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Using the physical process of ultraintense field ionization of high charge states of inert gas ions, we

have developed a method of peak intensity measurement at the focus of high energy short pulse

lasers operating in single shot mode. The technique involves detecting ionization products created

from a low pressure gas target at the laser focus via time of flight detector. The observation of high

ion charge states collected by the detector yields peak intensity at the focus when compared with the

results obtained from well established tunnel ionization models. An initial peak intensity

measurement of 5�1016 W cm−2 was obtained for a 1.053 �m center wavelength, 0.4 J pulse with

1 ps pulse duration focused with an f /5.5 off-axis parabola. Experiments with multijoule level,

500 fs laser pulses are on the way. © 2006 American Institute of Physics.

�DOI: 10.1063/1.2336469�

INTRODUCTION

Peak intensity at the laser focus is one of the crucial

parameters in high energy density physics �HEDP� experi-

ments based on ultraintense laser solid interaction. The na-

ture of highly nonlinear coupling between the laser field and

target electrons depends on the focal intensity,
1

which then

determines electron transport through the target and other

related mechanisms such as energetic proton generation. It is

also known that fast ignition inertial confinement fusion �FI-

ICF� requires some threshold intensity at the focus to gener-

ate fast electrons/protons.
2

It is, however, not well under-

stood at what intensity the process is optimized. Accurate

peak intensity information is also required for numerical

simulation of such complex processes to explain experimen-

tal observations and guide experimental efforts. However, to

our knowledge, none of the large facilities currently opera-

tional �Vulcan at RAL, Titan at LLNL, Gekko/FIREX in

ILE, etc.� have direct intensity measurement capabilities, and

intensity is estimated from indirect measurements—which

involve measuring the focal spot size and determining the

energy content in it, in addition to measuring the temporal

profile of the pulse with one of several autocorrelation meth-

ods. It is usually not feasible to perform the focal spot mea-

surement with fully amplified pulse. So, a partially amplified

beam is used instead �with a small percentage of its light

being picked up by the front surface of a highly transmissive

optic� for the measurement. With fully amplified light, more

wave front distortions come into play due to the nonuniform

thermal lensing effect at the gain media. The focusing ele-

ment, usually an off-axis parabola �OAP�, is difficult to

align, and furthermore, surface aberrations/imperfections in

it may cause drastic distortion of the focal spot. Also, on the

temporal profile aspect, one shot pulse-width measurements

are not yet available in most large facilities. Indirect tempo-

ral width estimation from pulse spectrum assuming a trans-

form limited pulse may be off by an order of magnitude due

to imperfections in compressor gratings or sizable accumu-

lation of the B integral as the ultrashort high power pulse

traverses different media before arriving at the focus.
3

That is

why it is in general difficult to infer real peak intensity at the

focus from indirect measurements. So, an in situ measure-

ment of peak intensity at the focus of an ultraintense pulse is

extremely important. In this article, we report, for the first

time, the installation and preliminary experimental run of

such an in situ peak intensity calibration system at the Z

petawatt laser facility at the Sandia National Laboratories.

METHOD

Peak intensity at the laser focus can be directly ascer-

tained by observing ionization of highly charged ions at the

focus. Precision measurements of high field ionization of in-

ert gases
4,5

with simultaneous semiclassical modeling and

numerical solutions of full three-dimensional �3D� time de-

pendent Schrödinger equation
6

have established the reliabil-

ity of using these charge states as an effective gauge of in-

tensity calibration at high intensities. As it was shown by

Chowdhury et al.,
7

semiclassical tunnel ionization rates are

adequate to explain ionization of charge states �with bound
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energies up to a few keV� with ultraintense lasers. In this

method of determining peak intensity at the focus, usually

multiple shots are required to collect enough statistics and

high dynamic range. Most laser systems that are used are in

the peak power range of multiterawatt or less and operating

at 10 Hz or higher repetition rate. However, single shot in-

tensity calibration is possible, since the probability of tunnel

ionization has approximately I5 dependence below saturation

�ionization probability of 1 /e�, and highest peak intensity is

confined to very small focal volume. �For example, at

10−4 torr pressure in the 193 �m3 �5 �m spot� volume con-

fined by the isointensity surface at half-peak intensity, there

would be 800 Ne atoms present. At 1�1020 W cm−2 Ne10+

would have unity probability of ionization, as shown in Fig.

