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One- and two-dimensional multigroup radiation hydrodynamics simulations have been performed to

investigate the motion of the gold plasma generated at the surface of the embedded gold cone in a

re-entrant cone-guided inertial confinement fusion capsule. The effect of deuterium-tritium �DT� ice

layers, and other possible tampers, of varying thickness, upon the motion of the gold cone plasma

has been investigated. The effect of the x-ray drive spectrum incident upon the ice layer is also

explored. Ice is shown to tamp the expansion of the gold cone, and whilst denser materials are

shown to be more effective in this role, ice does not pollute the ignition region with intermediate-

Z ions, which, though preferable to gold contamination, also tend to inhibit the attainment of high

fuel-ion temperatures. © 2007 American Institute of Physics. �DOI: 10.1063/1.2734584�

Much recent work on fast ignition �FI�
1

for inertial con-

finement fusion �ICF�
2

has involved the use of capsules in

which a re-entrant gold cone has been embedded.
3

As in the

original scheme described in Ref. 1, the re-entrant cone-

guided FI scheme employs a laser pulse with power on the

order of 10 PW and energy of around 100 kJ to heat a region

of approximately 1000� compressed equimolar deuterium-

tritium fuel, which satisfies the �r criteria for ignition, to the

multi-keV temperatures required for alpha-particle bootstrap-

ping and subsequent propagating burn. Here, the igniter laser

pulse is incident on the interior of the gold cone, which is

embedded in the capsule such that the cone tip is directed

toward, and located within approximately 100 �m of the as-

sembled dense fuel core. The object of this cone interface

being to avoid the requirement that either the igniter pulse, or

a less intense “hole-boring” pulse, first channel through some

few millimeters of plasma, such as would ordinarily sur-

round the core formed from the uniform spherical implosion

of a fuel shell.

Experimental studies of cone guided FI have, to date,

employed deuterated plastic fuel shells.
4

However, it is likely

that ignition scale designs would be cryogenic and this seems

to be a necessity for high-yield experiments. In this regard,

there are a number of interesting open questions concerning

the presence and behavior of DT ice on the outer surface of

the gold cone where this surface lies inside the capsule. To

date, the ice layers in cryotargets are formed, just below the

critical temperature, by beta layering,
5

in which the energy

deposited by tritium’s beta decay creates a temperature gra-

dient between the inside ice surface and the outside of the

shell and forms, by vapor transport over the inside surface, a

uniformly thick ice layer on the inside of the spherical shell.

The insertion of a re-entrant cone complicates the geometry;

however, if measures are not taken to prevent it, one would

expect the ice layer to extend over the surface of the cone.

This situation is illustrated in Fig. 1.

Previous simulations of re-entrant cone-guided FI cap-

sule implosions �for example, Refs. 6 and 7� have typically

not included a layer of DT ice on the cone, largely for the

reason that actual targets have, to date, been noncryogenic in

nature. It is also the case, however, that simplification of this

region has some computational advantages due to the diffi-

culty of modeling the shear flow at the interface between the

imploding capsule and the cone with a Lagrangian computa-

tional mesh, so the tendency has been to omit the ice on cone

layer even when performing more speculative modeling of

cryogenic targets. For this reason the parametric studies de-

scribed below were carried out in one dimension �1-D�, with

results from a two-dimensional �2-D� version of the same

radiation hydrodynamics code being compared against actual

experimental data from a re-entrant cone-guided capsule im-

plosion experiment in order to give a greater degree of con-

fidence in the results so obtained.

A major point of concern for re-entrant cone guided fast

ignition is the motion of the gold that comprises the cone and

its mixing with the DT fuel. In Refs. 6 and 7 Stephens de-

scribes experiments and simulations in which preheating of

the gold cone causes mixing of small quantities of Au with

the collapsing shell. If high-Z ions were to mix into the high

density part of the assembled fuel, it would significantly in-

crease cooling rates at any given temperature, stifling both

ignition and widespread thermonuclear burning. The experi-

mental results for OMEGA scale indirect drive illumination

quoted in Ref. 6 showed contamination to the point where, at

National Ignition Facility �NIF� scale, ignition energy re-

quirements would be approximately doubled. In indirect

drive, most of the preheating is a consequence of M-band

�2−4 keV for Au� radiation penetrating the shell. Based on

the data presented in Refs. 6 and 7 the radiant flux incident

upon the surface of the cone, in an indirect drive ignition

scale target, has an energy density equivalent temperature of

100 eV �meaning that the radiant energy flux is the same as
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would be incident on an object placed in a hohlraum with a

blackbody temperature of 100 eV�. Data presented in Ref. 7

show that even with direct drive, harder components of the

bremsstrahlung flux are still able to penetrate the shell, such

that the energy density equivalent temperature of the drive is

liable to be around 50 eV for an ignition scale target.

