
promoting access to White Rose research papers 

   

White Rose Research Online 
eprints@whiterose.ac.uk 

 

 
 

Universities of Leeds, Sheffield and York 
http://eprints.whiterose.ac.uk/ 

 
 

 
This is an author produced version of a paper published in Journal of Choice 
Modelling. 
 
White Rose Research Online URL for this paper: 
 
http://eprints.whiterose.ac.uk/43623/ 
 

 
 
Paper: 
Bliemer, MCJ, Rose, JM and Hess, S (2008) Approximation Of Bayesian 
Efficiency In Experimental Choice Designs. Journal of Choice Modelling, 1 (2). 98 
– 127. 
 
10.1016/S1755-5345(13)70024-1 

 

http://eprints.whiterose.ac.uk/43623/
http://dx.doi.org/10.1016/S1755-5345(13)70024-1


 1

Approximation of Bayesian Efficiency  
in Experimental Choice Designs 

 
 

Michiel C.J. Bliemer1,2 John M. Rose1,* Stephane Hess1 
                 m.c.j.bliemer@tudelft.nl       johnr@itls.usyd.edu.au      stephaneh@itls.usyd.edu.au 
 

1 University of Sydney, Faculty of Economics and Business, School of Business,  
Institute of Transport and Logistics Studies, Newtown, NSW 2006, Australia 

2 Delft University of Technology, Faculty of Civil Engineering and Geosciences,  
Transport & Planning Department, P.O. Box 5048, 2600 GA Delft, The Netherlands 

* corresponding author, (tel) +61 02 9351 0168, (fax) +61 (02) 9351 0088 
 

Abstract 
 
This paper compares different types of simulated draws over a range of number of 
draws in generating Bayesian efficient designs for stated choice (SC) studies. The 
paper examines how closely pseudo Monte Carlo, quasi Monte Carlo and Gaussian 
quadrature methods are able to replicate the true levels of Bayesian efficiency for SC 
designs of various dimensions. The authors conclude that the predominantly 
employed method of using pseudo Monte Carlo draws is unlikely to result in leading 
to truly Bayesian efficient SC designs. The quasi Monte Carlo methods analyzed here 
(Halton, Sobol, and Modified Latin Hypercube Sampling) all clearly outperform the 
pseudo Monte Carlo draws. However, the Gaussian quadrature method examined in 
this paper, incremental Gaussian quadrature, outperforms all, and is therefore the 
recommended approximation method for the calculation of Bayesian efficiency of 
stated choice designs.  
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1. Introduction 
 
The generation of stated choice (SC) experiments has evolved to become an 
increasingly important, but complex component of SC studies (Burgess and Street 
2003; Carlsson and Martinsson 2003; Ferrini and Scarpa 2006; Huber and Zwerina 
1996; Kanninen 2002; Kessels et al. 2006; Kuhfeld et al. 1994; Lazari and Anderson 
1994; Sándor and Wedel 2001, 2002, 2005; Street and Burgess 2004; Street et al. 
2001). Typically, SC experiments present sampled respondents with a number of 
hypothetical scenarios (known as choice situations) consisting of a universal but finite 
number of alternatives that differ on a number of attribute dimensions. These 
respondents are then asked to specify their preferred alternative from the set of 
alternatives presented within each choice situation based on the attribute levels 
shown. These responses are then pooled both over hypothetical choice scenarios and 
respondents before being used to estimate parameter weights for each of the design 
attributes (or in some cases, even attribute levels). These parameter weights may then 
be used to solve problems in many different research areas. For example, in transport, 
SC data has been used to examine the demand for a cycle-way network (e.g., Ortúzar 
et al. 2000), and to calculate Value of Travel-Time Savings (VTTS) of commuters 
and non-commuters (e.g., Hensher 2001a,b), whilst in marketing, choice of orange 
juice (e.g., Swait and Adamozicz 2001) and soft drink and holiday destination choice 
(Louviere and Woodworth 1983) have been examined. In health economics for 
example, SC methods have been used to model smoking cessation (Paterson et al. in 
press) and different treatment options (e.g., Ratcliffe 2002). 
 
Traditionally, researchers have relied upon the use of orthogonal experimental designs 
to populate the hypothetical choice situations shown to respondents (see Louviere et 
al., 2000, for a review of orthogonal designs). More recently however, some 
researchers have begun to question the relevance of orthogonal designs when applied 
to SC experiments (e.g., Huber and Zwerina 1996; Kanninen 2002; Kessels et al. 
2006; Sándor and Wedel 2001, 2002, 2005). Whilst orthogonality is an important 
criterion to determine independent effects in linear models, discrete choice models are 
not linear (Train 2003). In models of discrete choice, the correlation structure between 
the attributes is not what is of importance. Rather, given the derivation of the models, 
it is the correlations of the differences in the attributes which should be of concern. 
 
Huber and Zwerina (1996) took the important step of relating the statistical properties 
of the SC experiments to the econometric models estimated on such data. In their 
paper, Huber and Zwerina showed that designs that let go of orthogonality as a 
consideration in generating SC experiments and which attempt to reduce the 
asymptotic standard errors of the parameter estimates (i.e., the square roots of the 
diagonal elements of the asymptotic variance-covariance (AVC) matrix) will 
generally result in designs that either (i) improve the reliability of the parameters 
estimated from SC data at a fixed sample size or (ii) reduce the sample size required 
to produce a fixed level of reliability in the parameter estimates with a given 
experimental design. The linking of the experimental design generation process to 
attempts to reduce the asymptotic standard errors of the parameter estimates has 
resulted in a class of designs known as ‘efficient designs’ where designs that produce 
smaller asymptotic standard errors are thought of as being more efficient.  
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In order to calculate the AVC matrix for a SC design, the analyst requires a priori 
knowledge of the utility functions for that design. This is because the values of the 
AVC matrix are directly dependent upon both the attribute levels and the choice 
probabilities of the alternatives contained within each of the design’s choice 
situations. The choice probabilities for a given design are in turn a function of the 
attribute levels of the alternatives as well as the parameter weights associated with 
each of these attributes. As such, the parameter values play a key role in determining 
the level of efficiency of a design. Unfortunately, the exact parameter values are 
unlikely to be known at the design construction phase, and as such, the researcher 
may have to make certain assumptions as to what values (termed priors) these will be 
in order to generate an efficient design.  
 
Three different approaches have been used in the past regarding the parameter priors 
assumed in generating efficient SC experiments. In the first approach, researchers 
have made the strong assumption that all parameter priors for the design are 
simultaneously equal to zero (e.g., Burgess and Street 2003; Huber and Zwerina 1996; 
Street and Burgess 2004; Street et al. 2001). Street et al. make this assumption for 
analytical reasons, enabling them to locate truly optimal (most efficient) designs. This 
optimality will only exist under the assumption of zero parameter estimates, which is 
unlikely to hold in reality. A second approach that has sometimes been used is to 
assume that the parameter priors are non-zero and known with certainty (e.g., 
Carlsson and Martinsson 2003; Huber and Zwerina 1996; Rose and Bliemer 2005). In 
such an approach, a single fixed prior is assumed for each attribute. Whilst the 
assumption of perfect certainty is a strong one, the design generation process is such 
that researchers are able to test its impact on a design’s efficiency assuming 
misspecification of the priors. Sándor and Wedel (2001) introduced a third approach 
by relaxing the assumption of perfect a priori knowledge of the parameter priors 
through adopting a Bayesian approach to the design generation process. Rather than 
assume a single fixed prior for each attribute, the efficiency of a design is now 
determined over a number of draws taken from prior parameter distributions assumed 
by the researcher. Different distributions may be associated with different population 
moments representing different levels of uncertainty with regards to the true 
parameter values1.  
 
The Bayesian approach to constructing efficient SC experiments requires that the 
efficiency of a design be evaluated over numerous different draws taken from the 
prior parameter distributions assumed in generating the design. The Bayesian 
efficiency of a design is then calculated as the expected value of whatever measure of 
efficiency is assumed over all the draws taken. The Bayesian approach therefore 
necessitates the use of simulation methods to approximate the expectations for 
differing designs. In this paper we will focus on the evaluation of the Bayesian 
efficiency of a given design and will not discuss algorithms for generating these 
designs. Recently, Kessels et al. (in press) have proposed a generation method using 
so-called minimum potential designs, which may be an interesting direction for 
further research. 
 

                                                 
1 For example, Sándor and Wedel (2001, 2002, 2005) and Kessels et al. (2006) assume normal 
distributions with different means and standard deviations. 
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For computing the Bayesian efficiency, a number of different simulation procedures 
are available to researchers, with the simplest being the use of pseudo random draws. 
In using pseudo random draws (often referred to as pseudo Monte Carlo, or PMC, 
draws), points from a distribution are randomly selected. Whilst simple to implement 
in practice, results obtained using PMC draws are susceptible to being specific to the 
particular draws taken from whatever distribution is assumed, with different sets of 
random draws likely to produce different coverage over the distribution space, 
possibly leading to widely different results when calculating the expectations. This 
risk is especially high with the use of a small number of draws. The precision of 
simulation processes may potentially be improved by using a more systematic 
approach in selecting points when sampling from a distribution. Such techniques are 
commonly referred to within the literature as quasi random Monte Carlo draws (see, 
for example, Bhat 2001, 2003; Hess et al. 2005; Sándor and Train 2003). The 
potential to provide better coverage of the distribution space for each prior parameter 
distribution should theoretically result in a lower approximation error in calculating 
the simulated choice probabilities for a given design. This in turn will result in greater 
precision in generating the design’s AVC matrix, resulting in greater precision in 
terms of the Bayesian efficiency measure of that design. Other methods, such as 
Gaussian quadrature, also aim to minimize the approximation error when calculating 
the Bayesian efficiency. 
 
