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S U M M A R Y

Seismicity shallows towards the south along the Tonga–Kermadec–Hikurangi margin, deep and

intermediate seismicity being absent altogether in the South Island of New Zealand. Beneath

the Taranaki region of the North Island the maximum depth of the main seismicity is 250 km,

but very rare events occur directly below at 600 km. These could be associated with a detached

slab or a vertical, aseismic continuation of the subducted Pacific Plate. Six small events that

occurred in the 1990s were recorded extensively by digital instruments of the New Zealand

National Network (NZNN) and temporary deployments. We relocate these events by a joint

hypocentre determination (JHD) method and find their focal mechanisms using first motions

and relative amplitudes of P and S arrivals. The earthquakes relocate to a remarkably uniform

depth of 603 ± 3 km relative error (±10 km absolute error) in a line 30-km long orientated

40◦NE, roughly parallel to the strike of the intermediate-depth seismicity. The only consistent

component of the focal mechanisms is the tension axis: all lie close to horizontal and tend to

align with the line of hypocentres. We interpret this deep seismic zone as a detached sliver of

plate lying horizontally with the same orientation as the main subducted plate above. Volume

change caused by a phase change controlled by the pressure at 600 km and temperature in the

sliver produces a pattern of strain that places the sliver under tension along its length.

Key words: deep-focus detached earthquakes, focal mechanism, Hikurangi, New Zealand,

relocation, subduction.

1 I N T RO D U C T I O N

New Zealand lies over a portion of the Hikurangi margin where the

Pacific Plate is being subducted under the Australian Plate (Fig. 1).

The Hikurangi margin is part of the Tonga–Kermadec–Hikurangi

subduction zone extending northwards into the Pacific Ocean. The

rate of subduction is greater in the northeast and diminishes in the

southwest to zero near Kaikoura, on the east coast of the South

Island. Thus, there is a relative rotation of the two plates of some

7◦ Myr and palaeomagnetic data show that a finite rotation of at least

60◦ has occurred in the last 25 Myr (Walcott 1987). The instanta-

neous rotation pole and the rate of rotation seem to have remained

constant from 43 Myr until 10–21 Myr, since which time the pole

has begun to move southeastwards away from New Zealand and the

rate of rotation has increased.

Further to the southwest the Australian Plate subducts under the

Pacific Plate. The Fjordland district in the southwest of the South

Island, New Zealand, lies above a near-vertical zone of deep earth-

quakes. Between these two subduction zones is a region of high

shear strain extending along most of the South Island and dissecting

the North Island from north to south. Walcott (1987) cites triangula-
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tion studies that indicate constant strain rates in the transcurrent and

Alpine fault zones of the North and the South islands. To the north,

subduction at the Hikurangi margin becomes increasingly oblique

towards its southern termination.

The maximum depth of the seismicity shallows progressively

from the Tonga end of the plate boundary in the north to the

Hikurangi margin in the south. The classic explanation for this,

given by McKenzie (1970), was that a subducting plate warms and

becomes ductile and aseismic at a progressively shallow depth to-

wards the south, where the convergence rate is lower and the plate

takes longer to reach a given depth. By 39◦S the seismicity ex-

tends to a depth of only 250 km, but a small number of very deep

events occur directly beneath those at 250 km (Fig. 2). Some of

these deep events are apparent in the original paper of McKenzie

(1970); they were discussed first by Adams (1963). This cluster is

clearly isolated from the main seismicity. Similar isolated clusters

of deep events occur elsewhere (Lundgren & Giardini 1994; Okal

2001).

The first recorded isolated deep event under New Zealand was in

1953 at 570-km depth, followed by two events in 1960 at 607 and

612 km, occurring just five minutes apart (Adams 1963). Adams

tentatively proposed a focal mechanism for the 1960 deep event.

