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Abstract 11 

The abrupt delivery of large amounts of freshwater to the North Atlantic in the form of water 12 

or icebergs has been thought to lead to significant climate change, including abrupt slowing 13 

of the Atlantic Ocean meridional overturning circulation. In this paper we examine 14 

intermediate complexity coupled modelling evidence to estimate the rates of change, and 15 

recovery, in oceanic climate that would be expected for such events occurring during glacial 16 

times from likely sources around the North Atlantic and Arctic periphery. We show that rates 17 

of climate change are slower for events with a European or Arctic origin. Palaeoceanographic 18 

data are presented to consider, through the model results, the origin and likely strength of 19 

major ice-rafting, or Heinrich, events during the last glacial period. We suggest that Heinrich 20 

events H1-H3 are likely to have had a significant contribution from an Arctic source as well 21 

as Hudson Strait, leading to the observed climate change. In the case of H1 and H2, we 22 

hypothesise that this secondary input is from a Laurentide Arctic source, but the dominant 23 

iceberg release for H3 is hypothesised to derive from the northern Fennoscandian Ice Sheet, 24 

rather than Hudson Strait. Earlier Heinrich events are suggested to be predominantly Hudson 25 

Strait in origin, with H6 having the lowest climate impact, and hence iceberg flux, but H4 26 

having a climate signal of geographically variable length. We hypothesise that this is linked 27 

to a combination of climate-affecting events occurring around the globe at this time, and not 28 

just of Laurentide origin. 29 
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1. Introduction 34 

The sedimentary record in the glacial (Marine Isotope Stage 2-3) North Atlantic domain is 35 

rich in complexity. Marine, ice and terrestrial records show evidence for long term climate 36 

decline interspersed by periods of more pronounced temperature decline and sharp, but short-37 

lived, temperature rises (Fig. 1). Marine records show clear evidence for a number of times of 38 

sedimentary fall-out from enhanced iceberg rafting in the North Atlantic – Heinrich events – 39 

during this period (Hemming, 2004). There is also evidence for catastrophic freshwater 40 

outbursts from under ice sheets or ice-dammed lakes (e.g. Fisher, 2003; Leverington and 41 

Teller, 2003; Lekens et al., 2006; Murton et al., 2010). The Younger Dryas (YD) is the 42 

canonical event of this type, but while having a St. Lawrence origin, there is evidence that 43 

other, later contributions from the Arctic (Leverington and Teller, 2003) and Northern Europe 44 

(Nesje et al., 2004) may have prolonged the freshwater supply. 45 

This tendency for abrupt change is centred in the Northern Hemisphere, and particularly 46 

the North Atlantic, having little signature in the Antarctic (Voelker, 2002). The classical 47 

portrayal of these signals is seen in the oxygen isotope, and hence temperature, record of the 48 

Greenland ice sheet, where the abrupt warmings became known as Dansgaard-Oeschger (D-49 

O) events (Dansgaard et al., 1984). The linkages between these semi-periodic events and the 50 

ice-rafting peaks of Heinrich events became hypothesised as part of the Bond cycle (Bond et 51 

al., 1999), with a series of D-O events caused by stochastic freshwater forcing leading to ice 52 

accumulation on North American ice sheets that then became unstable and purged ice 53 

(Timmermann et al., 2003). These massive releases of icebergs are hypothesised to lead to 54 

major climate change and cessation of the Atlantic thermohaline circulation (Broecker, 55 

1994). 56 

However, the origin of these abrupt climate changes is not well established, even though 57 

there is good evidence for their existence in various forms of palaeoclimatic archives. A 58 

recent review by Clement and Peterson (2008) surveyed the many records around the world, 59 

demonstrating the existence of the abrupt climate change during the last glacial period and 60 

discussed the three main mechanisms proposed for their cause: ocean thermohaline 61 

circulation change, sea-ice feedbacks and tropical processes. Their well argued conclusion 62 

was that none of these fitted the observations when compared with models of the different 63 

processes and that more work considering other, or combined, feedbacks using coupled 64 

climate models are required to understand abrupt change. 65 
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A subset of environmental change during the last glacial period consists of Heinrich 66 

events. These are periods, of 500±250 years duration (Hemming, 2004) occurring roughly 67 

every 10 000 years, with extensive deposits of ice-rafted debris (IRD) in the North Atlantic 68 

marine record. These peaks of IRD are normally ascribed to episodic iceberg releases from 69 

the Hudson Strait Ice Stream of the Laurentide Ice Sheet, set off by binge-purge oscillations 70 

within the ice sheet (MacAyeal, 1993). There is good lithological evidence linking the IRD to 71 

North America (e.g. Grousset et al., 1993; Gwiazda et al., 1996a). However, there are other 72 

theories for their generation, and alternative possible sources, including the Fennoscandian 73 

Ice Sheet, particularly for Heinrich events H3 (~ 30 000 cal. yr B.P.) and H6 (~60 000 cal. yr 74 

B.P.) (Gwiazda et al., 1996b). These two events appear to be smaller in magnitude and may 75 

have multiple sources, or have an insufficiently large primary source to overwrite the lithic 76 

signature of more normal glacial IRD levels in the eastern Atlantic. It can sometimes be 77 

difficult to distinguish lithic signatures from the two sides of the North Atlantic (Farmer et 78 

al., 2003), however. Hemming (2004) gives an excellent review of the state of knowledge 79 

concerning Heinrich events, their causes, origins and the spread of IRD. 80 

Whatever their origin, Heinrich events provide an unequivocal signal of disturbance to the 81 

marine environment through enhanced iceberg fluxes. There is also evidence of disturbance 82 

to the atmosphere on a hemispheric scale, through enhanced dust deposits from Asia in the 83 

Greenland ice cores (Biscaye et al., 1997), and, since Bond et al. (1993), a link has frequently 84 

been made between climate cooling, followed by abrupt warming, and Heinrich events. The 85 

classic picture is that the release of icebergs into the North Atlantic, and their subsequent 86 

melting, stabilises the surface ocean, preventing deep convection, and so shutting off the 87 

Atlantic meridional overturning circulation (Broecker, 1994). A wide range of climate 88 

modelling experiments have demonstrated that this scenario is consistent with climate 89 

physics (e.g. Rind et al., 2001; Ganopolski and Rahmstorf, 2001; Vellinga and Wood, 2002; 90 

Stouffer et al., 2006; Levine and Bigg, 2008; see Clement and Peterson (2008) for a full 91 

review). 92 

In this paper we take an intermediate complexity climate model, spun-up for glacial 93 

climates and with iceberg-ocean coupling embedded within it (Levine and Bigg, 2008), to 94 

examine the rates of climate change in the glacial world consistent with a range of release 95 

rates of icebergs and freshwater into the North Atlantic and Arctic, from a range of possible 96 

source regions. The modelled rates of change are then compared with observed rates of 97 

change during the Younger Dryas and Heinrich events H1-H6 in a range of climate-related 98 
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indices. This allows us to comment on the origin and magnitude of these unequivocal abrupt 99 

freshwater events, and their true, individual, climate impact. 100 

We first discuss the climate model and the range of experiments used to simulate 101 

freshwater or Heinrich event-led change to the Atlantic overturning. The results of the 102 

modelling experiments are then discussed. We next present the high temporal resolution 103 

glacial ocean, terrestrial and cryosphere proxy climate indices, followed by a comparison of 104 

the modelled rates of change with rates of change found in these climate indices around the 105 

time of Heinrich events. We conclude by discussing the implications of these comparisons for 106 

the strengths and origins of the Younger Dryas and H1-H6, and the consequences for our 107 

understanding of abrupt change during glacial times. 108 

 109 

2. Model 110 

The climate model used is an intermediate complexity coupled ocean-atmosphere model, 111 

with an energy balance atmosphere derived from that of Fanning and Weaver (1996) and a 112 

curvilinear coordinate ocean model, whose North Pole has been displaced to central 113 