Independent of the type of draws used, the researcher must decide on the number of 
draws to use. If too few draws are taken, it is probable that the resulting Bayesian 
measure of efficiency will be far from the true efficiency for a given design. If too 
many draws are used, the computation time in generating an efficient design will be 
unnecessarily high. The issue therefore becomes one of how many draws should be 
used before the Bayesian measure of efficiency will converge to the true efficiency 
level for a given design, or alternatively, fall within some acceptable error range 
around the true value. Unfortunately, the answer to this question will likely depend on 
the dimensions of the design itself, the number of Bayesian priors assumed, the 
population of the prior distributions, the type of econometric model used, as well as 
the type of draws employed. 
 
The purpose of this paper is to examine over a range of draws, the performance of 
various forms of draws in approximating the true level of efficiency for a number of 
different designs. This paper compares the performance of the PMC method to three 
different types of quasi random Monte Carlo draws, namely Halton, Sobol, and 
Modified Latin Hypercube Sampling (MLHS) draws, and one Gaussian quadrature 
method, namely Gauss-Hermite approximation. In making our comparisons, we vary 
not only the number of draws but also the dimensions of the designs. In doing so, we 
are able to make recommendations as to what are the best types of draws to use as 
well as how many to use when generating designs of different dimensions. 
 
The remainder of the paper is as follows. In the following section, we define 
efficiency as related to SC experimental designs. Section 3 further details Bayesian 
efficiency for SC experiments and discusses each of the approximation methods in 
more detail. Section 4 provides case studies in which we compare the performance of 
the types of draws varying the number of draws taken over a range of different 
experimental designs. Section 5 provides a discussion and conclusion to the paper. 
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2. Efficiency of Experimental Designs for Discrete Choice Models 
 
Historically, efficiency when dealing with SC studies has generally been related to 
how statistically reliable the parameters in a discrete choice model will likely be when 
estimated using data obtained from a SC experiment. Reliability of the parameters has 
been defined in terms of the asymptotic standard errors of the model to be estimated 
where improvements in reliability suggest a reduction in the asymptotic standard 
errors and hence an increase in the asymptotic t-ratios of the model estimates. As 
such, the use of more efficient designs leads to an expectation that a lower number of 
respondents will be required to produce statistically significant parameter estimates 
for a given SC study when compared to less efficient designs.  
 
Measurement of the (in)efficiency of a SC experimental design is typically expressed 
in terms of some form of error (e.g., D-error, A-error) derived from the AVC matrix 
for the design. Both the dimensions of the AVC matrix of a design and the values that 
populate it will influence the (in)efficiency of the design. In turn, the AVC of a design 
will depend on the following: 
 
(a) Econometric form of the discrete choice model estimated 

Different discrete choice models (e.g., multinomial logit (MNL), nested logit 
(NL), mixed logit (ML) models) lead to different AVC matrices; 

(b) Experimental design 
Different choice situations (i.e., different combinations of attribute levels in each 
choice situation) lead to different AVC matrices; and 

(c) Prior parameter values 
Different assumptions made regarding the true values of the parameter estimates 
result in different AVC matrices. 
 

Let the AVC matrix be denoted by ( | ),XβΩ  where β  represents the prior parameter 
values and X the attribute levels in the underlying experimental design. This matrix 
can be determined (analytically or by simulation) for various econometric 
representations of the discrete choice models. The D-error, describing the inefficiency 
of a design, can be expressed as 
 

( )1/
( | ) det ( | ) ,

K
f X Xβ β= Ω  (1)

 
where K is the number of parameters2. The lower this D-error, the higher the overall 
efficiency of the design will be. Hence, given the prior parameters and the discrete 
choice model, the aim in creating the experimental design is to find attribute levels X 
such that this D-error is as low as possible. The design with the lowest D-error is 
termed D-optimal. Other (in)efficiency measures exist which may be substituted for 
D-error. For example, some researchers prefer A-error, where equation (1) now 
becomes (replacing the determinant by the trace of the matrix and normalizing it by 
dividing by the number of parameters): 
 

                                                 
2 In Rose and Bliemer (2005), it is suggested that the rows and columns for the parameters representing 
constants in the model should be removed from the AVC matrix when computing the D-error, as they 
may dominate the D-error while having no clear efficiency meaning in a stated choice experiment. 
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( )tr ( | )
( | ) .

X
f X

K

β
β

Ω
=  (2)

 
Up to this point, it has been assumed that the prior parameter values are fixed and 
known. As mentioned before, the parameters are unknowns to be estimated in the 
model using the data collected from some underlying SC experiment. The literature 
has suggested some starting points for identifying prior parameter values that may be 
useful in constructing efficient SC experiments such as obtaining them from previous 
studies, focus groups, pilot studies, managers, etc. (Sándor and Wedel 2001). 
Nevertheless, priors obtained using these methods will likely exhibit a certain degree 
of uncertainty. Unfortunately, an efficient experimental design is only efficient for the 
specified prior parameter values assumed; hence, if the priors are incorrectly 
specified, the experimental design may become less efficient. In order to generate a 
more robust experimental design incorporating uncertainty in the parameter priors 
assumed (i.e., the design generation process does not solely depend on fixed priors), a 
Bayesian approach has been proposed within the literature (Sándor and Wedel 2001). 
Using this approach, (a subset of) prior parameters are assumed to have random 
distribution(s) rather than fixed values. Such designs are known as Bayesian efficient 
designs if the expected efficiency is high (or the associated expected error low). Let 

( | )φ β θ  denote the multivariate probability density function of the priors ,β  where θ  
are the corresponding parameters of this distribution (e.g., if β  follows a normal 
distribution, then θ  represents the means and standard deviations of this multivariate 
normal distribution). The Bayesian D-error (or A-error) can then be written as the 
expected D-error (A-error), 
 

( ) ( | ) ( | ) .E f f X d
β

β φ β θ β= ∫  (3)
 
In the remainder of the paper, we will use the D-error criterion for design efficiency. 
Minimizing the Bayesian D-error (denoted Db-error) will yield a Db-optimal 
experimental design. Unfortunately, computation of the above integral is complex as 
it cannot be calculated analytically. Therefore, it has to be approximated, typically by 
simulation. Approximation of this integral can be time consuming. As in general 
millions of experimental designs may need to be evaluated when searching for a 
(Bayesian) efficient design, computation time is a real issue. For realistically sized 
experimental designs with many randomly distributed parameters, this may not be 
feasible if the Db-error cannot be computed quickly. In the next section, different 
approximations are outlined and discussed. We show that much better (and faster) 
approximation methods are available than those currently used by most researchers.  
 
3. Approximation of Bayesian Efficiency 
 
In this section we will describe several different methods for approximating the Db-
error as stated in equation (3). Three main types of approximations are considered, 
namely (a) pseudo-random Monte Carlo (PMC) simulation, (b) quasi-random Monte 
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Carlo simulation, and (c) Gaussian quadrature. The most common method is PMC 
simulation, which is currently used by all but few researchers3.  
 
Independent of the method, the principles in generating efficient SC experiments 
remain the same: 

1) first, R values are drawn from the random distribution of the prior parameter 
values; 

2) then, for each of these parameter values, the D-error is evaluated; and 
3) an average D-error is computed over these values (giving the Db-error).  

 
The PMC and quasi-random MC methods all take a simple (unweighted) average of 
the different Db-errors, but differ in the way they take the draws from the random 
distribution. In the PMC method, these draws are completely random, whereas in the 
quasi-random MC methods they are intelligent and structured, and in most cases 
deterministic. The Gaussian quadrature methods construct intelligent and 
deterministic draws as well, but also determine specific weights for each draw and 
compute a weighted average.  
 
Rather than drawing from a multivariate distribution, all methods generally use 
independent draws from univariate distributions for each random prior kβ , under the 
assumption that all parameters are independent.4 Under this assumption, equation (3) 
can be written as 
 

1
1

1

( ) ( | ) ( | ) ( | ) ( | ) .
K

K

k k k K
k

E f f X d f X d d
β β β

β φ β θ β β φ β θ β β
=

= = ∏∫ ∫ ∫  (4)

 
Equation (4) also allows priors to have different forms of random distributions, such 
as mixing priors with a normal and a uniform distribution. The distribution parameters 

kθ  will determine the mean prior value and the standard deviation (uncertainty) of 
that prior. Hence, one can include uncertainty for each prior parameter by specifying 
the corresponding random distribution.  
 
Below, each of the approximation methods will be outlined. 
 