The data were inadequate to establish a mechanism by first motions,

so instead he noted that most of the observed first motions were

opposite in sense to those of a twin intermediate-depth event at
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Isolated deep earthquakes 973

Figure 1. Plate configuration and major tectonic features of the convergent margin of New Zealand. Convergence rates are indicated by open arrows (Walcott

1978) and absolute plate motions by solid arrows (Minister & Jordan 1978). Bathymetry contours are in metres. The Hikurangi margin is the southwestern

continuation of the Tonga–Kermadec subduction zone (TKSZ). After Brisbourne (1998).

228-km depth that occurred some five days later with the same

epicentre. A focal mechanism was determined for the intermediate-

depth event, so the data for the deep event are consistent with a

mechanism of similar orientation but with the pressure and tension

axes transposed. This focal mechanism is sometimes referred to as

a full solution (e.g. Okal 2001), but this is not what was originally

intended.

A further deep-focus earthquake took place in 1975 (Adams &

Ferris 1976) at 582-km depth. First-motion observations were con-

sistent with the earlier deep events, but again were insufficient to

give a fault-plane solution. At four New Zealand stations above the

shallowest part of the seismic zone, converted phases were observed

in between the P and S phases. These were attributed to SP conver-

sions at depths consistent with the bottom of the main seismic zone.

Because the deep earthquakes take place directly below the end of

the Wadati–Benioff zone, rather than on a projection of that zone,

Adams & Ferris (1976) concluded that they originate in a detached

slab of subducted lithosphere and that the converted phases were the

result of a sharp discontinuity representing the bottom of the main

subducting slab.

Six deep events were recorded in the 1990s beneath Mount

Taranaki (formerly Mount Egmont), North Island, close to the epi-

centres of the earlier deep earthquakes, and are the subject of this

study. They are smaller than the earlier earthquakes and occurred

when a large number of modern, digital seismometers were in op-

eration in New Zealand. These have provided an excellent data set

for this study, although the geographical coverage is not better than

in 1960.

C© 2004 RAS, GJI, 158, 972–982
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Figure 2. Seismicity of the Hikurangi subduction zone. Data: Adams (1963) and Adams & Ferris (1976); ISC (2003, NZ deep events, unfilled squares),

Harvard Centroid Moment Tensor Catalog (other events, filled squares). The vertical scale is twice the horizontal. (a) Plan view, with viewpoint at 210◦. (b)

Elevation perpendicular to the strike of the subduction zone (viewpoint at 120◦), showing a decrease in the maximum depth of the Wadati–Benioff zone to the

southwest. (c) Elevation parallel to the strike of the subduction zone (viewpoint at 210◦) showing the double seismic zone of the steeply dipping plate and

volcanic seismicity beyond the subduction zone. The deep events under western North Island clearly comprise an isolated cluster.

The main reason to study these isolated deep clusters of events

is to establish whether they are truly detached, and are part of an

isolated piece of subducted lithosphere, or whether the subducted

plate is aseismic at intermediate depths. Okal (2001) has reviewed

this and other clusters that are isolated from the main seismically

active part of their subduction zones. Using the spectral ratio tech-

nique, he estimates Qµ at approximately 300 for the 1992 July 8

and 1998 July 4 events. This is very much lower than in other

C© 2004 RAS, GJI, 158, 972–982
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subduction zones and suggestive to Okal (2001) of a discontinu-

ity in the cold subducted material. It is consistent with a slab that

ends, along with seismicity, at approximately 200-km depth with

Qµ ≈ 800 and 400 km of mantle with a tentative value of Qµ ≈

250. This depth is consistent with the converted phases noted by

Adams & Ferris (1976), but whereas they interpreted them as SP

conversions, Okal suggests they could be PS, with conversion oc-

curring near the end of the slab at some 200-km depth. However,

he concedes that an internal reflection provides an alternative ex-

planation and notes that such phases have been observed at Global

Digital Seismic Network (GDSN) station SNZO from earthquakes

at intermediate depths, where there is certainly continuous high-Q

material between the hypocentre and the receiver. PS is difficult to

identify with the vertical component stations that were available in

1975.

