence they can be con-
sidered as a part of MAEELS family.

In summary, the “magic” orientation can provide a set up
at which the spectra should be the same as the spectra gained
at the magic angle for the system where the symmetry is
higher than orthogonal, and this “magic” orientation will lose
its meaning in a system whose dielectric function has non-
zero off-diagonal elements.

Our analysis suggests that a better way to represent the
anisotropic response of EELS is to write it as a linear com-
bination of the orientationally averaged salso called “isotro-
pic”d spectrum and an orientation-dependent spectrum. In
uniaxial systems, the orientation-dependent spectrum can be
further expressed as a product of the magic angle factor, the
magic orientation factor, and a dichroic spectrum:

u«2uAnisotropic = s2j' + jid · u«2uAverage + sji − j'dscos2 x3

−
1

3d · u«2uDichroic, s41d

where

u«2uAverage =
2«2

' + «2
i

3
, s42ad

u«2uDichroic = «2
i

− «2
'. s42bd
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This formula should offer a practical way to study the
anisotropy in the core electron excitation as well as encoding
the magic angle and magic orientation conditions.

B. Connections between MAS for EELS, for NMR,

and for XAS

The magic orientation effect has a direct analogue with
the “magic angle effect” in XAS experiments and indirectly
with magic angle spinning nuclear magnetic resonance
sMAS-NMRd.

In surface extended x-ray absorption fine structure
sSEXAFSd,6,7 one can study the bonding length as well as
the local coordination number of the excited atoms. How-
ever, contribution of more than one shell to the measured
EXAFS can result in a polarization dependent measured dis-

tance from absorbing atom to the neighboring atoms and
affect the effective coordination number. If there is a higher
than twofold symmetry around the surface normal, the cor-
rect distance and the real coordination number can be di-
rectly measured if the angle, between the electric field vector
E of the incident x ray and the surface normal of the single
crystal, is equivalent to 54.7° exactly. This is because the
system being probed is effectively an uniaxial system.

Another famous example is the MAS-NMR technique for
solid.24,46,47 If the material, whether it is a single crystal,
polycrystal or power, is spun with high speed about an axis
which is at 54.7° with respect to the applied magnetic field,
the NMR result will be independent of the orientation of the
sample. MAS-NMR is also related to the orientational magic
angle effect because one is effectively using spinning to cre-
ate an effective “uniaxial system” out of powdered samples.

V. CONCLUSION

We have presented a general model describing anisotropy
of the core-level electron excitation in EELS measurement
and have determined the magic angle condition at which the
sample orientation becomes irrelevant. After comparing our
derivation with reported theoretical efforts, we can explain
all the reasons for disagreement in the literature predicting
the value of the magic angle and show that the differences in
no way invalidate our approach. Furthermore, for the first
time, we show that the magic angle condition is applicable in
all anisotropic systems and that the spectrum at the magic
angle condition is equivalent to the rotational average of the
sample. The same analysis can also give the general expres-
sion for EELS of core electron excitation in anisotropic sys-
tem. In certain cases, we found the magic orientation condi-

tion in which equivalent spectral information is obtained as
in MAEELS. Its relation with other “magic angle effect” is
clarified. In addition, the analysis shows that EELS in a
uniaxial system can be written as a sum of the effective
“isotropic” spectrum and the linear dichroic spectrum. This
should facilitate the study of dichroism in anisotropic sys-
tems.
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APPENDIX: THE GEOMETRICAL EXPLANATION FOR

EQ. (22)

The perpendicular component of the momentum transfer
q can be seen as a sum of the perpendicular components of
the initial and the final wave-vector in the case of the con-
vergence beam as:

q' = k0
' − k f

'. sA1d

According to the vector relations shown in Fig. 4 under
the small angle approximation, we have:

q' = k0u , sA2d

k0
' = k0a , sA3d

k f
' = k0b . sA4d

Thus the scattering angle u can be written following the vec-
tor combination rule as:

uW = aW − bW , sA5d

where the directional properties of these angular vectors are
defined to be the same as the perpendicular components of
their corresponding wave vectors. According to the law of

cosines, the magnitude of uW therefore can be written as Eq.
s22d,

usa,b,f − wd2 = a2 + b2 − 2ab cossf − wd .
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