3.1 Pseudo-Random Monte Carlo (PMC) Simulation 
 
In PMC simulation, for each of the K parameters, R independent draws are taken from 
their given prior distributions. For each of these R draws of the prior parameters, the 
Db-error is computed. Finally, the average is taken of all computed D-errors. Let 

( ) ( ) ( )
1[ , , ]r r r

Kβ β β= …  denote draw r, 1, , ,r R= …  from the corresponding prior random 

distributions described by the probability density functions ( | ).k k kφ β θ  The 
approximation of the Db-error can be formalized as 
 
                                                 
3 Sándor and Wedel (2002, 2005) adopt a quasi random Monte Carlo approach; orthogonal array-based 
Latin hypercube sampling, and randomly shifted good lattice points, respectively. Yu et al. (in press) 
used Halton draws. All other papers reviewed appear to use PMC methods. 
4 Although it is possible to draw from the multivariate distribution and allow for dependencies, e.g. by 
using the Cholesky decomposition for the multivariate normal distribution. 
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( )

1

1( ) ( | ).
R

r

r

E f f X
R

β
=

≈ ∑  (5)

 
The total number of D-error evaluations is equal to R. In order to determine the draws 

( )r
kβ , we let the computer generate for each parameter R pseudo-random numbers ( )r

ku  
which are uniformly distributed on the interval [0,1], and then compute the draws by  
 

( )( ) 1 ( ) ,r r
k k kuβ −= Φ  (6)

 
where ( | )k k kβ θΦ  denotes the cumulative distribution function corresponding to the 

probability density function ( | ).k k kφ β θ  
 
3.2 Quasi-Random Monte Carlo Simulation 
 
Randomness of the draws is not a prerequisite in the approximation of the integral in 
equation (3); rather, it has been argued in the literature (see e.g., Winiarski, 2003) that 
(a) correlation between draws for different dimensions has a positive effect on the 
approximation, and (b) one should aim for the draws to be distributed as uniformly as 
possible over the area of integration. Hence, the draws can be selected 
deterministically so as to minimize the integration error, which is exactly what quasi-
random MC simulation methods aim to do. For a more detailed discussion on these 
methods we refer to Niederreiter (1992) and Fang and Wang (1994). Quasi-random 
MC simulation methods for approximating the Db-error are almost identical to the 
PMC simulation method, except that they use deterministic draws for ( )r

kβ  (as 
opposed to purely random draws). In fact, equations (5) and (6) are still valid, but 
instead of generating pseudo-random numbers ( ) (0,1),r

ku U∼  these numbers ( )r
ku  are 

taken from different intelligent quasi-random sequences, also called low discrepancy 
sequences. Using these quasi-random sequences, faster convergence to the true value 
of the numerical integration can be achieved. PMC simulation has a slow rate of 
convergence of ( )1/ ,O R  while quasi-random MC simulation typically has a rate of 

convergence as good as ( )1/ .O R 5  
 
In this paper, we examine three different sequences. MLHS aims to distribute the 
draws uniformly, while maintaining randomness between different dimensions. 
Halton and Sobol sequences provide a certain degree of uniformity in the distribution 
of the draws, but also introduce correlations between the sequences in different 
dimensions. We now look at these three approaches in turn. 
 
 
 

                                                 
5 The theoretical lowest rate of convergence for quasi-random MC simulation is ( )(ln ) / ,KO R R  which 
depends on the number of dimensions, K, such that in theory quasi-random MC simulation can become 
quite slow for higher dimensions. The fastest theoretical rate of convergence is ( )1/ .O R  In practice, 
the rate of convergence seems to be much closer to this faster rate, even for higher dimensions.  
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3.2.1 Modified Latin Hypercube Sampling (MLHS) 
 
The MLHS method (Hess et al. 2005) produces multi-dimensional sequences by 
combining randomly shuffled versions of one-dimensional sequences made up of 
uniformly spaced points. Formally, the individual one-dimensional sequences of 
length R are constructed as: 
 

( ) 1 , 1, , ,r
k k

ru r R
R

ξ−= + = …  (7)

 
where kξ  is a random number drawn between 0 and 1/ ,R  and where a different 
random draw is used in each of the K different dimensions. In the resulting sequence, 
the distances between adjacent draws are all equal to 1/ ,R  satisfying the condition of 
equal spacing. Multi-dimensional sequences are constructed by simple combination of 
randomly shuffled one-dimensional sequences, where the shuffling disrupts the 
correlation between individual dimensions. 
 
3.2.2 Halton Sequences 
 
Halton sequences (Halton 1960) are constructed according to a deterministic method 
based on the use of prime numbers, dividing the 0-1 space into kp  segments (with kp  
giving the prime used as the base for parameter k), and by systematically filling in the 
empty spaces, using cycles of length kp  that place one draw in each segment. 
Formally, the rth element in the Halton sequence based on prime kp  is obtained by 
taking the radical inverse of integer r in base kp  by reflection through the radical 
point, such that  
 

( )

0
,

L
r

kr b p
=

=∑  (8)

 
where ( )0 1r

kb p≤ ≤ −  determines the L digits used in base pk in order to represent r 
(i.e., solving equation (8)), and where the range for L is determined by 1.L L

k kp r p +≤ <  
The draw is then obtained as:6 
 

( ) ( ) 1

0
.

L
r r

k ku b p− −

=

=∑  (9)

 
To allow for the computation of a simulation error, the deterministic Halton sequence 
can be randomized in several ways. Here, we use the approach discussed by amongst 
others Tuffin (1996), where the modified draws are obtained by adding a random 
draw kξ  to the individual draws in dimension k, and by subtracting one from any 

                                                 
6 As an example, consider the 5th draw using 2 (the first prime number) as base. Then r = 5 can be 
expressed using three digits as 101 in base 2, because 0 1 25 1 2 0 2 1 2 .= ⋅ + ⋅ + ⋅  Using Equation (9) the 5th 
draw is then given by 0 1 1 1 2 11 2 0 2 1 2 0.5 0 0.125 0.625.− − − − − −⋅ + ⋅ + ⋅ = + + =  
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draws that now fall outside the 0-1 interval. A different random draw is used for each 
dimension.  
 
3.2.3 Sobol Sequences 
 
The main problem with Halton sequences is the fact that the individual sequences are 
highly correlated, leading to problems with poor multi-dimensional coverage in higher 
dimensions. Aside from various transformations of the standard Halton sequence and 
other advanced methods (cf. Hess et al. 2005), one approach that has received 
exposure in the area of discrete choice modeling is the Sobol sequence, used amongst 
others by Garrido (2003). Like Halton sequences, Sobol sequences are based on Van 
der Corput sequences (cf. Niederreiter 1992). However, rather than in a K-
dimensional problem using the first K primes (as in Halton sequences), Sobol 
sequences are based on prime 2 in each dimension, where different permutations are 
used to ensure that the resulting K-dimensional sequence obtains good coverage. We 
will use a randomized version of the Sobol sequences equivalent to the randomization 
in the Halton sequences by adding a random component to each of the draws in each 
dimension.  
 
3.3 Gaussian quadrature 
 
Polynomial cubature methods aim to approximate integrals using orthogonal 
polynomials. Gaussian quadrature is the best-known method, see e.g. Stoer and 
Bulirsch (2002). In case of a single variable, the use of R draws yields an exact 
approximation if the integrand is a polynomial up to degree (2R-1). General functions 
can be approximated by (high order) polynomials, hence the higher the degree 
(yielding more draws), the more accurate the approximation will be.  
 
The principle of Gaussian quadrature is that not only the draws ( )r

kβ  for the priors are 
selected intelligently, but also that weights ( )r

kw  are associated with each draw. The 
approximation of the Db-error using Gaussian quadrature can be formalized as 
 

1
1 1

1

( ) ( ) ( ) ( )
1 1

1 1

( ) ( , , | ).
K

K K

K

R R
r r r r

K K
r r

E f w w f Xβ β
= =

≈∑ ∑ …  (10)

 
The draws for the priors and the associated weights depend on the random 
distribution. Different draws ( )r

kβ  for each individual parameter are called abscissas. 

The draws for the whole vector ( )rβ  are given by a rectangular grid of these 

abscissas.7 In the case where ( , ),k k kNβ µ σ∼  the abscissas and weights can be 

computed using so-called Hermite polynomials. If ( , ),k k kU a bβ ∼  the abscissas and 
weights can be computed using so-called Legendre polynomials. The abscissas and 

                                                 
7 For example, suppose that the first parameter has two abscissas and the second parameter has three. 
Let (1)

1β  and (2)
1β  denote the abscissas for the first parameter and (1)

2 ,β  (2)
2β  and (3)

2β  the abscissas of 

the second parameter. Then the draws for β  will be (1) (1)
1 2( , ),β β  (1) (2)

1 2( , ),β β  (1) (3)
1 2( , ),β β  (2) (1)

1 2( , ),β β  
(2) (2)

1 2( , ),β β  and (2) (3)
1 2( , ),β β  hence 6 draws in total. 
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weights for both situations are listed in Table 1 for up to 10 abscissas for each 
individual parameter. The weights always sum up to one, i.e., ( )

1
1R r

kr
w

=
=∑  for each k. 

For each of the K parameters, the number of abscissas used, ,kR  can be different.  
 