1. With a 50% detection efficiency �typical�, 400 of these

Ne10+ ions would be detected in a single shot�. Detection of

highest ionization charge state of a species and nondetection

of next highest charge state essentially impose a lower and

an upper bound on peak intensity, when the measurement is

performed with a highly efficient detection system. Such de-

tection systems have allowed highest dynamic range ioniza-

tion yield measurements in ultraintense fields over decades

of intensity range.
8

Recent measurements of field ionization

of high charge states of Xe and Kr in JAERI 100 TW system

have also demonstrated feasibility of using such a system to

measure peak intensities around 1020 W/cm2.
9

DESCRIPTION OF EXPERIMENT

The Z petawatt �ZPW� laser architecture is based on a

three stage amplification system consisting of an optical

parametric chirp pulse amplifier �OPCPA�, a pair of glass rod

amplifiers, and several high power slab amplifiers. Amplified

pulses with a center wavelength of 1.053 �m then enter a

vacuum compressor capable of delivering 100 J/pulse with

500 fs pulse duration. As the ZPW laser facility is still under

construction and shot accessibility is limited, our strategy

involved installing two nearly identical experimental setups,

one at the petawatt laser facility and another at the Ohio

State University �OSU� 1 TW laser laboratory, where a

90 fs, 90 mJ Ti:sapphire chirp pulse amplifier �CPA� laser

operates at 800 nm with 10 Hz repetition rate, but also can

be run at single shot mode. This way, between the shot runs

at ZPW, the OSU facility can act as a test bed for planning

and troubleshooting experiments.

In Fig. 2, a schematic of the time of flight �TOF� detector

assembly setup at ZPW is shown, which is specially de-

signed to detect highly charged ionization states of various

inert gas species �Ne, Ar, Kr, Xe, etc.�. The ion detector flight

tube with field plate assembly �plates 1–5 in inset of Fig. 2

are precision aligned with one another with a 500 �m diam-

eter center hole on each� is attached to the main chamber. A

leak valve delivers gas to plate 1 via a stainless steel �SS�

tubing attached to it whereas plate 2 acts as a skimmer for

the gas jet. The laser focus is placed between plates 2 and 3

and aligned by crossing it with an alignment laser beam

�placed at the detector end of TOF tube� coming through

center holes in plates 3–5. This assembly ensures that the gas

jet, laser focus, and multichannel plate �MCP� �25 mm chev-

ron MCP from Burle� detector are all aligned together. A

2–2.5 kV potential drop from plate 2 to plate 3 accelerates

the ions past the interaction region into the flight tube. The

relatively high potential difference ensures minimization of

space charge effects on the high charge state ion trajectories.

This type of setup has been successfully used previously to

collect virtually noiseless data with target gas pressures ex-

ceeding 10−4 torr.
8,10

Differential pumping ensures that the

base pressure at the detector assembly is at 10−8 torr level �or

below as the main chamber base pressure varies between 3

�10−7 and 5�10−6 torr� and the gate valve keeps it under

vacuum when the main chamber is vented. The key in de-

signing the detection setup is to set the timing of the pulsed

ion selector consisting of three annular plates with wire mesh

covered center holes, where the outer plates are grounded

and the center plate is attached to a high voltage pulser �DEI

PVM-4210�. Using a digital delay generator �SRS DG 535�

synchronized with the laser pulse, the selector can block the

lower ion charge states which are generated in copious

amounts in the large regions surrounding the focus. This pro-

tects the detector from saturation and significantly improves

signal to noise ratio.

Two modes of data collection electronics were set up—

one for the 10 Hz OPCPA pulses with 2 mJ/pulse com-

pressed into the target chamber and another for single shot

FIG. 1. Neon tunnel ionization probability in a 500 fs, f /5.5 focus with

1.05 �m laser pulse.

FIG. 2. Setup of TOF assembly setup at Sandia National Laboratory target

chamber. The inset shows the gas jet and field plate assembly in more detail.

10E723-2 Link et al. Rev. Sci. Instrum. 77, 10E723 �2006�

Downloaded 25 Jan 2007 to 128.54.44.116. Redistribution subject to AIP license or copyright, see http://rsi.aip.org/rsi/copyright.jsp



amplified beams �400 mJ–50 J compressed before the peta-

watt �PW� compressor is constructed�. Multishot data were

collected at low event probability �less than 0.2 ions/shot�

with a fast preamplifier �Ortek model 9306� connected to a

fast timing discriminator �Ortek model 9307�, which digi-

tizes the signal for a picosecond time analyzer �Ortek model

9308�. Single shot data were collected via a 10 GHz digital

oscilloscope �Tektronix�. All the signal cables were shielded

and collection electronics and a computer were placed in a

Faraday cage to protect them from electromagnetic pulses

�EMPs� generated by the PW system.

DISCUSSION AND ANALYSIS

Multishot spectrum collected at OSU �shown in Fig. 3�

presents nearly noise-free data, even with the whole neon

outer shell stripped with 97 mJ, 90 fs pulses. The chamber

base pressure was 10−8 torr, and pressure with target gas in

the chamber was 3�10−7 torr. The pulsed ion selector was

used here to block ion charge states Ne+ and Ne2+. The cali-

brated intensity by comparing ratios of theoretical ionization

yields versus experimental yields results in �2.5±1.0�

�1017 W cm−2 peak intensity at the focus. Single shot mea-

surements were also performed with the same laser observ-

ing up to Ne6+ consistently. Ne7 or Ne8+ ions were not ob-

served due to low event probability.