Various tomographic studies (van der Hilst 1995; van der Hilst &

Snieder 1996) have revealed high seismic velocity anomalies associ-

ated with subducting slabs in the western Pacific that are continuous

through aseismic zones. Some also show horizontal deflections of

the Izu–Bonin (van der Hilst et al. 1991), Honshu and southern Kuril

(Fukao et al. 1992) and northern Tonga (van der Hilst 1995) slabs at

the 670-km discontinuity, suggesting that even the outboard events

in the Tonga subduction zone take place within a continuation of the

slab; however, they appear to show a gap in the velocity anomaly

in the region of the North Island, New Zealand (van der Hilst et al.

1991; van der Hilst 1995), suggesting the deep seismicity there may

lie within a detached piece of subducted plate.
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IGNS seismic stations (1991-1998)

Deep events (1991-1999)

(a) Stations of the IGNS on 1994/April/08 (tri-

angles). Most are single-component. The deep

Taranaki events are also shown (stars).
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POMSIIb (Leeds Uni) 03/94–06/94

PANDAII (GNS) 03/94–10/94

(b) Temporary portable networks used in this study.

Figure 3. Geographical coverage of seismic stations.

2 DATA

This study used arrival times, polarities, relative amplitudes and po-

larizations from a range of permanent and temporary stations in the

New Zealand region. The New Zealand National Network (NZNN),

operated by the Institute of Geological and Nuclear Sciences (IGNS)

of New Zealand, provided the largest number of stations (Fig. 3a). It

provides good coverage of the territory of New Zealand, but the in-

struments are short-period and the majority are vertical-component.

Usually approximately 10 three-component recordings were avail-

able for each event.

The portable broad-band array POMS I of Leeds University

(Fig. 3b) was in place for the events of 1991 September 14, 1992

February 26 and 1992 July 8; the POMS II broad-band array for that

of 1994 April 8. The seismometers were Guralp CMG-3T three-

component seismometers with RefTek recorders. As well as pro-

viding broad-band records, POMS I was a dense array with 10-km

station spacing that provided control on short-wavelength variations

in the waveforms caused by local anomalies in structure (Stuart

et al. 1994).

The PANDA II array was part of a deployment by Memphis State

University in 1994 (Fig. 3b). This network had the advantage of

being directly above the source region. The network lost all timing

early on in the experiment and all instruments drifted away from

UTC. As a result no absolute timing could be used, but waveforms

and relative timing across the array could be used because data were

telemetered to a central clock.

C© 2004 RAS, GJI, 158, 972–982
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Two of the events were recorded globally. Data from a small

number of GDSN stations were used.

It is important to verify the polarity and convention of each sta-

tion when using first motions. POMS I polarities were checked

using teleseisms with known source mechanisms published in the

Harvard CMT Catalog. The POMS I and II deployments used dif-

ferent recorders, which in turn used different conventions, but were

consistent. A considerable number of NZNN stations have reversed

polarity. The true polarity of most of these, and of the horizontal

components in a few cases, were supplied by M. Reyners of IGNS

(Reyners, private communication 2002). Picks at some NZNN sta-

tions for which the directions of the vertical components were not

known had to be discarded. Similarly, the directions of horizontal

components at NZNN stations were inconsistent and were deduced

from those of the vertical components using the P-wave first mo-

tions.

Fig. 4 shows seismograms of the 1991 event from station LTW2

of the POMS I array, located in the Wairarapa valley southeast of the

epicentre. This broad-band record has been high-pass filtered above

1.5 Hz to remove microseismic noise. The P wave and its first motion

are easily read, but there is significant energy on the transverse

component indicating lateral variations in structure along the path.