Table 1: Abscissas and weights for Gauss-Hermite and Gauss-Legendre integration 

 Normal distribution ( , )k kN µ σ
( ) ( ) 2r r
k k kxβ µ σ= +  

 Uniform distribution ( , )k kU a b  
( ) ( )1 1

2 2( ) ( )r r
k k k k ka b b a xβ = + + −  

kR  ( )rx  ( )r
kw   ( )rx  ( )r

kw  
1 0.0000000000 1.0000000000  0.0000000000 1.0000000000
2 ±0.7071067812 0.5000000000  ±0.5773502692 0.5000000000
3 0.0000000000 

±1.2247448714 
0.6666666667
0.1666666667

 0.0000000000 
±0.7745966700 

0.4444444444
0.2777777778

4 ±1.6506801239 
±0.5246476233 

0.0458758548
0.4541241452

 ±0.3399810400 
±0.8611363100 

0.3260725750
0.1739274250

5 0.0000000000 
±2.0201828705 
±0.9585724646 

0.5333333333
0.0112574113
0.2220759220

 0.0000000000 
±0.5384693100 
±0.9061798500 

0.2844444450
0.2393143350
0.1184634450

6 ±2.3506049737 
±1.3358490740 
±0.4360774119 

0.0025557844
0.0886157460
0.4088284696

 ±0.2386191800 
±0.6612093900 
±0.9324695100 

0.2339569650
0.1803807850
0.0856622450

7 0.0000000000 
±2.6519613568 
±1.6735516288 
±0.8162878829 

0.4571428571
0.0005482689
0.0307571240
0.2401231786

 0.0000000000 
±0.4058451500 
±0.7415311900 
±0.9491079100 

0.2089795900
0.1909150250
0.1398526950
0.0647424850

8 ±2.9306374203 
±1.9816567567 
±1.1571937125 
±0.3811869902 

0.0001126145
0.0096352201
0.1172399077
0.3730122577

 ±0.1834346400 
±0.5255324100 
±0.7966664800 
±0.9602898600 

0.1813418900
0.1568533250
0.1111905150
0.0506142700

9 0.0000000000 
±3.1909932018 
±2.2665805845 
±1.4685532892 
±0.7235510188 

0.4063492063
0.0000223458
0.0027891413
0.0499164068
0.2440975029

 0.0000000000 
±0.3242534234 
±0.6133714327 
±0.8360311073 
±0.9681602395 

0.1651196775
0.1561735385
0.1303053482
0.0903240803
0.0406371942

10 ±3.4361591188 
±2.5327316742 
±1.7566836493 
±1.0366108298 
±0.3429013272 

0.0000043107
0.0007580709
0.0191115805
0.1354837030
0.3446423349

 ±0.1488743400 
±0.4333953900 
±0.6794095700 
±0.8650633700 
±0.9739065300 

0.1477621100
0.1346333600
0.1095431800
0.0747256750
0.0333356700

 
Note that the total number of D-error evaluations in Gaussian quadrature is equal to 

1
,K

kk
R R

=
= ∏  that is, the total number of all combinations of abscissas in all 

dimensions. This number of D-error evaluations grows exponentially if the number of 
random priors increases.8 Therefore, Gaussian quadrature is typically not suitable for 
                                                 
8 The minimum number of abscissas is typically two, such that with 10 random parameters, the 
minimum number of draws possible using Gaussian quadrature is 210 = 1,024. Using three abscissas per 
random parameter increases this number to 310 = 59,049. 
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integrals of high dimensionality, although it is extremely powerful for low-
dimensional problems. 
 
4. Case studies 
 
4.1 Model and experimental design description 
 
We consider six different discrete choice models with the number of parameters 
ranging from two to 14, see Table 2, where the number of utility functions 
(alternatives) is either two or three. They are all of the multinomial logit (MNL) type, 
although a similar analysis could be performed for nested logit (NL) and mixed logit 
(ML) by replacing the AVC matrix, see Appendix A. The levels of the attributes are 
given in Table 3, where some of the attributes are dummy-coded. The constants in the 
model are assumed to have fixed priors (the constants are essentially design 
parameters in a stated choice experiment), where the uncertainty about the other 
parameters translates into random prior parameter values. In our case studies, each 
prior parameter kβ  is assumed to be normally distributed with a mean kµ  and a 
standard deviation ,kσ  
 

( , ).k k kNβ µ σ∼  (11)
 

Table 2: Model specifications 

Model Systematic utility functions Comments 
M1 1 1 11 2 12

2 1 21 2 22

V x x
V x x

β β
β β

= +
= +

 
0 constants 
2 generic par. 
0 alt.-spec. par. 

M2 1 01 1 11 2 12 3 13

2 1 21 2 22 4 23

V x x x
V x x x

β β β β
β β β

= + + +
= + +

 
1 constant 
2 generic par.  
2 alt.-spec. par. 

M3 1 01 1 11 2 12 3 13

2 02 1 21 2 22 4 23

3 1 31 2 32 5 33 6 34

V x x x
V x x x
V x x x x

β β β β
β β β β

β β β β

= + + +
= + + +
= + + +

 

2 constants 
2 generic par. 
4 alt.-spec. par. 

M4 1 01 1 11 2 12 3 13 4 14
(1)

2 02 1 21 2 22 5 23 6 24

3 1 31 2 32 7 33 8 34

V x x x x

V x x x x
V x x x x

β β β β β
β β β β β

β β β β

= + + + +

= + + + +
= + + +

 

2 constants 
2 generic par. 
6 alt.-spec. par. 
(1 for dummy) 

M5 (1) (2)
1 01 1 11 2 12 3 14 4 15 5 15

(1) (2) (1)
2 02 1 21 2 22 6 25 7 25 8 26

(1)
3 1 31 2 32 9 33 10 35

V x x x x x

V x x x x x

V x x x x

β β β β β β
β β β β β β

β β β β

= + + + + +

= + + + + +

= + + +

 

2 constants 
2 generic par. 
8 alt.-spec. par. 
(6 for dummies) 

M6 (1) (2)
1 01 1 11 2 16 3 12 4 14 5 15 6 15

(1) (2) (1)
2 02 1 21 2 27 3 22 7 25 8 25 9 26 10 28

(1)
3 1 31 2 36 3 32 11 33 12 35

V x x x x x x

V x x x x x x x

V x x x x x

β β β β β β β
β β β β β β β β

β β β β β

= + + + + + +

= + + + + + + +

= + + + +

 

2 constants 
3 generic par. 
9 alt.-spec. par. 
(6 for dummies) 
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Table 3: Attribute levels 

Attribute Number of levels Levels 
01,x 02x  1 1 

11,x 21,x 31x  3 10, 20, 30 

12 ,x 22 ,x 32x  3 1, 3, 5 

13,x 23x  3 2, 4, 6 

14x  3 4, 7, 10 

15,x 25x  3 dummy-coded 

16x  3 5, 10, 15 

24,x 26 ,x 35,x  2 dummy-coded 

28x  3 1, 2, 3 

33x  3 3, 5, 7 

34x  4 2, 4, 6, 8 
 
 

Table 4: Prior parameter mean values 

 model 01β  02β  1β  2β  3β  4β  5β  6β  7β  8β  9β  10β  11β  12β  

 M1 - - -0.09 -0.3 - - - - - - - - - - 
 M2 1.2 - -0.09 -0.3 0.5 0.8 - - - - - - - - 
 M3 3.0 1.4 -0.09 -0.3 0.5 0.9 0.3 0.7 - - - - - - 
 M4 -1.2 0.8 -0.09 -0.3 0.5 0.6 0.9 1.2 0.3 0.7 - - - - 
 M5 -3.0 -1.5 -0.09 -0.3 0.9 0.6 0.9 0.3 0.8 1.2 0.3 0.8 - - 
 M6 -3.3 1.0 -0.09 -0.06 -0.3 0.6 0.5 0.9 0.3 0.8 1.2 -0.3 0.3 0.8 
 
 
The means kµ  are listed in Table 4 while the standard deviations are taken as a 
function of the mean, 
  

, 0.k kσ α µ α= ≥  (12)
 
We will consider two situations, namely a small uncertainty about the priors using 

0.1α =  and a large uncertainty about the priors using 0.3.α =  
 
The designs (D1 through D6 for models M1 through M6) used for assessing the Db-
errors with different approximations are listed in Appendix B. In the next subsection 
the Db-errors calculated using the different approximation methods are compared for 
each model/design. 
 
4.2 Comparison of approximation methods 
 
For each design we calculate the Db-error using the five different approximations: 
PMC draws, MLHS, Halton sequences, Sobol sequences, and Gauss-Hermite. For 
each design, all approximation outcomes are compared to the true value of the Db-
error, obtained by using a very large number of draws (all methods converged to the 
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same true Db-error in the limit). The Db-errors are computed for different numbers of 
draws, from 20 draws up to 10,000–40,000 draws (depending on the model/design). 
The deviation from the true Db-error is computed as a percentage. 
 
Rather than computing a single percentage for the deviation from the true Db-error for 
a given number of draws in each approximation, 50 deviations are computed by 
changing the draws 50 times randomly, which is trivial for PMC draws and MLHS 
and is described for Halton sequences and Sobol sequences in Section 3. Using these 
50 values, we determine the 95 percent confidence intervals for the Db-errors. Since 
Gaussian quadrature is completely deterministic, these draws cannot be randomized; 
hence, there is no need to compute a confidence interval in this case. In Gaussian 
quadrature, the number of draws cannot be chosen arbitrarily, as the number of draws 
should be a multiple of the number of abscissas used. We increase the number of 
draws each time by increasing the number of abscissas for a single parameter prior. 
Note that we do not require that each individual parameter prior has the same number 
of abscissas. Instead, we use different numbers of abscissas for each prior, depending 
on the impact this prior has on the utility. That is, if a prior has a large effect on the 
utility (i.e., if both the prior parameter value and the attribute levels are high) and has 
a large standard deviation, then we require more information on this prior in order to 
calculate the Db-error more accurately. The priors are ranked in decreasing order of 
the mean value multiplied with the corresponding average attribute level. Starting 
with a single abscissa for each prior, the prior with the highest order will face an 
increase in the number of abscissas first, then the second in order, etc., until all priors 
have two abscissas each. Then the procedure starts all over again by increasing the 
number of abscissas for each prior in the same order. The total number of draws used 
in the Gauss-Hermite approximation is equal to the product of all prior abscissas, as 
mentioned in Section 3.3. 
 