Greenland (Wadley and Bigg, 1999). There is a free surface to the ocean (Webb, 1996) and a 114 

dynamic and thermodynamic sea-ice model at the interface of the ocean and atmosphere 115 

(Wadley and Bigg, 2002). In addition, icebergs are allowed to move, and melt, within the 116 

model in a way that is coupled to the ocean model processes (Levine and Bigg, 2008). The 117 

model’s curvilinear grid enhances model resolution in the North Atlantic and Arctic, and in 118 

particular in the Greenland and Labrador Seas. Typically, in the Nordic Seas the horizontal 119 

resolution is 1–2
o
, whereas in the Southern Hemisphere it is 6–8

o
. Time step length is a 120 

function of grid spacing, to allow efficient integration of the variable resolution grid (Wadley 121 

and Bigg, 1999). Full details of the model can be found in Levine and Bigg (2008). 122 

Here we are interested in abrupt change during glacial times, so the model experiments all 123 

start from a glacial control state. This state, and the equivalent representation of the climate 124 

for a present day control, is described in Levine and Bigg (2008). The background iceberg 125 

flux for the glacial Northern Hemisphere uses that calculated by Bigg and Wadley (2001), 126 

based on a steepest gradient algorithm draining atmospheric precipitation fields, from the 127 

atmospheric general circulation model runs for the Last Glacial Maximum (LGM) by Dong 128 

and Valdes (1998), off the Peltier (1994) ice sheet in a state of mass balance.  For the 129 

Southern Hemisphere we use climatological iceberg fluxes from Gladstone et al. (2001) that 130 

are based on Present Day mass balance calculations for the Antarctic ice sheet. The Antarctic 131 
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ice sheet has decreased in volume since the LGM, however, there is evidence from cores 132 

taken at various latitudes in the South Atlantic that IRD delivery was at a minimum at periods 133 

surrounding the LGM and during the Holocene (e.g., Kanfoush et al. (2000)). We assume the 134 

Antarctic ice sheet to be in a steady state for both PD and LGM simulations and thus use the 135 

PD iceberg fluxes for both PD and LGM simulations. 136 

 137 

2.1. Control Run 138 

The performance of the PD model provides guidance for interpreting the reliability of the 139 

glacial simulations. Thus, the PD coupled model (see Levine and Bigg, 2008) has a rather 140 

high peak North Atlantic overturning of 28.1±0.3 Sv although the amount of North Atlantic 141 

Deep Water (NADW) that flows southward across the equator contributing to the global 142 

thermohaline circulation is only ~13 Sv, which is reasonably consistent with observations 143 

(Gordon, 1986; Schmitz, 1995). The PD sea surface properties compare reasonably well with 144 

the climatological values, although gradients are not fully resolved. This is particularly true 145 

for the modelled meridional temperature gradients across the Southern Ocean, because of the 146 

relatively coarse resolution of the grid in this region, leading to a weak Antarctic Circumpolar 147 

Current (63.5±4.2 Sv) compared to observations (130-140 Sv, Nowlin and Klinck (1986)). 148 

However, the temperature and salinity distribution in the northern North Atlantic and Nordic 149 

Seas corresponds quite well with the climatology and leads to realistic North Atlantic Deep 150 

Water formation, in terms of convection location and depth penetration. The tropical sea 151 

surface temperature (SST) and air temperature are a little low, leading to reduced evaporation 152 

and fresher tropical sea surface conditions than observed, with salinity anomalies over 1 psu. 153 

There is also less sea-ice in both hemispheres. In the Northern Hemisphere this anomaly is 154 

mainly on the continental shelves of the Arctic Ocean, and so does not directly influence the 155 

Atlantic convection areas. The Southern Hemisphere sea-ice areas of 1.7±0.1 million km² 156 

compares with observations of around 11 million km² for the annual mean (Cavalieri et al., 157 

1997). However, poor reproduction of PD Southern Ocean sea-ice is a common climate 158 

model problem (Hansen et al., 2007). 159 

The strength of northern Atlantic currents is an important factor in the speed with which 160 

salinity anomalies are moved around in the ocean, so it is relevant to examine the PD 161 

simulation’s performance here. The strength of the North Atlantic sub-polar gyre (20.5±0.2 162 

Sv) compares reasonably with the range in the literature (13-16 Sv according to Tomczak and 163 

Godfrey (2003)). The Denmark Strait Overflow in the model is 5-6 Sv, while observations 164 
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suggest it varies between 3-4 Sv (Macrander et al., 2005). Through the other route into the 165 

Nordic Seas the Faroe Shetland Channel has ~ 9 Sv of Atlantic inflow in the model, but 166 

observations suggest ~ 7 Sv (Østerhus et al., 2005). The model therefore produces 167 

reasonable, but slightly too large, fluxes into and out of the Arctic. 168 

 169 
In the glacial control run the main North Atlantic convection occurs to intermediate 170 

depths, with a maximum penetration to 1800 m. This is centred at 45
o
N in the central and 171 

eastern Atlantic, which is consistent with other studies suggesting the shallower convection 172 

of the last glacial period occurred south of Iceland (Seidov and Maslin, 1999). The strength 173 

of this is only a third (9.6±0.3 Sv) of the PD peak overturning. This is within the uncertainty 174 

ranges provided by palaeo-observations (see Levine and Bigg (2008) for a fuller discussion). 175 

Estimates of coupled models of the LGM vary widely for this quantity (Weber et al., 2007), 176 

and the present model falls within this range of model uncertainty. Our modelled sea surface 177 

temperatures in the tropics and subtropics are lower than CLIMAP, which is consistent with 178 

the MARGO glacial analysis (Kucera et al., 2005). However, the winter limits of near 179 

freezing ocean surface temperatures in the model between 40–50
o
N are further south than in 180 

the MARGO reconstructions. Thus, our model produces sea-ice all year round in the Nordic 181 

Seas, while this area is thought to have been seasonally ice-free (Pflaumann et al., 2003; 182 

Kucera et al., 2005).  This problem is similar to the experience of other LGM coupled models 183 

(Kageyama et al., 2006). In the SH the Drake Passage flux (88.6±2.3 Sv) is a third higher 184 

than for the PD simulation. There is a five-fold increase in SH sea-ice area, to 9.3±0.9 million 185 

km
2
. This amount of Southern Ocean sea-ice is still approximately 20% lower than the PD 186 

observed annual mean but covering a much more realistic extent of ocean. 187 

 188 

2.2. Experiments 189 

In this paper we are examining the signature of abrupt change resulting from known 190 

catastrophic adjustments to last glacial ice sheets, either through fresh water release (e.g. the 191 

Younger Dryas) or iceberg melting (the Heinrich events). Consequently, we performed a 192 

number of experiments where the basic glacial control run of the model was perturbed by 193 

freshwater or iceberg additions from a number of possible release locations around the North 194 