The P-wave train contains a large amount of high-frequency energy

in the range 5–10 Hz, indicating a high-Q path from the event to the

station. The S wave is preceded by an SP conversion that is most

clearly visible on the vertical component (Fig. 4c). Some energy

also arrives on the transverse component: this is probably a result

of out-of-plane propagation in the highly anomalous region beneath

the station. This conversion is from the top of the subducted plate,

which is approximately 20 km below the station. The polarity is

linear for the first 2 s of the S wave, from 135 s on the plot, but it

deteriorates after 137 s. Fig. 5 shows seismograms from the same

event at station WLZ of the NZNN, located near Hamilton. This S

wave appears to have a consistent polarity throughout but in fact

the plane of polarization rotates through nearly 90◦ at 136 s, after

which the energy is confined to the north component. This is another

example of multipathing, probably again caused by refraction at the

top of the subducted Pacific Plate.

The high-frequency nature of the seismograms and frequent mul-

tipathing preclude the use of any sophisticated waveform-modelling

methods for finding the focal mechanism: such methods would re-

quire an impossibly detailed 3-D model of the structure. We have

therefore concentrated on first motions and amplitude ratios.

All traveltimes and P-wave polarities were picked by the authors

except for a small number of teleseisms reported by the International

Seismological Centre (ISC). Time picks were weighted according

to the convention in the relocation program described in the next

section.

3 M E T H O D O L O G Y

3.1 Locations

Each of the six Taranaki events studied here has been located by the

ISC (Table 1). All registered a body wave magnitude (mb) less than

5.0. Global coverage is poor and only the two largest events, 1991

and 1998, were recorded at distances beyond the South Pole.

Ideally, the depth of deep hypocentres is constrained by the rel-

ative timing between the direct P arrival and later pP phase. No

surface reflections have been recorded for these events. However,

as noted by Okal (2001), the depth of these events is very well con-

trolled by regional stations, typical formal errors being less than

20 km (Table 1).

The cluster of events in the nineties is ideally suited to refinement

by the joint hypocentre determination (JHD) method of Douglas

(1967): it occupies a volume a few tens of kilometres across and

regional station coverage is excellent. Many stations record most of

the events. We used the version of the method described by Pujol

(1988, 2000). The program is available from the Orfeus web site

http://orfeus.knmi.nl.

JHD finds source locations and station corrections simultane-

ously. Each station–phase combination has its own constant correc-

tion, independent of azimuth, that takes account of lateral variations

in structure. Where the events form a relatively tight cluster, this

improves the quality of the relocations as well as providing infor-

mation about the local velocity structure. Henceforth, station in this

context will be taken to mean station–phase.

The 1991 event was the most widely recorded teleseismically and

therefore has the best absolute location (Table 1). Other events may

be located relative to this master. The relative locations are more

accurate than the absolute location of the master and the absolute

location of each event is likely to be limited in accuracy by that of the

master. The use of a master event replaces teleseismic information,

so only regional stations were used in the JHD relocation. This in

turn allowed a flat-earth approximation for the velocity structure.

We used the layered structure shown in Table 2, which is known

to be a good 1-D approximation to the structure beneath the North

Island.

Relocation is an iterative process starting from an initial set of

event locations and station corrections. We started from the ISC

locations shown in Table 1 and zero for all station corrections. The

sum of station corrections remains undetermined at each iteration

because a single delay in all origin times produces the same delay at

all stations. This delay is set to zero at each iteration by removing the

corresponding eigenvector when calculating the generalized inverse

of the condition matrix. The sum of station corrections provides a

check of the numerical accuracy of the method.

The station corrections obtained are shown in Fig. 6 using

Delaunay triangulation, but excluding stations that recorded fewer

than three events. Their largest absolute values just exceed 1.0 s.

In the North Island, arrivals are early in the northeast and late both

in the south and near Mt Taranaki in the west. This is consistent with

waves passing through the fast, subducted Pacific Plate, to stations

in the north and east, and through the slow wedge above the slab

towards stations further west. Station corrections in the South Island

show a trend from slow in the northwest to fast in the southeast.