Figure 1 depicts confidence intervals for the deviations from the true Db-errors for the 
different approximation methods for design D3 (see Appendix B) using different 
numbers of draws R and large standard deviations of the priors ( 0.3).α =  Note that 
this design corresponds to model M3 having six parameters with prior distributions 
(the constants are assumed to have fixed parameter priors). The figures for the other 
designs show very similar results and as such are not reproduced here. A summary of 
the confidence intervals for all designs with small and large standard errors are given 
in Table 5 and Table 6, respectively. From Figure 1, we can conclude that using PMC 
draws yields the widest confidence interval (roughly -4 to +4 percent using 1,000 
draws). Halton and Sobol sequences perform quite well, while MLHS is mainly 
performing better than using PMC draws for small R and but less well with higher R. 
The single line for the Gauss-Hermite approximation in the figure can be regarded as 
the 100 percent confidence interval. Clearly, the Gauss-Hermite approximation 
outperforms all other methods for any given number of draws.  
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Table 5: Confidence intervals for true Db-error (in %), 0.1α =  
  PMC MLHS Halton Sobol  Gauss
design R Low high low high low high low high R - 
D1 40 -1.59 1.55 -0.44 0.43 -0.64 0.57 -0.57 0.56 36 0.00 
 100 -1.04 0.94 -0.18 0.18 -0.29 0.24 -0.27 0.23 100 0.00 
 200 -0.73 0.73 -0.12 0.11 -0.15 0.10 -0.17 0.12 196 0.00 
 500 -0.39 0.39 -0.04 0.06 -0.07 0.04 -0.07 0.05 506 0.00 
 1000 -0.26 0.31 -0.02 0.02 -0.04 0.03 -0.04 0.03 992 0.00 
 2000 -0.18 0.22 -0.02 0.02 -0.02 0.01 -0.02 0.02 1980 0.00 
D2 40 -1.50 1.59 -0.85 0.98 -0.79 0.83 -0.81 0.83 36 0.00 
 100 -0.79 0.91 -0.40 0.48 -0.42 0.36 -0.44 0.41 108 0.00 
 200 -0.54 0.67 -0.35 0.36 -0.25 0.23 -0.32 0.32 192 0.00 
 500 -0.38 0.41 -0.22 0.23 -0.14 0.15 -0.16 0.15 500 0.00 
 1000 -0.26 0.27 -0.15 0.13 -0.08 0.08 -0.08 0.06 1080 0.00 
 2000 -0.16 0.17 -0.12 0.11 -0.04 0.04 -0.04 0.04 2058 0.00 
 5000 -0.14 0.14 -0.06 0.08 -0.02 0.02 -0.02 0.03 5184 0.00 
 10000 -0.08 0.10 -0.06 0.05 -0.02 0.02 -0.02 0.02 10000 0.00 
D3 40 -1.67 1.59 -0.98 1.01 -1.05 1.24 -1.06 0.89 32 -1.86 
 100 -1.06 0.93 -0.48 0.60 -0.56 0.57 -0.55 0.48 96 -0.01 
 200 -0.68 0.69 -0.40 0.36 -0.32 0.33 -0.38 0.34 216 -0.01 
 500 -0.43 0.41 -0.26 0.25 -0.17 0.18 -0.17 0.14 486 -0.01 
 1000 -0.30 0.28 -0.18 0.19 -0.10 0.11 -0.11 0.10 972 0.00 
 2000 -0.22 0.21 -0.16 0.13 -0.05 0.07 -0.07 0.07 1728 0.00 
 5000 -0.14 0.11 -0.09 0.08 -0.03 0.03 -0.03 0.03 5120 0.00 
 10000 -0.11 0.10 -0.05 0.07 -0.01 0.02 -0.02 0.02 10000 0.00 
D4 40 -2.13 2.59 -1.57 1.77 -1.47 1.53 -1.95 1.46 32 -2.42 
 100 -1.20 1.32 -0.83 0.80 -0.92 1.07 -0.91 0.77 128 -1.98 
 200 -0.79 0.89 -0.76 0.71 -0.52 0.60 -0.52 0.46 256 0.00 
 500 -0.64 0.62 -0.47 0.44 -0.24 0.31 -0.26 0.23 576 0.00 
 1000 -0.41 0.36 -0.30 0.27 -0.14 0.20 -0.14 0.15 864 -0.01 
 2000 -0.32 0.32 -0.21 0.20 -0.10 0.12 -0.12 0.11 1944 -0.01 
 5000 -0.21 0.15 -0.14 0.12 -0.05 0.05 -0.05 0.05 4374 0.00 
 10000 -0.16 0.12 -0.09 0.09 -0.03 0.03 -0.03 0.03 11664 0.00 
 20000 -0.11 0.09 -0.04 0.06 -0.02 0.02 -0.02 0.02 20736 0.00 
D5 40 -1.96 2.31 -0.77 0.63 -1.93 1.62 -1.29 1.14 32 -0.48 
 100 -1.44 1.56 -0.46 0.44 -0.85 0.82 -0.56 0.45 128 -0.13 
 200 -1.30 1.17 -0.27 0.25 -0.49 0.43 -0.31 0.27 256 -0.05 
 500 -0.79 0.67 -0.13 0.12 -0.21 0.22 -0.15 0.09 512 -0.03 
 1000 -0.59 0.46 -0.09 0.09 -0.11 0.12 -0.09 0.08 1024 -0.03 
 2000 -0.39 0.38 -0.08 0.07 -0.07 0.08 -0.03 0.03 2304 0.01 
 5000 -0.22 0.22 -0.03 0.04 -0.04 0.04 -0.02 0.02 5184 0.00 
 10000 -0.20 0.16 -0.03 0.03 -0.02 0.02 -0.01 0.01 11664 0.00 
 20000 -0.16 0.15 -0.02 0.02 -0.01 0.01 -0.01 0.01 17496 0.00 
 40000 -0.11 0.10 -0.01 0.01 -0.01 0.01 -0.01 0.01 39366 0.00 
D6 40 -1.15 1.11 -0.33 0.39 -0.94 0.90 -0.60 0.57 32 -0.29 
 100 -0.68 0.82 -0.21 0.22 -0.51 0.44 -0.36 0.29 128 -0.18 
 200 -0.58 0.64 -0.14 0.14 -0.35 0.27 -0.23 0.23 256 -0.14 
 500 -0.31 0.32 -0.10 0.10 -0.19 0.17 -0.06 0.08 512 -0.02 
 1000 -0.27 0.18 -0.07 0.06 -0.06 0.05 -0.05 0.06 1024 -0.01 
 2000 -0.20 0.17 -0.04 0.04 -0.03 0.03 -0.05 0.06 2048 0.01 
 5000 -0.13 0.09 -0.03 0.04 -0.02 0.01 -0.02 0.02 4096 0.00 
 10000 -0.07 0.07 -0.02 0.02 -0.01 0.01 -0.01 0.01 9216 0.00 
 20000 -0.04 0.05 -0.02 0.02 -0.01 0.01 -0.01 0.01 20736 0.00 
 40000 -0.03 0.04 -0.01 0.01 -0.00 0.00 -0.00 0.01 46656 0.00 
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Table 6: Confidence intervals for true Db-error (in %), 0.3α =  
  PMC MLHS Halton Sobol  Gauss
design R low high low high low high low high R - 
D1 40 -5.04 5.14 -1.16 1.55 -1.91 1.77 -1.92 1.91 36 0.00 
 100 -3.43 3.22 -0.76 0.74 -0.88 0.73 -0.88 0.71 100 0.00 
 200 -2.27 2.31 -0.44 0.45 -0.50 0.36 -0.55 0.43 196 0.00 
 500 -1.21 1.22 -0.26 0.25 -0.23 0.15 -0.24 0.18 506 0.00 
 1000 -0.86 1.02 -0.18 0.17 -0.14 0.10 -0.12 0.11 992 0.00 
 2000 -0.58 0.73 -0.09 0.09 -0.06 0.06 -0.07 0.06 1980 0.00 
D2 40 -16.23 17.39 -9.64 9.93 -11.89 12.92 -9.96 9.95 36 -0.33 
 100 -7.94 9.75 -5.97 6.36 -5.83 6.00 -5.43 4.59 108 -0.04 
 200 -5.27 6.96 -4.54 4.51 -3.57 3.21 -3.98 3.72 192 -0.02 
 500 -4.04 4.39 -2.62 2.56 -2.27 2.34 -2.35 1.85 500 -0.00 
 1000 -3.04 3.16 -2.12 2.27 -1.43 1.20 -1.25 0.89 1080 -0.00 
 2000 -2.00 1.96 -1.37 1.25 -0.81 0.75 -0.76 0.75 2058 -0.00 
 5000 -1.44 1.52 -0.91 0.78 -0.45 0.51 -0.48 0.47 5184 -0.00 
 10000 -0.92 1.12 -0.58 0.66 -0.31 0.27 -0.35 0.31 10000 -0.00 
D3 40 -11.22 10.72 -7.62 6.75 -7.84 8.81 -7.85 6.33 32 -12.21
 100 -7.23 6.13 -4.64 5.66 -4.39 4.56 -4.39 3.74 96 -0.21 
 200 -5.00 4.83 -3.37 3.56 -2.83 3.01 -3.04 2.55 216 -0.19 
 500 -3.18 3.00 -2.23 2.01 -1.68 1.77 -1.52 1.07 486 -0.14 
 1000 -2.10 1.79 -1.37 1.40 -0.92 0.99 -1.02 0.75 972 -0.14 
 2000 -1.58 1.36 -0.89 0.80 -0.51 0.60 -0.65 0.55 1728 -0.14 
 5000 -1.00 0.69 -0.66 0.53 -0.33 0.31 -0.35 0.26 5120 -0.02 
 10000 -0.82 0.67 -0.46 0.36 -0.18 0.16 -0.25 0.19 10000 -0.02 
D4 40 -19.41 24.28 -16.32 16.94 -19.81 19.28 -18.87 13.95 32 -17.26
 100 -11.35 13.30 -10.50 10.68 -12.82 15.46 -10.37 8.82 128 -15.32
 200 -9.02 10.37 -7.67 5.97 -7.23 8.95 -6.41 5.12 256 -2.11 
 500 -6.62 6.16 -5.10 5.30 -3.67 4.21 -4.00 3.24 576 -0.72 
 1000 -4.49 3.62 -3.22 2.95 -2.46 2.95 -2.37 2.40 864 -0.65 
 2000 -3.27 3.10 -2.49 1.79 -1.67 1.68 -2.02 1.77 1944 -0.63 
 5000 -2.07 1.44 -1.22 1.20 -0.93 0.83 -0.87 0.67 4374 -0.60 
 10000 -1.44 1.01 -1.19 0.99 -0.59 0.46 -0.48 0.43 11664 -0.06 
 20000 -1.20 0.95 -0.68 0.66 -0.46 0.25 -0.42 0.27 20736 -0.06 
D5 40 -11.90 11.36 -5.13 4.84 -10.36 9.07 -7.66 7.00 32 -2.37 
 100 -9.07 8.92 -3.54 3.54 -4.14 4.22 -3.69 2.96 128 -1.93 
 200 -6.67 5.64 -2.78 2.50 -2.68 2.18 -2.04 1.64 256 -1.74 
 500 -4.11 3.42 -1.46 1.37 -1.51 1.69 -1.29 0.92 512 -1.70 
 1000 -2.89 2.40 -1.08 1.03 -0.77 0.95 -1.11 0.90 1024 -1.64 
 2000 -1.88 1.75 -0.86 0.59 -0.59 0.67 -0.42 0.33 2304 -0.07 
 5000 -1.20 1.02 -0.45 0.40 -0.31 0.31 -0.32 0.22 5184 -0.02 
 10000 -1.02 0.83 -0.36 0.31 -0.19 0.18 -0.20 0.16 11664 -0.01 
 20000 -0.78 0.73 -0.23 0.24 -0.13 0.09 -0.16 0.10 17496 -0.01 
 40000 -0.53 0.48 -0.12 0.13 -0.08 0.05 -0.12 0.07 39366 -0.01 
D6 40 -7.10 7.16 -3.30 4.27 -4.97 6.24 -4.35 4.54 32 -2.07 
 100 -3.65 4.62 -1.85 2.27 -2.82 3.19 -2.94 3.17 128 -1.33 
 200 -3.11 3.90 -1.19 2.08 -1.65 1.99 -1.92 2.65 256 -0.96 
 500 -1.85 2.51 -0.51 0.81 -0.75 1.25 -0.45 1.09 512 -0.04 
 1000 -1.63 1.60 -0.44 0.82 -0.26 0.81 -0.26 0.88 1024 -0.02 
 2000 -1.07 1.42 -0.22 0.64 0.06 0.45 -0.18 0.81 2048 -0.15 
 5000 -0.58 0.83 0.07 0.45 0.11 0.39 0.07 0.46 4096 -0.16 
 10000 -0.24 0.74 0.12 0.48 0.15 0.35 0.15 0.38 9216 -0.02 
 20000 -0.06 0.58 0.13 0.36 0.20 0.33 0.19 0.32 20736 -0.00 
 40000 0.01 0.55 0.17 0.36 0.23 0.30 0.21 0.30 46656 -0.00 
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Figure 1: Confidence intervals for deviation of the true Db-error of design D3 