Atlantic and Arctic periphery (Fig. 2). The length of time during which the perturbation was 195 

imposed was determined from estimates in the literature. The extensive review of Heinrich 196 

events in the palaeoceanographic literature by Hemming (2004) suggested a period of 500 197 
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±250 years. We have therefore imposed our perturbations for 500 years, after 5500 years of a 198 

glacial control simulation, and run on the experiments for at least an additional 500 years to 199 

study the rate of return of the climate towards an unperturbed state. Green (2009) showed that 200 

while changing the duration of the pulse affects the detail of the response, the general 201 

character is the same. We have examined a range of possible freshwater-equivalent release 202 

rates, ranging over 0.1-0.4 Sv. These match with estimates from the palaeoceanographic 203 

(Hemming, 2004; Roche et al., 2004) and modelling (Calov et al., 2002) communities; they 204 

also cover a range over which our model response varies from a circulation perturbation to a 205 

complete collapse (Levine and Bigg, 2008). 206 

The release locations have been chosen through field evidence of known or suspected 207 

catastrophic events. The ice stream feeding Hudson Strait has long been acknowledged as a 208 

likely source for Heinrich events (Broecker et al., 1992) because of the lithology of North 209 

Atlantic IRD, the latter’s strong carbonate content, which is characteristic of sediments 210 

underlying Hudson Bay, and the geographic pattern of IRD deposition. The ice stream 211 

draining through the Gulf of St. Lawrence overlay areas of similar geology to the Hudson 212 

Strait ice stream, and would have produced icebergs feeding into  the same North Atlantic 213 

IRD pattern. There is evidence that IRD in Heinrich deposits has a signature consistent with 214 

at least a contribution from the Gulf of St. Lawrence (Piper and Skene, 1998; Piper and 215 

DeWolfe, 2003). We have therefore used this as a second release location. Further afield, 216 

there has been debate over a European origin for H3 and H6. While this now seems less 217 

likely (see Hemming (2004) for a review) there is increasing evidence for an ice-bridge 218 

across the northern North Sea (Sejrup et al., 2009) and a major ice stream in the Norwegian 219 

Channel (Nygård et al., 2007), either of which are possible candidates for major ice release 220 

from the southern arm of the Fennoscandian Ice Sheet, at least for H3 (Lekens et al., 2009). 221 

The Arctic also provides potential release sites for either iceberg or freshwater releases. 222 

Iceberg scour marks and erosion on the deep Lomonosov Ridge in the central Arctic and the 223 

Yermak Plateau northwest of Svalbard are consistent with a catastrophic release of deep draft 224 

icebergs from the northern Barents Sea section of the Fennoscandian ice sheet (Kristoffersen 225 

et al., 2004; Green et al., 2010). There is evidence that the very deep St. Anna Trough in the 226 

eastern Barents Sea continental margin had ice grounded to its base during the last glacial 227 

period (Polyak et al., 1997). This, or the nearby Franz Victoria Trough (Green et al., 2010), 228 

therefore represents a possible source for a catastrophic release of icebergs. Finally, the 229 

Mackenzie basin and M’Clure Strait in western Arctic Canada drained the Keewatin Dome of 230 
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the Laurentide Ice Sheet. The Mackenzie is likely to have been the route down which there 231 

was a freshwater release during the Younger Dryas, through a partial collapse of Lake 232 

Agassiz (Teller et al., 2002, Murton et al., 2010). There were also major ice-rafting events 233 

during the Last Glacial from the M’Clure Strait in the western Canadian Archipelago (Stokes 234 

et al, 2005; Darby and Zimmerman, 2008). This therefore forms the fifth source region for 235 

our iceberg and freshwater release experiments (Fig. 2). 236 

 237 

3. Modelling Results 238 

In the modelling results presented below there is an intrinsic assumption that sufficient ice 239 

was present in the catchment of each release site during the Last Glacial for our range of 240 

fluxes to be possible. This may, or may not, be true for any particular time during this long 241 

time period but allows comparison of the impact between different release sites. Later 242 

sections will address the probability of such releases within the palaeoclimate data 243 

assessment. 244 

3.1. Iceberg experiments 245 

The clearest variable to show the response of the climate to the iceberg forcing is the 246 

strength of the peak Meridional Overturning Circulation (MOC) of the North Atlantic. This is 247 

shown for the 1000 years following the start of release of icebergs at fluxes of 0.1 Sv, 0.2 Sv 248 

and 0.4 Sv from the five release points around the North Atlantic and Arctic in Fig. 3. The 249 

control run’s MOC is also shown for comparison. 250 

In all cases the 0.1 Sv release causes a decline in the strength of the MOC by 2-3 Sv, or 251 

20%, with an eventual recovery of some extent. However, the speed of the decline, and the 252 

recovery, depend on the location of the iceberg release. The majority of the decline occurs 253 

within a decade from eastern North American releases, while from other locations it is 254 

slower, up to 1-200 years. There is also a difference in the rate of recovery once the iceberg 255 

release ceases in Year 6000 of the model run. The eastern North American release 256 

experiments show a rapid return of the MOC to values near those of the control. However, 257 

the recovery of eastern Atlantic and Arctic release experiments is significantly more gradual, 258 

taking at least a century, but up to 300 years from Mackenzie releases. In the case of the St. 259 

Lawrence release, the MOC does not recover to its original level but equilibrates at a new, 260 

slightly lower, MOC stength. 261 

This tendency to equilibrate at a new MOC level on recovery is seen in several of the 262 

experiments with higher releases (Fig. 3). This new equilibrium state after recovery is not 263 
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invariably one with a lower MOC, and hence colder North Atlantic, but can lead to a higher 264 

MOC (for example, the 0.2 Sv St. Anna Trough release). The equilibrium recovery behaviour 265 

is very dependent on the specific release location, but the rates of change respond to a 266 

broader geographical imperative. Thus, rates of initial decline are always very rapid from 267 

eastern North American releases whatever the release strength, while the behaviour of 268 

experiments from other release sites varies with the release magnitude. For these sites the 0.2 269 

Sv and 0.1 Sv releases result in similar behaviour, however, the rate of decline is faster when 270 

collapse of the MOC occurs for 0.4 Sv releases, if still up to a few decades slower than for 271 

collapse generated from eastern North America. 272 

Recovery rates are generally independent of the release magnitude, but dependent on the 273 

release site. Thus, for eastern North American release experiments recovery is extremely 274 

rapid, Mackenzie experiments recover over about a century, while NCIS and St. Anna 275 

Trough release experiments require several hundred years for recovery. Note that for the 276 

stronger releases only Hudson Strait and Mackenzie experiments show consistent recovery to 277 

pre-release MOC strengths. 278 

The explanation for the sometimes striking differences between the oceanic responses to 279 

release location lies in where the fresh water from the iceberg melting enters the ocean and 280 

the consequent response of the ocean density field, currents and ocean and atmospheric 281 

temperature fields. The icebergs are released in a range of sizes (Levine and Bigg, 2008) and 282 

allowed to move, and melt, through the interaction of the icebergs with the ocean and 283 

atmosphere (Bigg et al., 1997). The bergs will melt rather slowly in cold conditions, and 284 

those originating in the Arctic may take some years to decades (Bigg et al., 1996; Green, 285 