Station corrections were also calculated using IASP91 traveltime

tables and the original locations. In the North Island the pattern

of station corrections was similar but in the South Island it was

reversed, with the trend from northwest to southeast being from fast

to slow. This is attributed to relocation and strong lateral variations

in the source region.

JHD gives error estimates on the relative location of each event

assuming the data set has the resolution to decouple the station cor-

rections from the locations. We studied the covariance matrices for

each of the six events. These show the origin times to be best deter-

mined, followed by the latitude, depth and longitude. An inspection

of the eigenvectors of the covariance matrices shows the epicentres

have least uncertainty roughly along the strike of the country. This is

to be expected because the stations are all on land and are therefore

aligned with the country; the coverage is good in that direction but

poor across the country.

C© 2004 RAS, GJI, 158, 972–982
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(a) Full seismogram

(b) Close-up of P arrival

SP

S

(c) Detail of S arrival

Figure 4. Seismograms of the 1991 event recorded at station LTW2. Components are vertical (down), radial, transverse.
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Figure 5. Seismograms of the 1991 event recorded at station WLZ. The shear wave is shown; components are radial, transverse, north, east.

Table 1. New Zealand deep events.

Date Magnitude Latitude Longitude Depth/km Source

1953/03/24 M L = 4.5 –5.25 −38.9◦ 174.5◦ 570 Adams (1963)

1960/03/23 M L = 6.25 −39◦ 03′ ± 04′ 174◦ 52′ ± 08′ 607 ± 4 Adams (1963)

1960/03/23 M L = 6.2 −39◦ 06′ ± 07′ 175◦ 04′ ± 12′ 612 ± 9 Adams (1963)

1975/02/07 M L = 4.9 −39.27◦ ± 0.06◦ 174.26◦ ± 0.08◦ 582 ± 7 Adams & Ferris (1976)

1991/09/14 mb = 4.8 −39.18◦ ± 0.067 174.4◦ ± 0.15◦ 602 ± 8.4 ISC

1992/02/26 mb = 4.0 −38.90◦ ± 0.170◦ 174.7◦ ± 0.34◦ 602.1 ± 21.9 ISC

1992/07/08 M L = 4.9 −39.10◦ ± 0.150◦ 174.4◦ ± 0.24◦ 622.3 ± 26.9 ISC

1993/05/05 M L = 4.6 −38.90◦ ± 0.160◦ 174.4◦ ± 0.20◦ 577 ISC

1994/04/08 mb = 3.8 −39.19◦ ± 0.072◦ 174.5◦ ± 0.16◦ 601.6 ± 9.4 ISC

1998/07/04 mb = 4.2 −39.26◦ ± 0.065◦ 174.5◦ ± 0.12◦ 601.7 ± 4.8 ISC

Table 2. Velocity Model used in JHD program.

Depth (km) V P V P/V S

0 5.5 1.666

12.0 6.5 1.757

33.0 8.1 1.761

250.0 8.8 1.858

400.0 9.7 1.849

650.0 10.5 1.826

Table 3 gives the semi-axes of the relative error ellipsoid for each

event, calculated from the square roots of the eigenvalues of the

covariance matrix. Origin time is not included as this is typically

much better determined than any of the three space coordinates (in

the sense that the error in the origin time multiplied by the seismic

velocity at the source is much less than the error in any one of the

spatial coordinates). The eigenvectors give the orientation of each

of the axes. These are not shown, but for all events they are roughly

oriented perpendicular to the strike of the country and 20◦ to the

horizontal (denoted 1), along strike and down 30◦ (denoted 2) and

55◦ down (denoted 3). Roughly speaking, one standard deviation in

latitude, longitude and depth is 0.5 km, 2 km and 1 km, respectively.