 
In Table 5 and Table 6, the 95 percent confidence intervals (from low to high) of the 
deviations are indicated for PMC, MLHS, Halton, and Sobol sequences for different 
numbers of draws R, while the deterministic deviations from Gauss-Hermite is 
indicated in the last column. As the number of draws for Gauss-Hermite in general 
does not match the number of draws from the other methods, feasible values of R that 
are closest to the number of draws for the other methods are shown. 
 
Comparing Table 5 and Table 6, larger standard deviations result in greater difficulty 
in approximating the Db-error than smaller standard deviations. Only a few draws are 
needed in order to have the 95 percent confidence interval of the deviation within ±1 
percent. Even though the PMC method is outperformed by all other methods 
(particularly by Gauss-Hermite) in the case of small standard deviations, it can be 
concluded that the approximation method is of particular importance in cases where 
the standard deviations are larger, making it more difficult to compute the Db-error. 
As such, we will focus mainly on the results dealing with large standard deviations in 
the priors. 
 
As expected, Gauss-Hermite is preferred in designs with lower dimensions (designs 
D1 and D2 have 2 and 4 random priors, respectively) as indicated in Table 6, where 
even with small numbers of draws, the true Db-error is accurately reproduced. In 
designs with higher dimensions (design D3–D6 have 6, 8, 10, and 12 random priors, 
respectively) Gauss-Hermite has slightly more problems with computing the Db-error, 
but still performs well. This result is somewhat surprising as some researchers have 
found in the past that Gauss-Hermite typically only works well with very low 
dimensions (1, 2, or 3) due to the exponentially growing number of draws needed 
(Bhat 2001). However, in this paper we use a smarter approach (which we will term 



 18

incremental Gaussian quadrature) in which not all priors are given the same number 
of abscissas, which significantly reduces the number of draws needed for higher-
dimensional problems. Overall, our findings suggest that Gauss-Hermite outperforms 
the other methods considered within this paper. However, it is worth noting that, 
mainly with designs D3 and D4, the Gauss-Hermite method has difficulties when a 
small number of draws (R<100) is used. This is due to the fact that with a small 
number of draws, the Gauss-Hermite method is unable to pick up enough variance in 
the prior parameters. Nevertheless, it performs well with more draws.  
 
Halton and Sobol sequences perform similarly, clearly outperforming tPMC draws. It 
is interesting to note that in all designs, MLHS performs well compared to the PMC 
method and similar to using Halton and Sobol sequences when low numbers of draws 
are used. However, whenever the number of draws increases, the Db-error from 
MLHS does not converge as rapidly to the true value as Halton and Sobol do. This 
may be explained by the way the sequences are constructed. PMC draws lacks both a 
uniform spread of the integration area and correlation between the draws in different 
dimensions, which were properties that have a positive effect on the accuracy of the 
approximation (see Section 3). MLHS has a uniform spread by definition, but 
correlation is removed as much as possible by randomizing the order of the draws in 
each dimension. Halton and Sobol sequences are less uniform in their spread 
(particularly with low number of draws), but the correlation between the dimensions 
has positive effect on the outcomes (at least for smaller dimensions). With small R, 
MLHS produces more uniform sequences than Halton or Sobol sequences. However, 
with larger R this uniformity plays less of a role and the importance of the correlation 
between the sequences may become more important. 
 
Rather than looking at the percentage deviation from the true Db-error for different 
numbers of draws, we can consider the reverse by looking at the number of draws 
needed in order to ensure (with 95 percent certainty; and 100 percent certainty in case 
of Gauss-Hermite) that the deviation is not more than a certain percentage. The results 
are shown in Table 7, where the numbers of draws have been determined by inverting 
the lines in Figure 1 (and using linear interpolation). 
 
With small standard deviations ( 0.1),α =  the number of draws required to be within 
one percent from the true Db-error is typically not larger than 100 for all designs. 
However, in the case where the prior parameter distributions are assumed to have 
large standard deviations ( 0.3),α =  a much larger number of draws is necessary. 
Compare the outcomes for design D1 using large standard deviations. If one would 
like to be with 95 percent probability within 0.5 percent from the true Db-error, more 
than 2,000 PMC draws are needed, while using MLHS, Halton, and Sobol sequences 
only require 139, 204, and 252, respectively. Moreover, Gauss-Hermite 
approximation needs only four draws (two abscissas per prior parameter) to be within 
that 0.5 percent. This pattern repeats itself for other designs. For example, for design 
D2, the PMC method and MLHS need more than 10,000 draws to be within the 0.5 
percent range, Halton and Sobol require almost 4,000 and 5,000, respectively, while 
Gauss-Hermite requires only 36 draws. As expected, in higher dimensions, Gauss-
Hermite requires significantly more draws, but still fewer than when using the other 
methods. For example, in design D5, the PMC method requires more than 40,000 
draws, MLHS, Halton, and Sobol require approximately 4,600, 2,800, and 1,600, 
respectively, whilst Gauss-Hermite requires approx. 1,500 draws.  
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Table 7: Number of draws for different allowed maximum deviations 