2009) to leave this Ocean. Rapid melting, and so addition of freshwater to the ocean, only 286 

occurs once the icebergs enter warmer and windier climates (Bigg et al., 1997). Note that this 287 

may not relate closely to where IRD is deposited (Death et al., 2006). 288 

Due to all these factors, the model salinity fields reveal the path along which icebergs 289 

travel, and melt, once they are released, rather than the result of freshwater advection and 290 

diffusion from a point source. The sea surface salinity fields for the control and 0.4 Sv 291 

experiments are shown in Fig. 4 300 years after the catastrophic iceberg releases began. The 292 

release points on the eastern coast of North America show the movement of icebergs into the 293 

glacial Gulf Stream and North Atlantic Drift with freshwater entering this system and then 294 

moving south into the sub-tropical gyre re-circulation. Rather little impact is seen in the sub-295 

polar gyre and Arctic, as few icebergs from these sources penetrate into such regions, and 296 
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relatively little surface water advects unaltered from the modelled glacial sub-tropical gyre 297 

northwards. The freshwater does, however, enter the region of intermediate water formation 298 

in the central North Atlantic rather quickly, hence leading to rapid decline of the MOC, and 299 

almost as rapid a return once this source is cut-off and the fresh anomaly of the NW Atlantic 300 

has been advected past the convection region. 301 

In the case of a Mackenzie release, Fig. 4 shows that much of the freshwater, as both ice 302 

and freshwater, leaves the Arctic in the East Greenland Current and then freshens the 303 

Labrador Sea and northwestern Atlantic. The Arctic is also freshened generally. Thus there is 304 

a delay in the MOC decline, as shown by Fig. 3, relative to eastern North American releases, 305 

as it takes longer for sufficient freshwater to enter the northern Atlantic, both from the delay 306 

due to the water transit time and the slow melting of icebergs in a cold Arctic and Greenland 307 

Sea. The cessation of iceberg input also leads to a slower recovery because it takes some 308 

decades to centuries, depending on the run, for the excess salinity built-up in the Arctic to be 309 

flushed out into the ocean more generally. 310 

The European releases show this delay in the onset of MOC decline (Fig. 3), but respond 311 

rather differently to North American releases thereafter. Many of the NCIS icebergs go north 312 

and melt in the Nordic Seas, or Arctic, while relatively few of the St. Anna Trough icebergs 313 

get entrained into the East Greenland Current and exit into the NW Atlantic. In both cases, 314 

this leads to large-scale freshening in the Northeastern Atlantic and eastern Arctic, which 315 

creates a pool of low salinity that gradually leaks out into the Atlantic, and results in a 316 

continuation in MOC decline beyond the time of initial response, unless the circulation was 317 

shut down (Fig. 3). Similarly, once the iceberg input ceases this slow leaking of freshwater 318 

significantly delays the return to a strong MOC. It must be remembered that there is a net 319 

decrease in global salinity due to the Heinrich events, but while North American inputs tend 320 

to get mixed globally to minimise the net impact of this on the MOC, the eastern Arctic input 321 

leads to a long-term decrease of the North Atlantic salinity field. In this case, areas between 322 

~50-60
o
N retain upper ocean salinity values some 1 ‰ lower even 500 years after the iceberg 323 

input has ceased.  324 

The SST patterns tend to be similar for the different events because they are strongly tied 325 

to the strength of the MOC. Thus, there is significant cooling over the central Atlantic, as the 326 

North Atlantic Drift adjusts southwards, and some weak warming further north and south 327 

(Levine and Bigg, 2008). This is similar to the results of Vellinga and Wood (2002) for a 328 

present day freshwater release. For atmospheric temperature anomalies, again there is cooling 329 
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over the North Atlantic, whose centre and magnitude varies depending on the release site (see 330 

Levine and Bigg, 2008). The Mackenzie and NCIS releases produce the maximum cooling, 331 

and so biggest overall climatic effect. Note that all releases lead to some, at least localised, 332 

warming; for the Hudson Strait release circum-Arctic warming is a strong characteristic, with 333 

the maximum warming centred over northern Greenland (Fig. 5). Releases from the St. Anna 334 

Trough also lead to localised warming over northeastern Greenland, and slight warming over 335 

the eastern Arctic and much of northern Eurasia. Releases from the St. Lawrence, NCIS and 336 

to a lesser extent, the Mackenzie, result in significant western European cooling. 337 

 338 

3.2. Freshwater experiments 339 

The MOC values for the freshwater release experiments are shown in Fig. 6. These are 340 

similar to the iceberg releases in character, both in terms of the relative rates of change and 341 

the recovery. In the case of releases from eastern North America, the main difference is that 342 

the MOC reacts more to weaker inflows, but the rates are very similar as the fresh water is 343 

effectively injected into the same current systems in both iceberg and freshwater releases. In 344 

contrast, the Mackenzie release has less impact per unit freshwater equivalent release because 345 

the freshwater enters the western Arctic directly, rather than being carried further towards the 346 

North Atlantic as icebergs before release. More of the freshwater therefore remains in the 347 

Arctic for longer, reducing the impact, although also slowing the recovery somewhat. 348 

Freshwater releases from the European sites show substantially larger impacts on the 349 

MOC than do similar iceberg releases. The freshwater in both cases reaches the central North 350 

Atlantic convection zone in a few decades and caps the ocean. In fact, the releases from both 351 

the NCIS and St. Anna Trough cause such rapid change that the model becomes numerically 352 

unstable for larger releases. 353 

 354 

3.3. Experimental summary 355 

Several key differences between sites of release and the type of freshwater release are 356 

apparent from these numerical experiments. Firstly, whatever form the release takes, inputs 357 

from eastern North America cause substantial and rapid change in North Atlantic climate, 358 

with equally rapid recovery to states similar to the original climate. Secondly, Arctic and 359 

European releases of icebergs show a slower response of several decades to centuries for 360 

climate cooling, and similar, slower, timescales of recovery. Thirdly, experiments with 361 
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freshwater releases from these sites show a rapid onset of climate cooling but a slower 362 

recovery than is the case for experiments with eastern North American inputs. 363 

The extent of the climate effect also depends on the release location and type. Iceberg 364 

inputs show a more linear variation with MOC decline, whatever the release site, until 365 

effective collapse occurs, than is the case for freshwater releases. For the latter, the MOC is 366 

most sensitive to releases from eastern North America (although the numerical problems 367 

caused by rates of change may distort this result). 368 

We have here considered idealised experiments for a particular time, and hence orbital 369 

parameter, atmospheric carbon dioxide concentration and ice sheet configuration. We have 370 

also considered single release experiments, rather than the impact of multiple release sites on 371 

glacial ocean circulation and climate, in order to disentangle the basic signature deriving from 372 

each release site. It is possible, indeed likely, that any observed palaeoclimatic signal will not 373 

have been due to such a pure event as we have modelled. Nevertheless, sensitivity 374 

experiments that we have performed using different glacial forcings and combinations of 375 

releases suggest that there is sufficient signal produced in the idealised experiments for us to 376 

usefully proceed to explore the palaeoclimatic record. For example, mixing equal strength 377 

Arctic and Hudson Strait releases produces a response dominated by the Hudson Strait 378 

release, as the latter affects the convection site first, because of its proximity. 379 

These idealised modelled differences therefore mean that it should be possible to attempt 380 

to infer rates, types and locations of releases from the rates, and absolute magnitudes, of 381 

change in the palaeoclimate record. In the following section we will examine such records 382 

with high temporal resolution, concentrating on the known freshwater release of the Younger 383 

