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Abstract—We demonstrate terahertz (THz) frequency imaging 

and sensing using a single quantum cascade laser (QCL) device 

for both generation and sensing of THz radiation. Detection is 

achieved by utilising the effect of self-mixing in the THz QCL, 

and specifically by monitoring perturbations to the voltage 

across the QCL induced by light reflected from an external 

object back into the laser cavity. Self-mixing offers high 

sensitivity, a potentially fast response, and a simple, compact 

optical design. We show that it can be used to obtain high-

resolution reflection images of exemplar structures, as well as 

for the measurement of the displacement of a remote target, 

both with and without opaque (in the visible spectrum) 

materials in the beam path.  We also demonstrate displacement 

sensing over a stand-off distance of 7m through air. 

I. INTRODUCTION 

The quantum cascade laser (QCL) [1] is a compact 
semiconductor source of terahertz (THz) frequency radiation 
that is potentially well-suited for imaging across a broad range 
of applications including chemical sensing, industrial 
inspection, and imaging for security and biomedical 
applications. Detector systems employed for imaging with 
THz QCLs include microbolometer focal-plane arrays [2], 
room-temperature Schottky diodes [3] and cryogenically-
cooled bolometers [4]. Whilst room-temperature THz 
detectors avoid the reliance on cryogenic liquids, their 
response is typically slow and, with the exception of Schottky 
diodes, sensitivities are significantly poorer than those 
achieved with cryogenically-cooled bolometric detection. 

In this paper, we demonstrate a THz frequency imaging 
and sensing system that uses a single QCL to both generate 
and sense the THz radiation through ‘self-mixing’ (SM), an 
effect which occurs when the radiation from a laser is 
reflected from an external target back into the laser cavity [5]. 
In our scheme, imaging is performed by monitoring 
perturbations to the voltage dropped across the QCL as a 
reflective object is scanned through the emitted THz beam. 
The QCL itself behaves as an interferometric sensor, thereby 
removing the need for an external detector. We demonstrate 
high-resolution reflection imaging of exemplar metallic 
structures, including imaging through visibly-opaque screens.  
We also report measurements on a moving target using a THz 
SM sensor. Target displacements have been measured for a 
range of attenuations including opaque (in the visible 

spectrum) fabrics, and at stand-off distances of up to 7 m 
through air. 

II. SELF MIXING 

Self-mixing occurs when radiation from a laser is partially 
reflected from an external target and injected back into the 
laser cavity. The reflected light interferes ('mixes') with the 
intra-cavity field, producing variations in the threshold gain, 
emitted power, lasing spectrum and the terminal voltage [6,7]. 
Each depends on both the amplitude and phase of the radiation 
reflected from the external target. Whilst the laser SM signals 
are traditionally acquired from an external photodetector, we 
have recently demonstrated that SM signals of comparable 
quality can also be obtained by monitoring the voltage 
variations across the laser terminals [8,9]. The SM laser 
sensing technique therefore allows for a simple, self-aligned 
and robust system for measuring displacement and reflectivity. 

 Since the seminal work of Lang and Kobayashi in 1980 

[6], SM sensors have been reported both at infrared and 

visible laser wavelengths. However, little has been reported 

in the THz band with the notable exception of Green et al. 

who used the SM technique as a means of extracting the 

linewidth enhancement factor of a THz QCL [10]. 
The homodyne (coherent) nature of a self-mixing scheme 

inherently provides very high sensitivity detection, potentially 
at the quantum noise limit, and therefore a high signal-to-noise 
ratio can be expected in imaging data. Furthermore, the 
maximum speed of response to optical feedback is determined 
by the frequency of relaxation oscillations in the laser. In the 
case of THz QCLs, the lifetime of the upper state of the lasing 
transition is limited by elastic and inelastic scattering 
mechanisms to a few picoseconds, enabling response 
frequencies of the order of 100 GHz. 

III. QUANTUM CASCADE LASER 

The THz QCL consisted of a 10-µm-thick GaAs–AlGaAs 
bound-to-continuum active-region [11] that was processed 
into a semi-insulating surface-plasmon ridge waveguide with 
dimensions 3 mm × 140 µm. The QCL was mounted on the 
cold finger of a continuous-flow cryostat fitted with a 
polythene window and operated in continuous-wave (cw) 
mode at a heat sink temperature of 25 K. The power–current, 
current–voltage and spectral characteristics of the laser are 



shown in Fig. 1. Measurements of the source emission 
spectrum for a drive current of 900 mA, obtained using a 
Fourier-transform infrared spectrometer with a spectral 
resolution of 7.5 GHz, indicate emission in a single 
longitudinal mode at 2.60 THz. 