3.2 Focal mechanisms

We found focal mechanisms for the six events using first mo-

tions of P and S supplemented by amplitude ratios of P/SH

and SH/SV and the FOCMEC program developed by Snoke (2003

http://www.geol.vt.edu/outreach/vtso/focmec). The pro-

cess is accomplished in four stages:

(i) A 1-D reference model is used to calculate the azimuths, take-

off angles, emergent angles and traveltimes of P and S waves travel-

ling from the hypocentres to each station. The reference model used

was IASP91 (Kennett & Engdahl 1991).

(ii) A list of codes representing the P, SV and SH polarities and

amplitude ratios at each station is matched to the corresponding ray

parameters. Any subset of these observations may be used. Ampli-

tudes are read from vertical, radial and transverse components and a

free-surface correction is automatically applied based on the V P/V S

ratio at the surface.

(iii) Double-couple focal mechanisms are sought that are con-

sistent with as many as possible of the observations. The program

searches through all possible combinations of the auxiliary and fault

planes. The user may specify the number of errors to be allowed

in each category of input before a putative solution is discarded.

There is the option to weight each polarity error with a computed

radiation factor, because lower amplitude signals near to nodal

planes are more prone to incorrect picking. The latter option was not

used in this study because of the incomplete coverage of the focal

sphere. Because most data came from New Zealand stations with az-

imuths roughly northeast or southwest, the weighting option would

have tended to favour solutions with one nodal plane near to this

strike.
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Figure 6. JHD-calculated station corrections. Only stations recording three

or more events have been contoured.

Table 3. Errors of relative locations in km (semi-axes of

error ellipsoids).

Date 1 2 3

1991/09/14 1.0 0.3 0.5

1992/02/26 2.5 0.9 1.4

1992/07/08 1.9 0.7 0.8

1993/05/05 1.4 0.4 0.7

1994/04/08 1.2 0.5 0.6

1998/07/04 1.8 0.7 1.3

The result is a number of possible solutions and the corresponding

numbers of polarities and amplitude ratios that are in error. A trial-

and-error approach is required to find an acceptable level of error

that produces an acceptable range of solutions.

Where data in different categories are mutually inconsistent, a

subjective decision must be taken as to which are the more reliable.

P polarities may be accorded more confidence than S polarities,

because S first motions tend to be obscured by the tail of the P

phase and sometimes by SP conversions. For the latter reason, SV

polarities are in turn less reliable than SH polarities.

Furthermore, a substantial exercise was undertaken as part of

this study to confirm the polarities of horizontal components of

the NZNN seismometers. The polarities of the P arrivals on the

vertical components were used in conjunction with the event-station

azimuths to predict their polarities on the horizontal components.

The predicted and observed polarities were compared to identify any

horizontal components that might be reversed. In practice, reversed

components appeared to be mostly confined to the single-component

stations, but there remains the possibility that some S polarities were

incorrect as a result of reversed instrument polarities, making this

category of data less reliable than the P polarities.

P-wave first motions were picked from vertical components alone,

although in rare cases the other components helped to identify the

first arrival. Butterworth high-pass filters were used to filter out

long-period noise in many cases, because New Zealand is subject

to high-amplitude microseismicity that dwarfs the signals of the

events studied at some stations. The cut-off frequency was chosen

according to the data; typically a frequency of 0.5–1.0 Hz was used.

In rare cases where an examination of the noise spectrum revealed

high-frequency noise, a low-pass filter at 10–15 Hz was applied. A

small number of additional P-wave first motions from the ISC were

particularly helpful in constraining some of the solutions, because

they mostly referred to stations outside New Zealand and covered a

different part of the focal sphere.

First motions of S phases were picked at three-component stations

that comprised a subset of those used for the P phases. Of these, not

all could be used because the polarities of the horizontal components

of some instruments could not be verified. In order to facilitate

picking, components were rotated using the P-wave parameters to

P, SV and SH , respectively. Some first motions were very clean and

could easily be picked from a single component. The correlation

between the SV and SH (transverse) components was often used

to assist picking. Comparison with the longitudinal component was

occasionally helpful in distinguishing genuine S arrivals from SP

conversions.