Dryas (c. 11-12 000 cal. yr B.P.) and the known iceberg releases of Heinrich events H1-H6 384 

during the Weichselian. 385 

 386 

4. Palaeoclimate Analysis 387 

 388 

4.1. Representative data sets 389 

To compare the numerical experimental conclusions with palaeodata it is necessary to 390 

look at a representative set of high resolution (sub-centennial) but long-term records covering 391 

the North Atlantic region where the climatic impact was seen to be strongest in the numerical 392 

experiments (Fig. 5). It has not been possible to find appropriate datasets to cover the whole 393 

of the period back to 70 000 cal. yr B. P. for all areas, but a representative sample of different 394 
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geographical regions and data types has been selected. Fig. 7 shows the location of the 395 

datasets chosen and Fig. 8 shows the various timeseries on a common timescale. These 396 

timeseries address different aspects of climate variability in regions where the model 397 

experiments showed most clearly defined differences between the different release 398 

experiments. No exactly comparable proxies with the necessary temporal resolution and 399 

scientific basis were discovered across the whole North Atlantic, where model difference was 400 

greatest. However, coverage is available in some manner in most crucial areas; we discuss 401 

drawbacks as well as advantages to using potentially problematic datasets in what follows.  402 

Ice cores from Greenland provide an anchor against which many studies compare their 403 

local results; in addition Greenland is an area where we expect significant atmospheric 404 

climate change to be seen for the abrupt changes to be studied (Fig. 5). The GISP2 ice core 405 

record from central Greenland provides a temperature reconstruction from oxygen isotope 406 

and ice accumulation records extending back to 50 000 cal. yr B. P.. The original 407 

reconstruction derives from Cuffey and Clow (1997), with smoothing by Alley (2000). 408 

Another important indicator of change is the sea level record. A high resolution record of sea 409 

level should show the rate of transfer of freshwater, as either ice or water, from land to sea, 410 

and hence be a proxy for the temporal length and magnitude of an iceberg or freshwater 411 

release respectively. Siddall et al. (2003) used a combination of an oxygen isotope record 412 

from a Red Sea core with a hydraulic model of exchange between the Red Sea and the 413 

Arabian Sea to reconstruct sea level change, down to centennial scale for much of the last 414 

70,000 years. 415 

The main indicator used for comparing the numerical experiments was the MOC strength 416 

(Figs. 3 and 6). There are few modern day records of this, let alone palaeo-records. However, 417 

one proxy is the sortable silt grain size of bottom sediments (McCave et al., 1995) under the 418 

deep return flow of the MOC in the North Atlantic. We use here such a timeseries, extending 419 

over 26-62 000 cal. yr B. P., that has been sampled at centennial to sub-centennial scale from 420 

ODP Site 1060 on the Blake Outer Ridge of the western Atlantic by Hoogakker et al. (2007). 421 

The mean grain size of the 10-63 μm sediment fraction was used. Larger sizes imply stronger 422 

currents, and hence a stronger MOC. Previous work using this parameter, and a discussion of 423 

its advantages and drawbacks, can be found in McCave and Hall (2006). 424 

The biggest climatic impact of abrupt North Atlantic freshwater injections is found in the 425 

North central Atlantic (e.g. Fig. 5). Hence SST indicators from either side of the Atlantic are 426 

also used. From the Gulf Stream dominated western region, a Marine Isotope Stage 3 record 427 
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(24 -64 000 cal. yr B. P.) of faunal and alkenone reconstructed SSTs is available (Vautravers 428 

et al., 2004) from the same site, ODP 1060, as is used for the MOC proxy. This will tell us 429 

about both the local atmospheric and upper ocean climate variability. In the eastern Atlantic, 430 

core MD01-2444 underlies a seasonally active upwelling zone off the Portuguese coast. The 431 

northern limit of this upwelling will move latitudinally as climate fluctuates, leading to SSTs 432 

from this site being a sensitive indicator of climate change. We use a faunal SST 433 

reconstruction covering a similar time period to that of the western Atlantic SST site to 434 

represent this area of North Atlantic climate (Vautravers and Shackleton, 2006). Another 435 

sensitive oceanic indicator of climate change is the exchange of water between the 436 

Mediterranean and the Atlantic through the Strait of Gibraltar, as this tells us something 437 

about the relative densities of the eastern Atlantic and Mediterranean, and therefore acts as a 438 

regional climate proxy (Rogerson et al., 2010) . We use a high resolution record of alkenone-439 

derived SST in the Alboran Sea, at site MD952043, as an indicator of conditions near the 440 

exchange; this dataset is available back to 52 000 cal. yr B.P. (Cacho et al., 1999). 441 

The numerical experiments indicate that the climate anomaly caused by some Heinrich 442 

events is likely to have spread over Europe (Fig. 5). Thus, from Lago Grande di Monticchio 443 

in southern Italy a high resolution 100 000 year record of carbon content in the lake 444 

sediments, measured through their loss fraction on ignition and the biogenic silica content 445 

(Allen et al., 1999) is used. These two indicators are linked to the proportion of the sediment 446 

entering the lake from erosion of bare or forested environments, thus high weight percentages 447 

for both are characteristic of high organic fractions in runoff, while low values suggest barer 448 

soils with rather low organic content. Both can approach zero in particularly cold climates. 449 

Such records may respond strongly to local topographic influences as much as the wider, 450 

regional climate. However, this particular record correlates strongly with changes in the 451 

Greenland ice core (Allen et al., 1999), suggesting that it is largely responding to large-scale, 452 

rather than local, influences.  453 

A second terrestrial site is chosen from Brazil, as the numerical experiments suggest the 454 

cooling during Heinrich events caused by Hudson Strait releases may have led to a western 455 

Atlantic-centred cooling extending to South America, with potential impact on tropical 456 

climate teleconnections (Fig. 5). High resolution stalagmite oxygen isotope records, 457 

extending back to 116 000 cal. yr B. P., from the sub-tropical Botuverá Cave (Cruz et al., 458 

2005) are used to examine climate change in this region. These data also act as an indicator of 459 

climate change in the Southern Hemisphere, to gauge the cross-equatorial spread of any 460 
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abrupt change. The oxygen isotope record appears to mostly be a reflection of the local 461 

precipitation record (Cruz et al., 2005), with less negative values reflecting more regional 462 

winter than summer rainfall because of a weakening of the strength of the local summer 463 

monsoon, which imports moisture from afar and is characterised by intense convection, 464 

during such times. Thus, the long-term signal is dominated by the precessional (21 000 year) 465 

orbital cycle. Nevertheless, over the short-term we can ignore this trend and examine 466 

evidence for abrupt change in the isotopic rate of change. 467 

 468 

4.2. Evidence for abrupt change 469 

To examine our selected palaeoclimate records for abrupt change we first need to specify 470 

the time periods to examine. These are shown in Table 1. We follow Hemming (2004) for 471 

estimates of the timing of Heinrich events, and Alley (2000) for the Younger Dryas. The 472 

durations of these events are estimated as 500±250 years (Hemming, 2004) for Heinrich 473 

events and 1500 years for the Younger Dryas, with a number of freshwater releases 474 

maintaining the oceanic freshening (Teller et al., 2002) in the case of the latter. In 475 

intercomparing records the question of the relative accuracy of their chronologies arises. 476 