The base/target pressure at the Sandia target chamber

was 7�10−6 /1.2�10−5 torr. The experimental run began in

multishot mode with 2 mJ OPCPA pulses compressed to

0.5–1.0 ps. A sample single shot OPCPA data is shown in

Fig. 4�a� where all the Kr+ isotopes are present along with

some background ion signals. This method was used to align

the focus with the ion collection holes by maximizing Kr+

signal, and then the laser was run in single shot mode to

determine the time window and triggering offset at the oscil-

loscope using H+ and Kr+ ion signals. Neon could not be

used because the pulse intensity was inadequate to ionize it.

The rod amplifier shot data were collected with a total of

14 shots with energies ranging from 300 to 400 mJ and pulse

duration of 0.5–1.0 ps within a span of 2 days. This was the

first experimental run using the Sandia ZPW laser system. A

few spectra were collected with background gas as target, to

compare with the neon gas signal. Target gas was delivered

by a 63 mm bypass nozzle �connected to a needle valve�

placed 25 mm away from focus, because both the gas jet and

the ultrahigh vacuum leak valve were clogged. Ions were

swept away with 2.5 kV potential difference between plates

2 and 3, and the MCP was biased at −1.8 kV. The pulsed ion

selector was not used in this shot run because the high volt-

age pulser was not available. A sample shot TOF spectrum is

shown in Fig. 4�b� with a background shot data for compari-

son. Compared to the OPCPA data taken with the same

setup, the signal to noise ratio is poorer. However, the clear

presence of H+ peaks in both background and target gas

shots and various other background ion peaks help identify

neon charge states in the vicinity. Also, we note that the

background peaks are wider than signal peaks and almost

every background peak is suppressed in the neon spectrum

due to higher target gas density. Based on the presence �and

saturation� of Ne4+–Ne6+ and possibly Ne7+, the peak inten-

sity is estimated from field ionization probability and focal

volume integrated yield calculations �part of which is shown

FIG. 3. OSU multishot neon TOF spectrum collected with 800 nm, 90 fs

pulse with 97 mJ energy into the chamber with an f /2.5 focus. Data are

accumulated for 22 000 shots, with chamber gas pressure of 5�10−7 torr.

FIG. 4. �a� Single shot ion TOF spectrum collected with 2 mJ unamplified

OPCPA beam with pulse duration of 0.5–1.0 ps and a 10 �m focal spot,

with Kr as sample gas. �b� Single shot ion TOF spectra �background in solid

red and target gas neon in solid black� with 0.4 J pulse with pulse dura-

tion of 0.5–1.0 ps. Inset shows region of interest with specific ion peaks

�total chamber pressure of 1.2�10−5 torr with target gas for both shots �a�

and �b��.
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in Fig. 1� to be 5�1016 W cm−2 with a 50% accuracy, which

takes into account the pulse-width jitter between 0.5 and

1.0 ps. This corresponds well with the indirect peak intensity

estimate of 5.7�1016 W cm−2 based on indirect method as-

suming the 400 mJ pulse was focused to a 30 �m spot with

1 ps pulse duration.

It is clear from the inset of Fig. 4�b� that an ion signal

peak from any given ion species was broken up into multiple

peaks, indicating that experimental parameters had signifi-

cantly changed in the amplified rod shot from that of the low

energy OPCPA shots. EMP coupling to the MCP was ruled

out when it was observed that the ion signals disappeared

when the ion path to the MCP was blocked with the gate

valve closed. Although some thermal lensing correction was

incorporated in the amplifier system, a considerable amount

of on shot residual thermal lensing was still present in the

laser system. This effect most probably contributed to the

misalignment and degradation of the focus of the amplified

beam with respect to that of the OPCPA beam. The degraded

focus with a much larger effective volume then could create

a massive envelope of lower ion charge states whose effect

would worsen in the absence of a gas jet �which keeps the

gas atoms confined to relatively smaller volume�. The high

ion charge states created at the center �most intense part� of

this envelope would then have to traverse a longer path

through the charge clouds �space charge Coulomb force in-

creases linearly with radius of a uniform charge cloud�,

which possibly caused the ion bunches to be defocused, so

that they arrived at the detector as separate sub-bunches

within tens of nanoseconds, resulting in multiple peaks per

charge species in the TOF spectra.

FUTURE PLANS

To correct the thermal lensing in the amplifier system,

deformable mirrors have been installed and tested. Shot to

shot pulse duration and energy fluctuations have been mini-

mized and the Sandia ZPW front end laser is nearly ready to

fire 10–50 J amplified shots. The second phase of this ex-

periment is expected to be arranged within a few months.

In conclusion, a new method of in situ peak intensity

measurement is introduced in a large scale ultraintense laser

facility. The ion collection method is shown to operate well

in multishot mode and single shot mode with unamplified

OPCPA pulses. The Sandia ZPW front end amplified laser

peak focal intensity calibration has been found to be

�1.25±0.75��1014 W cm−2 per millijoule energy. The rea-

son for degradation of ion signal in amplified pulse has been

identified to be an enhanced space charge effect due to the

thermal lensing degradation of the target focus.
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