SH/P amplitude ratios were picked for three of the six events

whose mechanisms could not be constrained using polarities alone.

Like the first-motion polarities, these amplitudes were picked from

the seismograms by eye. They were only used where they could

be clearly read from the very first motions of each arrival and

then only when these were of similar duration (Julian, private

communication, 2003).

For the event of 1992 February 26, SV/SH amplitude ratios were

obtained by polarization analysis of three-component seismograms

in the time domain, taking successive time intervals (typically 0.5

or 1.0 s) in increments of half that interval. Linear polarization,

when it was observed, was usually confined to the first 2 s of the

S-wave train. This method gave an amplitude ratio even when it was

impossible to determine the first motion. Twelve amplitude ratios

were obtained for this event, but they failed to discriminate between

our preferred and secondary solutions described above.

4 R E S U LT S

4.1 Locations

The hypocentres and source times determined using JHD are listed

in Table 4. The relocated events lie between 600 and 606 km and

define a remarkably horizontal plane. The depth error is at most

Table 4. Relocated events.

Event Latitude Longitude Depth

1991/09/14 −39.180 174.430 602.0

1992/02/26 −38.987 174.833 602.2

1992/07/08 −39.277 174.350 601.3

1993/05/05 −38.981 174.714 600.2

1994/04/08 −39.192 174.541 601.3

1998/07/04 −39.250 174.335 606.0
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Figure 7. Relocations from ISC hypocentres. Arrows indicate movement

to new locations. The 1991 September 14 master event is indicated by the

triangle and is still in its ISC-determined position. Other ISC positions are

represented by squares and new positions by circles. Units are km.

±2 km (Table 3). Figs 7(a) and (b) show the events in plan and

section view. The absolute depths of the events are tied to the ISC

location of the 1991 September 14 master event ± 8.4 km. The

depths are consistent with those of the four earlier events studied

by Adams & Ferris (1976, Table 1), suggesting that all of the deep

seismicity occurs at essentially the same depth.

The plan view of Fig. 7(a) suggests that the events are aligned

roughly along the strike of both the plate boundary and the shal-

lower seismicity, with azimuth 040◦. The deep seismic zone extends

30 km in this direction: a remarkable straight, level feature.

4.2 Mechanisms

The P, SV and SH polarities were not always mutually consistent.

In general, the SV polarities were inconsistent with the mechanisms

determined using the more reliable P and SH polarities and am-

Table 5. Summary of the fault-plane solutions determined in this study.

Date Solution

Dip Strike Rake

1991/09/14 68◦ ± 1◦ 123◦ ± 3◦ −40◦ ± 6◦

1992/02/26 50◦ ± 2◦ 236◦ ± 1◦ −57◦ ± 6◦

1992/07/08 66◦ 143◦ −51◦

1993/05/05 67◦ 4◦ 20◦

1994/04/08 35◦ ± 5◦ 296◦ ± 5◦ −11◦ ± 6◦

1998/07/04 38◦ 6◦ −47◦

plitude ratios. The six focal mechanisms are given in Table 5 and

Fig. 8.

Because the software used performs a grid search of the solution

space, rather than an inversion, it does not return error bounds. In

some cases, however, a group of similar solutions was returned,

rather than a single solution, giving some indication of the accuracy

of the solutions. The ranges of solutions returned are indicated in

Table 5 where applicable.

Of greater importance is the existence of quite different solutions

with greater, but still relatively small, numbers of errors. These

are analogous to the secondary minima encountered in minimum-

norm inverse problems, but here the discrimination of solutions is

subjective because there is no objective way to weight the various

categories of data used. Of the six events studied, only that of 1992

February 26 had a plausible alternative mechanism to that published

here, namely: dip = 35◦, strike = 260◦, rake = −90◦.