Records with very well established calendar year chronologies have been chosen to minimise 477 

this problem, and in general, as we will see, there is very good agreement on the relative 478 

timings of events. However, here we are interested in rates of change in what are normally 479 

significant events. Thus, slight off-sets in the absolute time between the different records are 480 

not a major problem. 481 

In the case of the Younger Dryas (YD) and Heinrich Event 1 (H1) a number of the chosen 482 

high resolution datasets do not cover this period so an additional high resolution, but shorter, 483 

SST dataset has been added from the Caribbean basin (Lea et al., 2003). Variations in these 484 

data are thought to indicate changes in the movement of the ITCZ (Lea et al., 2003), but they 485 

may also be linked to changes in the input of warm water to the sub-tropical gyre. 486 

The palaeohydrological reconstructions of Leverington and Teller (2003) and Nesje et al. 487 

(2004) offer the current view of the YD being largely flood-induced, but with successive 488 

flooding from a range of locations prolonging the cooling event. Figure 9 shows a 489 

comparison of the various datasets through the YD. The Greenland temperature record shows 490 

very abrupt onset c. 12.9k cal. yr B.P. and abrupt recovery c. 11.6k cal. yr B.P.. These dates 491 

correspond quite well with change in the SST records across the Atlantic, particularly with an 492 

abrupt onset of cooler conditions. Recovery is also abrupt in the ice core record, but less so in 493 
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both SST records around the same time. The Brazilian ITCZ record also suggests a change to 494 

weaker ITCZ convection during the YD, indicating cooler conditions reaching into the 495 

Southern Hemisphere.  The southern European terrestrial record shows little sign of the 496 

abrupt return to glacial conditions; the sharp spike around 12.2k cal. yr B.P. is seen in just 497 

one point and may be a data problem. The abrupt onset and slower recovery in SST, 498 

combined with a weak southern European climate response (see Fig. 5), is consistent with the 499 

modelling response of a St. Lawrence flood initiating the YD, but lake drainage from other 500 

sources and directions, such as the Mackenzie and Baltic, prolonging it. This is also 501 

consistent with the palaeohydrological reconstructions. 502 

We now turn to Heinrich events, starting with H1. This was the main deglaciation iceberg 503 

release, which has a distinct and abrupt signature in the palaeo-records (Fig. 10), with the rise 504 

in sea level beginning c. 17.8k cal. yr B.P., approximately coinciding with abrupt fall in the 505 

Alboran Sea SST (f in Fig. 10), a decrease in the carbon content in runoff in Italy (g and h in 506 

Fig. 10), a fall in rainfall in the ITCZ proxy in Brazil and short-lived dips in Greenland 507 

temperature and Caribbean SST (* in Fig. 10). These correspondences are consistent with a 508 

Hudson Strait iceberg release, particularly seen through the mid-latitude abrupt change but 509 

limited Greenland response (e.g. as seen in Fig. 5). However, the Alboran Sea SST shows a 510 

gradual, rather than abrupt, return over several hundred years to pre-event temperatures, with 511 

short-term coinciding temperature drops in Greenland (a in Fig. 10), the Caribbean and 512 

southern Europe during this period (g & h in Fig. 10). This contrast in rates of change 513 

between the beginning and end of H1, through comparison with the modelling results, 514 

suggest that H1 may have consisted of two events that affected climate: an initial Hudson 515 

Strait release followed by an Arctic or European release. The magnitude of the European 516 

signal suggests a possible Mackenzie source (Fig. 5). Several authors have found evidence 517 

for European IRD events preceding H1 (Grousset et al., 2000; Peck et al., 2006; Peck et al., 518 

2007); there is also evidence for a Laurentide iceberg release into the Arctic about the same 519 

time as H1 (AL2; Darby et al., 2002). On the basis of the comparison of modelling and 520 

palaeo-records in Fig. 10, we hypothesise that any British-Irish Ice Sheet (BIIS) precursor to 521 

a Hudson Strait release was not large enough to have a significant climate impact, but that 522 

part of the North American response of the Laurentide ice sheet saw a later iceberg release 523 

enter the Arctic that continued the climate event associated with H1,  leading to a slower 524 

recovery than there would otherwise have been. 525 
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The palaeoclimate data for the previous Heinrich event, H2, are shown in Fig. 11. The 526 

Atlantic SST data only begin during the event, so just the start of H2 is shown in these two 527 

fields (d & e in Fig. 11). However, across a wide number of variables onset of a cooling event 528 

is seen between 24.1-24.4k cal. yr B.P.. In most fields this onset is abrupt, with the majority 529 

of change occurring in less than 200 years. The exception is the Greenland temperature (a in 530 

Fig. 10), where there is relatively little impact. The bottom-sediment grain-size variable (c) is 531 

low throughout much of the interval; as will be seen repeatedly there is only a loose temporal 532 

association between this variable and what is occurring in the atmosphere and the surface 533 

ocean. The rising sea level (b in Fig. 11) suggests that iceberg loss continued until around 534 

23.3k cal. yr B.P.. The Greenland temperature, Mediterranean SST and Italian biogenic silica 535 

proxy all return to pre-event levels around this time, suggesting the recovery follows the 536 

cessation of enhanced iceberg flux quite quickly. This style of response is compatible with a 537 

predominantly Hudson Strait release, as H2 is normally considered to be (Hemming, 2004). 538 

However, the recovery in SST is slower than the initiation of change, which could be due to a 539 

climatic impact from the coinciding Arctic IRD event AL3 (Darby et al., 2002). Once again, 540 

the European H2 pre-cursor event identified by Scourse (2000), Grousset et al. (2001) and 541 

Peck et al. (2006) does not appear to have had a significant climatic impact. 542 

H3, the selected palaeoclimate data for which are shown in Fig. 12, has long been seen as 543 

a problematic Heinrich event, with evidence of European source material in the eastern 544 

Atlantic, but of low concentration, and North American-sourced IRD in the west, but more 545 

abundant. Hemming (2004) summarises this evidence and concludes that H3 was of Hudson 546 

Strait origin, but of smaller size than other events, so that its IRD did not cover the North 547 

Atlantic, as in more characteristic events. One has a very different impression, however, from 548 

examining the palaeoclimate record, as there is a very strong and prolonged climate signal 549 

associated with this event. In all the temperature records in Fig. 12 there is a gradual decline 550 

of up to 5
o
C in SST (d, e & f in Fig. 12) and 10

o
C in Greenland air temperature (a in Fig. 12) 551 

during the interval 32-31k cal. yr B.P.; the MOC proxy (c in Fig. 12) is also lower during this 552 

interval. The end of this period is normally taken as the indicative time for H3 (Table 1), 553 

when the North Atlantic IRD signature is at its peak. A number of the records show some 554 

recovery around 30-30.5k cal. yr B.P., although in most cases it is centuries-long rather than 555 

abrupt. A full recovery of the Greenland air temperature and the SST fields, however, does 556 

not occur until c. 29k cal. yr B.P.. 557 
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H3 therefore poses a problem – why is there so little IRD but such a strong climate 558 

anomaly? The nature of the anomaly suggests that despite the strong evidence for a regional 559 

IRD event originating from Hudson Strait there must have been some coincident or preceding 560 

cause of the major climate change. If this were due to an iceberg release then the slowness of 561 

the change suggests a European or Arctic origin.  As Hemming (2004) shows, there is little 562 

evidence for a strong European source. However, Figures 2 and 7 of Darby et al. (2002) show 563 

that the maximum IRD signature during the last 35 000 years in core PS1230 from the Fram 564 