 

Figure 1.  Power–current and current–voltage characteristics of the THz 
QCL. Inset: The emission spectrum of the THz QCL at a drive current of 

900 mA. 

IV. TERAHERTZ IMAGING THROUGH SELF-MIXING 

A schematic diagram of our imaging system is shown in 
Fig. 2. Radiation from the QCL was collimated using a 2 inch 
f/2 off-axis parabolic reflector and focussed at normal 
incidence onto the object using a second identical reflector. 
The total optical path between source and object was 65 cm, 
with ~240 µW of power being incident on the object, as 
measured using a calibrated THz frequency power meter. The 
laser beam was mechanically modulated at a frequency of 
215 Hz using an optical chopper and coupled back into the 
laser cavity along the same optical path as the incident 
radiation. The self-mixing-induced perturbations to the 
voltage across the QCL terminals were amplified by an ac-
coupled differential amplifier with a gain of 100. This signal 
was then measured by a lock-in amplifier, synchronized with 
the chopper frequency, as well as by being observed directly 
on an oscilloscope. For image acquisition, the object was 
raster-scanned in two dimensions using a two-axis computer-
controlled translation stage, with the lock-in amplifier output 
being recorded at each position. No atmospheric purging was 
employed. 

 

Figure 2.  Schematic diagram of the experimental system used for THz 

imaging with a QCL.  S − Current source; OSC − Oscilloscope; LA − Lock-

in amplifier; C − Mechanical chopper; O − Object. 

Fig. 3(a) shows a typical waveform obtained after 
amplification of the ac-coupled voltage across the QCL 
terminals in response to a modulated feedback signal, for the 
case in which the object was a reflective metallic plate. The 
mean junction voltage was 3.1 V with a driving current of 
900 mA. Fig. 3(b) shows the root-mean-square self-mixing 
signal measured as a function of the QCL drive current. Also 
shown is the power–current characteristic of the QCL. This 
demonstrates that the QCL is most sensitive to optical 
feedback at operating currents near threshold.  Similar 
behaviour has been observed previously in junction 
semiconductor lasers [12]. We estimated the detection limit of 
our system by inserting attenuators between the QCL and 
beam focus.  Instead of modulating the amplitude of the 
feedback signal using an optical chopper, for this 
measurement the reflective plate was attached to a subwoofer 
speaker that was vibrated at ~20 Hz to generate a time-varying 
optical path length. This ensured that weak reflections from 
the attenuators remained constant and made no contribution to 
the heterodyne signal. We found that our system could tolerate 
~48 dB of attenuation, indicating a minimum detectable 
reflected power equal to ~4 nW.  

 

Figure 3.  (a) Exemplar waveform (bottom trace) obtained after 

amplification of the ac-coupled voltage dropped across the QCL in response 
to a square-modulated feedback signal.  The TTL feedback control signal 

(top trace) has been scaled and offset.  (b) Root-mean-square self-mixing 

signal (left axis) and QCL power (right axis) as a function of the QCL 
driving current. 

Fig. 4(a) shows an image of a scalpel blade obscured by a 
high-density polyethylene FedEx

®
 envelope. The step-size for 

this image was 250 µm, and the lock-in time constant was 
5 ms. The magnitude of the self-mixing signal depends on the 
phase of the field coupled back into the laser cavity, or 
equivalently the length of the extended cavity formed between 
the QCL and the sample being imaged. This explains the 
fringes observed in this image, which represent the surface 
morphology of the object, with adjacent fringes corresponding 
to a longitudinal displacement of half a wavelength, or 
~58 µm in this case. This demonstrates the potential 
applicability of this sensing technique to three-dimensional 
imaging. The modulation transfer function (MTF) for the 



system was determined by imaging a set of gold-on-quartz bar 
resolution targets. By defining the resolution limit at the 20% 
modulation threshold, Fig. 4(b) shows that our system is 
capable of resolving features down to widths of 250 μm or 
lower. This allows high-resolution imaging to be performed, 
as demonstrated in the exemplar image of a British two pence 
coin in Fig. 4(c).  For this 25.9 mm × 25.9 mm image 
(corresponding to 259 pixel × 259 pixel), the shortest 
acquisition time realizable using our system was 19 minutes. 

 

Figure 4.  (a) Exemplar image, obtained using our system, of a scalpel blade 

obscured behind a high-density polyethylene FedEx® envelope. (b) 

Modulation transfer function of the system, obtained from images of gold-
on-quartz bar resolution targets. (c) A high resolution image of a British two-

pence coin (diameter = 25.9 mm). 