  Design 1, 0.1α =    Design 1, 0.3α =   
Dev. PMC MLHS Halton Sobol Gauss PMC MLHS Halton Sobol Gauss 
5.0% <20 <20 <20 <20 1 45 <20 <20 <20 1 
4.0% <20 <20 <20 <20 1 73 <20 <20 <20 2 
3.0% <20 <20 <20 <20 1 126 <20 27 27 4 
2.0% 26 <20 <20 <20 1 242 29 39 39 4 
1.0% 111 <20 26 22 1 1,033 74 78 85 4 
0.5% 352 37 52 51 2 >2,000 139 204 252 4 
  Design 2, 0.1α =    Design 2, 0.3α =   
Dev. PMC MLHS Halton Sobol Gauss PMC MLHS Halton Sobol Gauss 
5.0% <20 <20 <20 <20 1 294 116 115 110 16 
4.0% <20 <20 <20 <20 1 577 293 150 199 16 
3.0% <20 <20 <20 <20 2 1,115 348 288 327 24 
2.0% 21 <20 <20 <20 2 2,016 1,400 645 629 24 
1.0% 89 39 33 32 4 >10,000 4,543 1,592 1,389 24 
0.5% 293 85 88 83 8 >10,000 >10,000 3,947 4,810 36 
  Design 3, 0.1α =    Design 3, 0.3α =   
Dev. PMC MLHS Halton Sobol Gauss PMC MLHS Halton Sobol Gauss 
5.0% <20 <20 <20 <20 2 200 112 76 86 64 
4.0% <20 <20 <20 <20 2 297 161 121 115 64 
3.0% <20 <20 <20 <20 4 539 275 158 204 64 
2.0% 31 <20 <20 <20 32 1,415 647 420 351 64 
1.0% 106 64 56 44 64 4,987 1,943 997 1,247 64 
0.5% 367 154 119 111 64 >10,000 8,956 2,594 2,825 64 
  Design 4, 0.1α =    Design 4, 0.3α =   
Dev. PMC MLHS Halton Sobol Gauss PMC MLHS Halton Sobol Gauss 
5.0% <20 <20 <20 <20 4 871 441 390 320 256 
4.0% <20 <20 <20 <20 4 1,171 581 657 499 256 
3.0% 34 <20 <20 <20 8 2,398 1,087 984 769 256 
2.0% 65 32 <20 27 128 6,342 2,676 1,703 2,034 384 
1.0% 179 85 106 89 256 >20,000 11,525 4,749 4,278 384 
0.5% 691 270 243 210 256 >20,000 >20,000 14,343 9,758 6,561 
  Design 5, 0.1α =    Design 5, 0.3α =   
Dev. PMC MLHS Halton Sobol Gauss PMC MLHS Halton Sobol Gauss 
5.0% <20 <20 <20 <20 1 300 48 86 79 16 
4.0% <20 <20 <20 <20 1 540 75 107 95 16 
3.0% 24 <20 <20 <20 16 970 144 186 138 16 
2.0% 59 <20 37 <20 32 1,696 233 419 220 128 
1.0% 278 35 83 57 32 8,634 1,096 954 1,076 1,536 
0.5% 1,392 88 193 112 32 >40,000 4,604 2,820 1,624 1,536 
  Design 6, 0.1α =    Design 6, 0.3α =   
Dev. PMC MLHS Halton Sobol Gauss PMC MLHS Halton Sobol Gauss 
5.0% <20 <20 <20 <20 1 87 36 67 33 8 
4.0% <20 <20 <20 <20 1 187 45 85 55 8 
3.0% <20 <20 <20 <20 1 401 91 105 114 8 
2.0% <20 <20 26 <20 2 656 145 139 290 64 
1.0% 57 <20 39 <20 2 4,192 481 768 860 256 
0.5% 294 34 102 60 8 >40,000 4,452 1,888 4,129 512 
 
Nevertheless, it is to be expected that Gauss-Hermite approximation in larger models 
with more than 10 random prior parameters (as in model M6) will need significantly 
more draws, which may become prohibitive. It should be pointed out however, that 
the other methods may require more draws as well, meaning that choosing for Halton 
or Sobol sequences may not necessarily provide better results than Gauss-Hermite 
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draws with the same number of draws. Nonetheless, the number of draws in Gauss-
Hermite approximation is dictated by the product of the prior abscissas and choosing a 
small value may therefore be impossible in a large design. In that case, there is always 
the option of using Halton or Sobol sequences, as the number of draws can be selected 
arbitrarily, although one should realize that the approximated Db-error may deviate 
largely from the true value. 
 
5. Conclusions and discussion 
 
This paper compares the performance of PMC draws to several types of quasi random 
Monte Carlo draws, as well as to a single Gaussian quadrature method, when using 
Bayesian methods to generate efficient SC designs. The quasi random Monte Carlo 
draws include Halton sequences, Sobol sequences and MLHS whilst the Gaussian 
quadrature method examined is Gauss-Hermite. Performance comparisons are made 
for six SC designs with various design dimensions (attributes and alternatives) as well 
as over different assumptions regarding the standard deviations of the prior parameter 
distributions. In all but a few cases involving an extremely small number of draws, 
Gauss-Hermite approximation appears to outperform all other methods in reproducing 
the true level of a design’s level of efficiency, whilst the PMC method appears to 
perform worst in nearly all cases. When the standard deviations of the prior parameter 
distributions are relatively small (i.e., the researcher is more certain about the true 
parameter value), draws from Halton, Sobol and MLHS appear to perform equally 
well. However, with larger standard deviations in the prior parameter distributions and 
as the dimension of the problem increases, the performance of MLHS is slightly 
worse than both Halton and Sobol sequences. Furthermore, all approximation 
methods need more draws if the standard deviations of the priors are larger. 
 
Our findings call into question the predominant use within the literature of PMC 
draws to generate Bayesian efficient SC designs. Our findings suggest that designs 
generated using PMC methods are unlikely to be truly efficient under the assumptions 
made by the researcher (that is the population moments of the prior parameter 
distributions) unless an impractically large number of draws are used. The results of 
this paper suggest that whilst quasi random Monte Carlo methods perform much 
better than the PMC method, better approximation to the true level of efficiency of a 
design may be achieved using Gaussian quadrature methods. This result conflicts with 
evidence offered in other areas using simulation methods (mainly in estimating the 
random parameters in mixed logit models) which suggest that Halton draws 
outperform Gauss-Hermite approximations (Bhat 2001) in obtaining more correct 
results. In this paper, we have used an incremental Gauss-Hermite approximation, 
which is a more intelligent technique than used elsewhere in determining how many 
draws to use, which may partly explain these conflicting results.  
 
Of course, as we have noted on several occasions, as the dimension of the problem 
increases, so does the number of draws required when using Gauss-Hermite 
approximations. Unlike with other methods, this cannot be avoided. That is, whilst the 
researcher can determine the number of draws to employ when using PMC or quasi 
random Monte Carlo methods, thus accepting a lower level of accuracy in return for 
lower computational cost, the number of draws required when using Gaussian 
quadrature methods is determined by the abscissas for a given design. Whilst the 
number of draws may be reduced using the incremental method such as proposed in 
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this paper, there still remains a minimum number of draws that must be used when 
employing Gaussian quadrature methods. No such limits exist for the other methods. 
It appears however, that for a given level of accuracy involving designs with large 
numbers of dimensions, the number of draws required when using Gaussian 
quadrature methods represents the minimum number of draws, independent of the 
type of draws taken. As such, whilst the researcher may rely on fewer draws when 
using say Halton draws, the reduction in the number of draws comes at the price of 
less accurate results.  
 
One limitation within the research presented here is that we have only examined the 
case of Bayesian efficient designs assuming the multinomial logit model form. The 
theory presented in this paper is still valid for other discrete choice models (such as 
nested logit and mixed logit). Whilst we would expect the results to hold for these 
other models, this is still to be confirmed. An interesting case to examine is the mixed 
logit model, whereby simulation is required not only for the Bayesian prior 
distributions, but also the random parameter distributions as well. Sándor and Wedel 
(2002, 2005) do report results for Bayesian efficient designs developed using mixed 
logit models, adopting a quasi random Monte Carlo approach; orthogonal array-based 
Latin hypercube sampling, and randomly shifted good lattice points, respectively. 
They report in a footnote (Sándor and Wedel 2005) that some exploration of the 
number of draws was undertaken but we call for a more structured examination of the 
issue, similar to that presented here. 
 
Additionally, the analyses presented only consider Normal distributions for the prior 
parameters. Additional research is required to investigate the impact of the different 
approximation methods when other probability distributions are assumed.  
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 Appendix A. Deriving the asymptotic (co)variance matrix 
 
Consider an experimental design with alternatives (indexed by j) with associated 
attributes (indexed by k ). In each choice situation ,s  we assume that the levels of the 
attributes are given by .jksx  Let the utility of alternative j in choice situation s be 
given by  
 

,js js jsU V ε= +  (13)
 
where jsV  denotes the systematic (sometimes called observed) part of utility and 

jsε denotes the random (unobserved) part.  
 
Denote the complete experimental design by [ ].jksX x≡  Let the observed utility of 
alternative j in choice situation s be given by 
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( | ) ,

j

js k jks
k K

V X b b x
∈

= ∑  (14)

 
where [ ]kb b≡  denotes the vector of attribute weights, which are typically the 
unknown parameters to be estimated. Depending on the set of attributes appearing in 
each alternative ,jK  both generic and alternative-specific weights can be present. In 
the generic case, parameter kb  appears in multiple utility functions of different 
alternatives, while in the alternative-specific case, the parameter only appears in the 
corresponding alternative.  
 
Let ( | )jsP X b  denote the probability of choosing alternative j in choice situation s, 
and let jsy  denote the outcome of the stated choice experiment based on the 
experimental design (assuming a single respondent), where jsy  equals one if 
alternative j is chosen in choice situation s, and zero otherwise. The log-likelihood 
function can be written as 
 

( | ) log ( | ) .js js
s j

L b X y P X b⎡ ⎤= ⎣ ⎦∑∑  (15)

 
Assuming that β  are the true parameter values, the Fisher information matrix can be 
written as 
 

2 ( | )( | ) .
'

L XI X
b b
ββ ∂=

∂ ∂
 (16)

 
The asymptotic variance-covariance (AVC) matrix can be computed as the negative 
inverse of the Fisher information matrix: 
 

1( | ) ( | )X I Xβ β−Ω = −  (17)
 
The probability ( | )jsP X b  depends on the assumptions regarding the unobserved 
components .jsε  Different assumptions yield different models (see Train 2003). Only 
the probabilities differ (as well as how they are obtained) and as such the theories 
presented within this paper therefore hold for each of these models. 
 