Strait occurred prior to 30k cal. yr B.P.. Their analysis was unable to link this peak with any 565 

of the source regions that they examined, and, in particular, it did not seem to be linked to 566 

Arctic North America. Our hypothesis to reconcile these various facts is that there was a 567 

major loss of ice from the Barents Sea ice shelf at this time, followed by a later, and smaller, 568 

Hudson Strait event. Lekens et al. (2006) show evidence in contemporary planktonic 569 

foraminiferal oxygen isotope anomalies of extensive meltwater across the surface of the 570 

whole Nordic Seas during H3, but little enhanced IRD flux at a core in the southern 571 

Norwegian Sea. This meltwater could have come from local sources as suggested by Lekens 572 

et al. (2006), but could also partially originate from melted Arctic icebergs (e.g., as seen in 573 

Fig. 4). Additional evidence for a significant IRD event originating from the eastern Arctic 574 

during H3 comes from core GC070 on the Yermak Plateau, NW of Svalbard and to the east 575 

of Fram Strait (Howe et al., 2008), where by far the largest IRD event recorded in this core 576 

during the main glacial period dates to around this time. 577 

Fig. 13 shows the range of palaeodata around the time of H4. Just prior to 40k cal. yr B.P. 578 

there are abrupt changes in a number of indices, particularly eastern Atlantic SST (e in Fig. 579 

13), the ITCZ proxy in Brazil (i), the biogenic silica in Italy (h) and Greenland air 580 

temperature (a). At the same time, the sea level (b) begins to rise. These abrupt changes, and 581 

the relatively lesser response over Greenland, is consistent with the modelling results for a 582 

Hudson Strait iceberg release, which is normally considered the cause of H4 (Hemming, 583 

2004). The MOC proxy (c) also suggests weak return flow at this time, although the onset of 584 

this pre-dates the start of change elsewhere. The end of H4 is difficult to determine. The sea 585 

level ceases to rise around 39k cal. yr B.P. (b), shortly before Atlantic SST (e) and the MOC 586 

(c) return to more normal glacial conditions. However, the Mediterranean SST (f) and 587 

Greenland temperature (a) persist in an anomalous state for another 500 years before abrupt 588 

rises. This abruptness is consistent with the modelling results for a Hudson Strait recovery, 589 

however, the variable end point of the signal points to a more complex event. It is noteworthy 590 
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that at this same time there is evidence for changes in Antarctica, leading to the major sea 591 

level rise (Rohling et al., 2004), a Heinrich-like event and ice sheet collapse in the North 592 

Pacific (Bigg et al., 2008) and localised IRD events in the Nordic Seas (Dowdeswell et al., 593 

1999). H4 may be part of a larger perturbation to the climate system. 594 

In contrast to H3 and H4, the climate signal for H5 is hard to discern (Fig. 14). There are 595 

substantial amounts of IRD in the North Atlantic (Hemming, 2004) associated with this 596 

event, implying a Hudson Strait origin, but the Atlantic climate anomaly is small  in the 597 

eastern Atlantic (e and b) to missing in the western Atlantic (d). There is a slow decline in the 598 

Alboran Sea SST (f) that correlates well with a decline in air temperature over Greenland (a), 599 

and the return to normal glacial conditions occurs around the same time in these two 600 

parameters, although much more abruptly over Greenland. However, these changes look 601 

more likely to be due to some other mechanism; H5 itself appears to have a weak climate 602 

impact, although one consistent in terms of rates of change with a Hudson Strait origin. 603 

The final Heinrich event we consider is H6, which occurred around 60k cal. yr B.P. 604 

(Table 1). Hemming (2004) shows a number of IRD records associated with this event, 605 

although many suggest a much reduced flux (e.g. her Fig. 9). It is again difficult to see a 606 

significant climate signal in the proxy records chosen here (Fig. 15, although some (a & f in 607 

Fig. 15) do not extend this far back). There is a rise in sea level (b) around 60.7k cal. yr B.P. 608 

that may be associated with slight temperature falls in the Atlantic (d) and a reduced MOC 609 

(c), but the correspondence is weak. 610 

 611 

5. Discussion 612 

 Comparison between a number of long term palaeoclimate records and modelling 613 

results for idealised releases of freshwater or icebergs into the Atlantic or Arctic Oceans has 614 

confirmed the important role of the Laurentide Ice Sheet in affecting glacial climate through 615 

ice and freshwater releases into the western Atlantic. Marine core evidence firmly points 616 

towards Hudson Strait as the primary origin of these releases (Hemming, 2004). However, 617 

the comparison has highlighted the variable climate impact of different Heinrich events, and 618 

hence likely differences between events in terms of iceberg release magnitude and/or 619 

duration. In addition, we have seen strong suggestions that other release areas have also 620 

played a role in producing the climate change observed in a number of events. In particular, 621 

past workers’ concentration on the IRD record of the North Atlantic has tended to downplay 622 

the possibility of significant fluxes from Arctic sources. Few icebergs from the glacial Arctic 623 
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will have reached the main Atlantic basin to leave a lithic signature even from very large 624 

releases, because of the restriction of last glacial Arctic ice export to the narrow Fram Strait, 625 

and a long subsequent ocean passage through the Greenland Sea. 626 

 The rate of climate recovery from H1, H2 and H3 all suggested an Arctic release 627 

contribution to the climate impact. In the case of H1 and H2 we have seen that the IRD 628 

evidence from the Arctic and Fram Strait points towards a North American origin for a 629 

release coinciding with (or, in the case of H1, slightly later than) the Hudson Strait release. 630 

Darby et al. (2002)’s analysis of the FeO grain sizes in IRD suggests that Arctic event AL2 631 

(cf. H1) was largely Laurentide in origin, while AL3 (cf. H2) has a mix of Laurentide, 632 

Innuitian and North Greenland peaks. Stokes et al. (2005; 2009) suggest that the only likely 633 

source for a major Arctic Laurentide ice stream during this time interval was M’Clure Strait, 634 

roughly corresponding to one of our model release sites. In these two Heinrich events, even if 635 

there were a European pre-cursor as some authors have suggested, we hypothesise that the 636 

major climatic influence was due to a North American ice sheet collapse with both an eastern 637 

and northern signature. 638 

 H3 has a rather different character, however. While the model-data comparison 639 

suggests an Arctic component, the palaeoceanographic evidence suggests any release from 640 

the North American ice sheet c. 31k cal. yr B.P. was relatively minor, whether to the east 641 

(Hemming, 2004) or the north (Darby et al., 2002). Nevertheless, there was a strong 642 

meltwater signal in the Nordic Seas (Lekens et al., 2006), a strong IRD signal in Fram Strait 643 

at PS1230 (Darby et al., 2002) and a strong IRD signal off northern Svalbard at GC070 644 