V. TERAHERTZ DISPLACEMENT SENSING THROUGH SELF-

MIXING 

A schematic diagram of the experimental SM apparatus 

used to measure target displacement is shown in Fig. 5. 

Radiation from the THz QCL was collimated (using an f/2 

off-axis parabolic reflector with a diameter of 2 inches) and 

directed normally onto a vibrating target consisting of an 

aluminium plate that was attached to a subwoofer speaker 

cone. The total distance between the QCL and the target was 

47 cm. In the experiments, the beam path length between the 

QCL and the target was varied periodically, by driving the 

speaker with a sinusoidal voltage signal at 20 Hz. The 

amplitude of the target motion was adjusted to approximately 

100 µm using a digital dial indicator. The SM signal was 

measured by monitoring the voltage variations across the 

terminals of the QCL, amplified by an ac-coupled amplifier 

with a gain of 1000, and recorded by a digital oscilloscope. 

The loudspeaker (target) electrical excitation signal is 

shown in Fig. 6(a). We obtained the exemplar SM 

interferogram shown in Fig. 6(b) by solving the steady-state 

self-mixing equations for threshold gain [13], which is 

proportional to the terminal voltage variation in the small-

signal approximation, assuming that the target displacement 

was proportional to the excitation signal in Fig. 6(a) (without 

any phase lag) and assuming that the level of feedback is low. 

The fringe spacing in the interferogram corresponds to a 

target displacement of λ/2 where λ is the free-space emission 

wavelength of the QCL (115 µm in our case). Due to the 

inertia of the electromechanical system used, the target 

displacement and consequently the measured interferogram 

contain a phase lag. The shape of the interferogram 

significantly depends on the attenuation of the beam, and 

consequently the feed-back level the QCL is experiencing. 

The SM signal acquired experimentally using an unobstructed 

beam path is shown in Fig. 6(c). The SM signal measurement 

was repeated using opaque obstructions between the 

parabolic mirror and the target. The acquired signals with 

black cloth and with a fibrous HDPE FedEx® envelope in the 

beam path are shown in Figs. 3(d) and (e) respectively. In 

order to extract the target displacement (with sub-fringe 

precision) we fitted the SM model to the experimentally 

acquired signals. The feedback parameter, C, the phase-lag 

between the acquired signal and the target excitation, the 

target displacement amplitude, and the laser linewidth 

enhancement factor, α were all included in the parameter 

extraction process as free parameters of the fit. For the 

purpose of illustration, the parameters obtained for the signal 

shown in Fig. 6(c) are C = 0.74 and α = -0.09. This value of C 

corresponds to the weak feedback regime and the linewidth 

enhancement factor extracted agrees well with that reported 

by Green et al [10]. The phase-lag between each of the 

measured SM signals and the target excitation (also obtained 

from the fitting process) has been indicated by vertical broken 

lines in Fig. 6(c-e) and is predominately due to the inertia of 

the metal target and speaker cone. The displacement 

amplitude extracted from each of the fits was 122 µm. The 

three displacements were all in agreement to 3 significant 

figures, and commensurate with the approximate 

measurement of 100 µm made with a digital dial indicator.  In 

addition, it was found that the self-mixing signal could still be 

observed for a source-to-object distance of approximately 

7 m through air (corresponding to a round-trip distance of 

14 m). 
 

 

Figure 5.  Schematic diagram of the experimental apparatus used for 

measuring target displacement. 



 

Figure 6.  Graphs showing (a) the speaker excitation signal; (b) the 

exemplar simulated self-mixing signal (under low feedback level, C<1) 
obtained assuming that the target displacement is directly proportional to the 

excitation signal with no phase-lag; (c-e) compare the measured and 

simulated self-mixing signals for (c) no obstruction and when obstructed by 
(d) a black cloth and (e) a HDPE FedEx envelope. (f) is the recovered target 

discplacement recovered from the results shown in (c). The vertical broken 

line in (c-f) indicates the phase-lag that is present in the system. The acquired 
signals are shown as red dots and the fits are plotted with solid black lines. 

VI. CONCLUSIONS 

In conclusion, we have demonstrated THz imaging using a 

single QCL as both the source and detector, by monitoring 

the self-mixing voltage induced across the QCL terminals by 

optical feedback from an object. This technique is well-suited 

to fast, high-resolution, high-sensitivity imaging at THz 

frequencies without the need for an external THz detector. 

The ability to measure displacement with a THz QCL using 

the SM technique has also been demonstrated. We showed 

that the sensor is capable of operating in the presence of 

opaque obstructions, and it is sufficiently sensitive to allow 

working distances greater than 7 m to be used. 
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