Computationally examining the mix between gold and

DT under such conditions requires the application of compu-

tational resources beyond the current scope of FI work—

very large meshes would be required to resolve the fine scale

mixing that is characteristic of such a combination of mate-

rials. Experimental data such as that presented in Refs. 6 and

7 only allow mix to be observed by its effect on overall

opacity over scales much larger than those over which mix is

occurring. What is clear is that the Au vapor on the cone tip

first expands and is then pushed back by the plasma pressure

of the collapsing core as it nears stagnation. The interface of

the Au vapor with the imploding shell is Rayleigh-Taylor

unstable, and the entire outer conical surface of the re-entrant

cone is susceptible to Kelvin-Helmholtz instability so the Au

will tend to mix with and be entrained by the collapsing

shell.

Clearly, if the motion of the gold can be constrained then

the resulting mix will be limited compared to the case in

which the gold is free to move. This suggests the idea of a

cone tamping layer,
7

similar to that which has been proposed

to control the motion of a hohlraum wall,
8

or enhance the

impulse delivered to a soft x-ray driven payload.
9

The simu-

lations presented here show that a DT-ice layer can effec-

tively serve in this role of cone tamper. The application of a

thin CH plastic or low- to intermediate-Z metal layer to the

cone tip, for a similar purpose has also been suggested.
7

As

will be shown below, CH plastic is in most respects a better

tamper than DT ice; however, the mixing of carbon ions, or

metal ions, with the fuel is clearly undesirable, and, based on

the experimental evidence for Au expansion and mixing,

may be unavoidable given that CH is liable to expand far

more vigorously than Au. The authors suggest that an ad-

vanced fuel material such as LiDT might be a good choice

for a cone tamper, and simulations have been performed to

explore the viability of such a material from a radiation hy-

drodynamics standpoint �no thermonuclear calculations were

performed in this study�. It is also possible that significant

radiation shielding might be added to the shell, in the form,

for instance, of a high-Z layer. Such a layer can also assist in

the inertial confinement of the compressed fuel
10

by adding

inertial mass around the compressed core and so retarding its

expansion; however, the insertion of such a layer increases

the hydrodynamic energy requirements of the implosion. In-

sertion of intermediate or high-Z dopants into the region of

the shell that is ablated can also harm efficiency by increas-

ing the fraction of incident energy that is re-radiated.

An additional consequence of the presence of an Au

cone in the capsule can be to increase the adiabat along

which the ice in the shell implodes. KeV x rays falling on the

gold cone heat the gold, and cause it to radiate back toward

the imploding ice. Since the distribution of the photons that

are re-emitted tends to be much softer than the incident flux,

these photons tend to be more readily absorbed in the ice

than the hard spectrum that would otherwise be incident

from the opposite wall. In the case where ice, or some other

low-Z material, coats the cone, such effects are mitigated by

the fact that radiation from the gold tends to be absorbed

locally.

One-dimensional simulations of the tamping of thick

gold layers by DT ice under the influence of x-ray illumina-

tion have been performed using the multigroup radiation hy-

drodynamics simulation code HYADES.
11

The thickness of the

tamping layer was varied from 5 to 50 �m. A total of 12

distinct x-ray drives were employed, having Planckian spec-

tral distributions for 100 eV, 300 eV, 1 keV, or 3 keV,

scaled such that the energy density equivalent temperature

was 25, 50, or 100 eV. Based on the experimental data pre-

sented in Refs. 6 and 7, the drive with an energy density

equivalent temperature of 100 eV and a spectral temperature

of 1 keV is representative of that which the cone in a 3�

laser generated indirectly driven ignition scale capsule would

experience. The 1 and 3 keV drives with an energy density

equivalent temperature of 50 eV are more akin to the expec-

tations for 1� direct drive, with the precise spectra depend-

ing largely on shell composition. With a factor 16 less inci-

dent power than the 50 eV drives, the 25 eV drives represent

heavily shielded, very large direct drive �inertial fusion en-

ergy scale� environments, or KrF laser-driven direct drive

�ultraviolet illumination�.

Figure 2 shows the limiting excursion of the Au-DT in-

terface relative to t0 for all the different drive conditions

employed in our scaled Planck spectra study and for all of

the tamper thicknesses investigated. Data are shown after

2 ns. Spectrally harder drives tend to deposit greater frac-

tions of the drive energy into the Au; however, for the 3 keV

drive, the energy is deposited to a significantly greater depth,

lowering the energy density of the gold surface and so lim-

iting expansion �a 3 keV Planckian peaks at 8.46 keV, at

which energy the attenuation length in cold Au at solid den-

sity is �2.9 �m�. The 50 �m tamper is sometimes less ef-

fective than a 25 �m layer since, in the case of the thicker

tamper, the ice near the interface may not be so effectively

heated by the ionization wave propagating in from the outer

surface of the tamper, so reducing the tamper pressure at the

FIG. 1. Schematic of a cryogenic re-entrant cone-guided fast ignition target

also illustrating the three key steps to ignition: �1� implosion, �2� the forma-

tion of a dense DT fuel core adjacent to the cone tip, and �3� the injection of

the igniter laser into the cone, which results in ignition and burn in the core.