(Howe et al., 2008). The combination of palaeoclimate and model evidence therefore points 645 

towards a release from the St. Anna Trough region being the dominant climate-altering cause 646 

of H3. 647 

 Earlier in the Last Glacial the Hudson Strait origin of Heinrich events H4, H5 and H6 648 

is clearer, with the IRD record in the Atlantic being consistent with the rates of change in the 649 

simulations. The Arctic also may have had a more constrained level of glaciation during this 650 

time (Svendsen et al., 2004). H6 had quite a small climate signal, consistent with the often 651 

weaker, and less widespread, IRD signal in the North Atlantic (Hemming, 2004). H4, 652 

however, had an unusual signature, with variable length of the climatic signal depending on 653 

location (Fig. 13). With evidence for widespread environmental change around this time 654 

elsewhere in the globe (Dowdeswell et al., 1999; Rohling et al., 2004; Bigg et al., 2008) we 655 
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suggest that this period merits further study to unravel the abrupt climate change occurring at 656 

this time. 657 
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Table 1  917 
Approximate ages (calendar years BP) of the start of the abrupt events considered here. 918 
Hemming (2004) gives estimates of the uncertainty in H3 of ±1000 years and H6 of ±5000 919 
years. Our estimate comes from the timing of disturbance in the Northern Atlantic and 920 
represents the mid-point of the event (±250 years). 921 

Event Hemming (2004) 

Age (BP) 

Estimated 

Age (BP) here 

Younger Dryas 12 900 12 600 

H1 16 800 17 500 

H2 24 000 24 000 

H3 31 000 31 000
a 

H4 38 000 39 200 

H5 45 000 46 100 

H6 60 000 60 000 
a
H3 appears to be unusually prolonged from a number of records.922 
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Figure Legends 923 
Fig. 1. High temporal resolution records spanning the last 50 000 years of GISP2 Greenland 924 

ice core temperature (bottom panel; data from Alley (2000)), Alboran Sea surface 925 

temperature (centre panel; data from Cacho et al. (1999)) and Italian lake sediment biogenic 926 

silica (top panel; data from Allen et al. (1999)). Note the fast rates of change and the 927 

variations in amplitude and frequency in the records. 928 

Fig. 2. Iceberg and fresh water release sites for a glacial Arctic. A schematic of model annual 929 

mean glacial ocean currents is also shown. 930 

Fig. 3. MOC strength (in Sv) for 500 year iceberg releases of 0.1 (dashed), 0.2 (dot-dashed), 931 

0.4 (solid) Sv from the 5 sites, clockwise around the Atlantic and Arctic from bottom to top. 932 

The control MOC variation over this time is shown by the dotted line in each segment. 933 

Fig. 4. Sea surface salinity at model Year 5800 (ie 300 years into an iceberg release) for the 934 

following experiments: Control (bottom right), and 0.4 Sv iceberg releases for the St. 935 

Lawrence (bottom left), Hudson Strait (centre left), MacKenzie (top left), St. Anna Trough 936 

(top right) and NCIS (centre right). Absolute values are shown for the Control but anomalies 937 

relative to the Control for all other experiments. Contours are every 0.5, with labels at integer 938 

values. The data have been transformed onto a 1 degree conventional latitude-longitude grid, 939 

so there is a slight discrepancy between the model ocean data (land shown in white) and 940 

modern day land boundaries relative to a zero height at the 123m bathymetric contour (shown 941 

in black). 942 

Fig. 5. Lower atmospheric temperatures at model Year 5800 (ie 300 years into an iceberg 943 

release) for the following experiments: Control (bottom right), and 0.4 Sv iceberg releases for 944 

the St. Lawrence (bottom left), Hudson Strait (centre left), MacKenzie (top left), St. Anna 945 

Trough (top right) and NCIS (centre right). Absolute values are shown for the Control but 946 

anomalies relative to the Control for all other experiments. Contours are every 5
o
C for the 947 

Control and 0.5
o
C for the anomalies, with labels at integer values for the latter. The darker 948 

shading shows the more negative contours for the anomaly plots. The modern day land 949 

boundaries, relative to a zero height at the 123m bathymetric contour, are shown hatched. 950 

Fig. 6. MOC strength (in Sv) for 500 year freshwater releases of 0.1 (dashed), 0.2 (dot-951 

dashed), 0.4 (solid) Sv from the 5 sites, clockwise around the Atlantic and Arctic from 952 

bottom to top. The control MOC variation over this time is shown by the dotted line in each 953 

segment. Note that the 0.4 Sv releases from the two European sites led to numerical 954 

instabilities, while the 0.2 Sv release from the NCIS, while complete, was also affected by 955 

numerical problems. 956 

Fig. 7. Map of sites for palaeoclimate data, mostly labelled as in Fig. 8 (a-b, e-f, and i) or Fig. 957 

9 (*). Note that data sets c and d from Fig. 8 are from the same marine core in the sub-958 

tropical west Atlantic, so this site is labelled “W”, and sets g & h are from the same lake in 959 

southern Italy, hence labelled “L”. Dataset * is only used for the Younger Dryas comparison 960 

(see Fig. 9). 961 
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Fig. 8. Plot of palaeoclimate datasets on a common timescale. From the bottom up there is a) 962 

a Greenland ice core temperature (Alley, 2000), b) a sea level record (Siddall et al., 2003), c) 963 

an MOC sortable silt index (Hoogakker et al., 2007), d) a western Atlantic SST (Vautravers 964 

et al., 2004), e) an eastern Atlantic SST (Vautravers and Shackleton, 2006), f) a western 965 

Mediterranean SST (Cacho et al., 1999), g) a terrestrial organic carbon record (Allen et al., 966 

1999), h) a terrestrial biogenica silica record (Allen et al., 1999), and i) a speleotherm δ
18

O 967 

record (Cruz et al., 2005). See Fig. 7 for a key as to the location of the different datasets. 968 

Fig. 9. Comparison of palaeoclimate records during a time interval focused on the Younger 969 

Dryas (c. 12.5ka). The panels are labelled to correspond to the locations shown on Fig. 7. See 970 

the longer sets of timeseries, of which this is an excerpt, in Fig. 8, except for the Caribbean 971 

SST record (*, Lea et al., 2003). 972 

Fig. 10.  Comparison of palaeoclimate records during a time interval focused on H1 (c. 973 

18ka). The panels are labelled to correspond to the locations shown on Fig. 7. See the longer 974 

sets of timeseries, of which this is an excerpt, in Fig. 8, except for the Caribbean SST record 975 

(*). 976 

Fig. 11.  Comparison of palaeoclimate records during a time interval focused on H2 (c. 977 

24ka). The panels are labelled to correspond to the locations shown on Fig. 7. See the longer 978 

sets of timeseries, of which this is an excerpt, in Fig. 8. 979 

Fig. 12.  Comparison of palaeoclimate records during a time interval focused on H3 (c. 980 

31ka). The panels are labelled to correspond to the locations shown on Fig. 7. See the longer 981 

sets of timeseries, of which this is an excerpt, in Fig. 8. 982 

Fig. 13.  Comparison of palaeoclimate records during a time interval focused on H4 (c. 983 

40ka). The panels are labelled to correspond to the locations shown on Fig. 7. See the longer 984 

sets of timeseries, of which this is an excerpt, in Fig. 8. 985 

Fig. 14.  Comparison of palaeoclimate records during a time interval focused on H5 (c. 986 

46ka). The panels are labelled to correspond to the locations shown on Fig. 7. See the longer 987 

sets of timeseries, of which this is an excerpt, in Fig. 8. 988 

Fig. 15.  Comparison of palaeoclimate records during a time interval focused on H6 (c. 989 

61ka). The panels are labelled to correspond to the locations shown on Fig. 7. See the longer 990 

sets of timeseries, of which this is an excerpt, in Fig. 8. 991 
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