The main consistency between these mechanisms lies with the

tension axes, which are predominantly horizontal and tend to point

along the strike of the seismicity (Fig. 9b). This also applies to

our alternative mechanism for the 1992 February 26 event. The

mean tension axes of all the events lies 20◦ up from the horizon-

tal with azimuth 009◦. Pressure axes are more scattered, although

there is a rough trend for them to be contained in a steeply in-

clined layer extending NW–SE. Both fault and auxiliary planes are

scattered.

5 D I S C U S S I O N

The main evidence for continuity of plate through an aseismic zone,

such as may exist here between 250- and 600-km depth, is the exis-

tence of a fast, high-Q path from the events to some of the stations.

We have not found any evidence of high seismic velocity, in agree-

ment with tomographic studies (e.g. van der Hilst 1995), but we do

observe very high frequency arrivals (Fig. 4). This high-frequency

content points to a high-Q path in the mantle. It could be evidence

of an aseismic subducted slab, but it is also possible that high fre-

quencies propagate through the lower part of the upper mantle and it

is only low Q in the asthenosphere and upper reaches of the mantle

that cause the usual removal of high-frequency energy. Many sta-

tions in the North Island, New Zealand, lie a short distance above

the subducted Pacific Plate and enjoy a high-Q path through the

asthenosphere. The high-frequency content of many arrivals is not

therefore incontrovertible evidence of a high-Q path below 250-km

depth.

Subduction zones that continue from the surface to the bottom of

the upper mantle exhibit stronger seismicity at the bottom than at

intermediate depths. Perhaps this slab, with its very slow subduction

rate, shows an extreme form of this with rare deep earthquakes and

very rare events at intermediate depth, so rare as to be non-existent

on the historical timescale. The change in seismicity at 250 km

seems too abrupt for this, but the implicit change in dip of the slab
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Figure 9. Pressure, tension and null axes of the six events, plotted on the lower focal hemisphere.

to near-vertical at this depth could result from a change in relative

plate motion in the past and consequent change in vertical descent

rate of the aseismic part of the slab. The earthquakes studied here

are aligned with the strike of the shallower seismicity, which is

suggestive of a connection with the events higher up.

If the deepest seismicity is caused by resistance at a phase bound-

ary, we expect the P axes of the focal mechanisms to be predom-

inantly vertical. Okal (2001) uses this as a test for mechanical in-

tegrity of a slab. This is not the case with our focal mechanisms

(Fig. 9a). If the subducted plate is prevented from passing into the

lower mantle and spreads out along a horizontal surface, we would

expect the state of stress to favour fractures with tension axes hori-

zontal but along the direction of movement of the plate. This is not

observed here: the tension axes align along the strike of the seismic-

ity. A NW–SE layer of metastable olivine in a matrix of transformed

spinel could produce a self-stress with in-plane P axes (Kirby et al.

1991, 1996). This could explain the rough trend of the P axes we

find.

The most remarkable observation we have made is the consistent

depths of these events, ±2 km, over a longer horizontal distance of

30 km. This suggests pressure control of the phase change causing

the activity and a rather static piece of slab material, one lying on

a constant-density surface that is not descending rapidly. Volume

reduction of the phase change would produce a state of stress within

the slab fragment that dominates the style of focal mechanism, giv-

ing predominantly normal faulting. If the slab fragment is elongated

along strike and horizontally, as the seismicity suggests, the tension

axes would also be along strike and horizontal, as is observed. Other

components of the focal mechanisms are determined by the random

fault orientations within the slab fragment.

A similar situation of a recumbent piece of slab was deduced by

Okal & Kirby (1998) for deep Fiji events, but they found more scatter
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in depth and total scatter in focal mechanisms. Their events were at

660 km whereas ours are shallower. No known phase change occurs

within 20 km of 600 km, the absolute depth of these earthquakes

within the likely error. We must therefore appeal to a delayed phase

change in metastable olivine.

The most plausible explanation of these exceptional deep earth-

quakes is therefore volume contraction within a small, detached slab

fragment lying horizontally at an azimuth of 040◦.
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