Beta layering of the DT ice within the capsule will tend to result in an ice

covered cone tip, as illustrated, unless some action is taken to prevent this

from happening.
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interface. This deficit is negated in the case of spectrally

harder drives since here the vast majority of the drive energy

is deposited directly in the gold.

Further 1-D simulations of the tamping of thick gold

layers by DT ice, CH plastic, and Li�N�DT �uniform mixture

of 50% LiD with 50% LiT, having a natural ratio of lithium

isotopes �A�Li�=6.94�� under the influence of more realistic

x-ray illumination have been performed using HYADES. The

thickness of the tamping layer was varied from 5 to 50 �m.

Both Au and uranium M-band drive descriptions were em-

ployed based upon data presented in Ref. 12. The M-band is

the principal spectral component of the radiation from the

hohlraum wall in indirect drive ICF that is able to penetrate

the shell of an ICF capsule and so drive motion of the gold

cone. Simulations with U spectra were performed on the ba-

sis that the cocktail hohlraums, which are now designated for

a significant fraction of the planned NIF ignition scale hohl-

raum shots, employ an alloy that is based predominantly on

U. It was considered of interest to examine whether the de-

coupling of the source and target M-bands would have a

significant impact upon the results. Due to a lack of suitable

reference data, U M-band emission was approximated by

shifting the Au spectrum by the ratio of U to Au M�

energies.
13

The energy density equivalent temperature of the

drive was 100 eV in both cases, and the M-bands were each

divided into ten adjacent photon groups of varying width.

Additional simulations were performed for a “typical”

direct drive bremsstrahlung spectrum �low energy compo-

nents have been filtered out by passage through the shell�.

The energy density equivalent temperature of this brems-

strahlung drive is 50 eV. This spectrum is shown, along with

FIG. 3. �Color online� The limiting excursion of the Au-tamper interface

relative to t0 after 2 ns for the Au M-band �top right�, U M-band �middle

right�, and bremsstrahlung �lower right� x-ray drives. Corresponding spectra

are shown to the left of each figure. Data are presented as colored bands to

represent uncertainties in opacity, results for CH and LiDT tend to overlap,

as illustrated.

FIG. 2. �Color online� The limiting excursion of the Au-DT interface rela-

tive to t0 after 2 ns for the various scaled Planckian x-ray drives. “Urad” is

the energy density equivalent temperature of the respective drives.
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the M-band spectra, and all of the associated results, in

Fig. 3.

For each of the M-band and bremsstrahlung conditions

chosen �four distinct densities for each material, for each

driver spectrum� four simulations were performed to take

into account uncertainties in the opacity data used by the

code. Consequently, the data in Fig. 3 are represented as

bands. Each band is based on the results of 16 distinct simu-

lations. Simulations using similar opacities have been bench-

marked against the Au ablation pressure scaling �time

dependent�,
9

which is a sensitive function of Au opacity.

It should be noted that while CH is an effective tamper,

CH expands vigorously under the influence of the softer

drives, and may expand far more extensively than the Au

would do in the absence of tamping. This means that fuel

mix with the carbon ions is liable to be an issue. In a number

of the CH tamped cases the velocity of the Au boundary

changes sign upon the arrival of the ionization front from the

free surface, as the pressure balance changes in favor of the

CH; i.e., the Au is over-tamped. The maximum excursion is

reported in the figure. The final excursion is in some in-

stances negative �the gold interface is pushed back at 2 ns

relative to its initial position�. In such cases, the gold mixing

can reasonably be expected to extend out to approximately

the point of maximum excursion.

Figure 4 shows h2d modeling of the indirectly driven

noncryogenic re-entrant cone implosion experiment as de-

tailed in Ref. 6 alongside the original LASNEX modeling per-

formed by the second author in Ref. 6 and an experimental

radiograph taken around stagnation. After 2.6 ns, LASNEX

and h2d agree to within 5% as to the extent of the displace-

ment of the Au interface away from the original position of

the cone tip, toward the center of the capsule. The default

local thermodynamic equilibrium average atom model for Au

opacity was employed in this h2d simulation. The radiation

hydrodynamics algorithms employed in the 1-D code HY-

ADES and the 2-D code h2d are essentially identical other

than in their dimensionality, so this serves as a fair “reality

check.”

A DT-ice layer on the surface of the gold cone in a

re-entrant cone guided FI target can effectively control the

expansion of the Au. DT is a less effective tamping material

than CH; however, the use of such a material could lead to

contamination of the imploding fuel, and hamper ignition

and burn. LiDT is shown to be a useful tamping material that

is less compromising than CH in this regard.
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