Appendix B. Experimental designs 
 
The designs used in this paper are D-efficient designs9 using fixed priors created using 
the Ngene10 software. As an example, the syntax for generating the design for model 
M2 is given below. It generates a D-efficient design for the specified MNL model 
with six choice situations. The prior parameter values are given between brackets for 
each parameter b and the attribute levels are given between brackets for each attribute 
                                                 
9 Not necessarily D-optimal designs in the sense that it may not be possible to determine the most 
efficient designs, but merely designs that are as efficient as possible. 
10 Ngene is currently in prototype status and is being developed by Econometric Software. 
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x. Note that b1 and b2 are generic since they have the same name in both utility 
functions for the two alternatives, while b0, b3 and b4 are alternative-specific. Tables 
B.1 through B.6 list the experimental designs used for the analyses in the paper. 
 
Design 

;alts = alt1, alt2 

;rows = 6 

;eff = (mnl,d) 

;model: 

U(alt1) = b0[1.2] + b1[-0.09]*x1[0,20,30] + b2[-0.3]*x2[1,3,5]  + b3[0.5]*x3[2,4,6] / 

U(alt2) =           b1       *x1          + b2      *x2         + b4[0.8]*x4[2,4,6] 

$ 
 
 
Table B.1: Experimental design D1 (for model M1) 

s 11x  12x  21x  22x  
1 20 3 10 1 
2 20 1 20 3 
3 30 5 30 1 
4 30 1 10 5 
5 10 3 20 3 
6 10 5 30 5 
D-error ( 0)α =  = 0.029186 
Bayesian D-error ( 0.1)α =  = 0.029352 
Bayesian D-error ( 0.3)α =  = 0.030671 
 
 
Table B.2: Experimental design D2 (for model M2) 

s 01x  11x  12x  13x  21x  22x  23x
1 1 10 3 6 30 3 6 
2 1 30 5 6 20 1 2 
3 1 20 1 4 20 5 6 
4 1 30 3 4 10 3 4 
5 1 20 1 2 10 5 2 
6 1 10 5 2 30 1 4 
D-error ( 0)α =  = 0.093658 
Bayesian D-error ( 0.1)α =  = 0.097006 
Bayesian D-error ( 0.3)α =  = 0.132040 
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Table B.3: Experimental design D3 (for model M3) 

s 01x  11x  12x  13x  02x  21x  22x 23x 31x 32x 33x 34x
1 1 30 1 6 1 10 3 2 10 5 3 6 
2 1 10 5 2 1 20 1 2 30 1 3 4 
3 1 10 1 2 1 30 5 6 30 3 5 4 
4 1 10 5 6 1 30 1 6 20 3 5 4 
5 1 20 3 2 1 10 1 2 30 5 7 6 
6 1 20 1 4 1 20 3 4 10 5 3 8 
7 1 30 3 6 1 20 5 4 10 1 5 2 
8 1 30 5 4 1 30 5 4 10 1 7 2 
9 1 30 1 2 1 10 3 2 20 3 5 2 
10 1 20 3 4 1 10 5 6 20 1 3 8 
11 1 20 5 4 1 30 1 6 20 5 7 6 
12 1 10 3 6 1 20 3 4 30 3 7 8 
D-error ( 0)α =  = 0.056300 
Bayesian D-error ( 0.1)α =  = 0.059608 
Bayesian D-error ( 0.3)α =  = 0.086397 
 
 
Table B.4: Experimental design D4 (for model M4) * 

s 01x  11x  12x  13x  14x  02x  21x 22x 23x (1)
24x 31x 32x 33x 34x

1 1 20 5 4 7 1 10 1 2 1 30 3 3 8 
2 1 10 3 4 4 1 30 1 6 0 10 5 5 4 
3 1 10 5 2 7 1 30 5 4 1 10 1 3 4 
4 1 30 1 6 4 1 20 5 4 0 20 1 7 2 
5 1 10 3 2 7 1 20 3 2 0 30 3 7 6 
6 1 20 1 2 10 1 10 5 6 0 30 3 5 6 
7 1 30 5 4 7 1 10 3 2 1 20 1 7 2 
8 1 30 3 6 10 1 20 5 6 1 20 1 3 6 
9 1 20 3 4 10 1 30 1 6 1 10 5 7 8 
10 1 30 5 6 10 1 10 1 4 0 20 3 5 4 
11 1 10 1 6 4 1 30 3 4 1 30 5 5 8 
12 1 20 1 2 4 1 20 3 2 0 10 5 3 2 
D-error ( 0)α =  = 0.096534 
Bayesian D-error ( 0.1)α =  = 0.10423 
Bayesian D-error ( 0.3)α =  = 0.17769 
* Attribute 24x  is dummy-coded with 2 levels. 
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Table B.5: Experimental design D5 (for model M5) * 
s 01x  11x  12x  14x  (1)

15x  (2)
15x  02x 21x 22x (1)

25x (2)
25x (1)

26x 31x 32x 33x  (1)
35x  

1 1 10 5 7 0 0 1 20 1 0 0 1 10 5 5 0 
2 1 10 3 4 0 1 1 30 5 1 0 0 30 3 7 0 
3 1 20 1 10 0 0 1 10 3 0 0 1 20 3 5 1 
4 1 30 5 4 1 0 1 30 1 0 1 0 10 5 3 0 
5 1 20 3 4 0 1 1 30 3 0 0 0 20 5 3 1 
6 1 20 1 7 1 0 1 30 1 1 0 1 10 5 7 1 
7 1 10 1 4 1 0 1 20 5 0 0 1 30 5 5 1 
8 1 10 3 7 0 0 1 30 1 0 1 1 30 3 7 0 
9 1 30 5 10 0 0 1 30 3 0 1 0 20 3 7 1 
10 1 30 1 10 0 1 1 20 3 0 1 1 20 3 5 1 
11 1 20 5 10 0 1 1 20 1 1 0 1 30 1 5 0 
12 1 20 3 10 1 0 1 10 5 0 1 1 10 1 7 0 
13 1 20 3 7 0 0 1 10 5 1 0 0 20 3 3 0 
14 1 30 5 10 1 0 1 20 1 1 0 0 30 1 3 1 
15 1 30 5 7 0 1 1 10 3 0 0 0 20 5 5 0 
16 1 10 1 7 0 0 1 10 3 0 0 0 10 1 3 1 
17 1 10 3 4 1 0 1 10 5 0 1 0 30 1 7 1 
18 1 30 1 4 0 1 1 20 5 1 0 1 10 1 3 0 
D-error ( 0)α =  = 0.28606 
Bayesian D-error ( 0.1)α =  = 0.49787 
Bayesian D-error ( 0.3)α =  = 0.63800 
* Attributes 15x  and 25x  are dummy-coded with 3 levels, 26x  and 35x  with 2 levels. 
   
Table B.6: Experimental design D6 (for model M6) * 

s 01x  11x  12x  14x (1)
15x  (2)

15x  16x  02x 21x 22x (1)
25x (2)

25x (1)
26x 27x 28x 31x  32x  33x  (1)

35x  36x
1 1 10 3 10 0 0 5 1 10 3 1 0 1 5 1 10 1 7 1 10
2 1 20 5 7 0 1 10 1 10 3 0 1 1 5 2 10 1 5 1 10
3 1 20 3 7 0 0 5 1 20 1 0 1 0 10 3 10 5 3 1 5 
4 1 20 3 7 1 0 10 1 10 5 1 0 1 15 1 20 1 7 0 5 
5 1 10 5 4 0 0 5 1 10 3 0 0 0 5 1 10 3 3 0 15
6 1 10 3 10 0 0 15 1 20 1 0 1 1 15 1 30 3 5 0 10
7 1 10 3 4 0 1 15 1 20 5 1 0 1 15 2 30 3 5 1 5 
8 1 20 1 4 0 1 15 1 30 3 0 1 0 15 2 20 5 3 1 15
9 1 20 1 4 0 1 10 1 30 5 1 0 0 5 3 30 3 7 0 10
10 1 30 1 10 1 0 15 1 30 5 0 1 1 5 2 20 1 5 0 15
11 1 10 5 4 0 1 10 1 20 3 0 0 1 15 3 30 3 7 0 5 
12 1 30 1 7 1 0 15 1 30 1 0 0 0 10 2 20 5 3 1 15
13 1 30 3 7 1 0 5 1 30 1 1 0 0 15 2 10 5 5 1 5 
14 1 30 5 10 0 0 5 1 10 1 0 1 0 5 1 10 5 7 0 10
15 1 10 1 4 1 0 10 1 20 3 0 0 1 10 3 30 1 3 1 15
16 1 30 5 10 0 1 10 1 10 1 0 0 0 10 3 30 5 7 1 10
17 1 30 5 10 1 0 5 1 30 5 1 0 1 10 3 20 1 5 0 15
18 1 20 1 7 0 0 15 1 20 5 0 0 0 10 1 20 3 3 0 5 
D-error ( 0)α =  = 0.26361 
Bayesian D-error ( 0.1)α =  = 0.27163 
Bayesian D-error ( 0.3)α =  = 0.33554 
* Attributes 14x  and 25x  are dummy-coded with 3 levels, 26x  and 35x  with 2 levels. 
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