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Random covariance heterogeneity in discrete choice

models

Stephane Hess∗ Denis Bolduc† John W. Polak‡

January 26, 2008

Abstract

In this paper, we extend the standard discrete choice modelling
framework by allowing for random variations in the substitution pat-
terns between alternatives across respondents, leading to increased
model flexibility. The paper shows how such a Mixed Covariance model
can be specified either with purely random variation or with a mixture
of random and deterministic variation. Additionally, the model can
be based on an underlying GEV or ECL structure. Finally, the model
can be specified as a continuous mixture or as a discrete mixture. An
application on Stated Preference data for the choice of departure time
and travel mode shows that important gains in model performance
can be obtained by allowing for random covariance heterogeneity. Fur-
thermore, the approach leads to significant differences in the implied
willingness to pay measures, and the substitution patterns between
alternatives.

1 Introduction

Discrete choice models have been used extensively in various areas of be-
havioural research, notably transport studies, for over thirty years. Ini-
tially, virtually all applications were based on the Multinomial Logit (MNL)
model (cf. McFadden, 1974). Although easy to specify, estimate and ap-
ply, the MNL model has significant disadvantages in terms of flexibility,
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most notably in the form of very restrictive substitution patterns across
alternatives. Initial gains in flexibility were made by the development of
structures belonging to the family of Generalised Extreme Value (GEV)
models (McFadden, 1978), such as the Nested Logit (NL) model (Williams,
1977; Daly and Zachary, 1978)1. These models nest together alternatives
that are closer substitutes for each other, with heightened correlation (and
hence cross-elasticities) between nested alternatives.

Recently, researchers have begun to increasingly exploit the power of
an alternative model form, the Mixed Multinomial Logit (MMNL) model.
MMNL choice probabilities are expressed as integrals of MNL choice prob-
abilities over the (assumed) distribution of the error terms present in the
model, in addition to the usual IID extreme-value terms. The MMNL model
is primarily used for the representation of random taste heterogeneity, in a
Random Coefficients Logit (RCL) framework. However, it can also be ex-
ploited to allow for inter-alternative correlation and heteroscedasticity, in
an Error Components Logit (ECL) framework. For more details on the
two specifications, see Ben-Akiva and Bolduc (1996), McFadden and Train
(2000), Walker (2001) and Train (2003). Both approaches can be combined
straightforwardly for the joint representation of random taste heterogene-
ity and inter-alternative correlation. Here, an alternative approach is to
use integration of GEV-style choice probabilities over the distribution of
taste coefficients, leading to a more general GEV mixture model, of which
MMNL is simply the most basic example (cf. Bhat and Guo, 2004; Hess
et al., 2005a). Recently, researchers have also adapted the standard formu-
lation of the MMNL model by linking the parameters of the distribution of
random terms to characteristics of the respondents; see for example Greene
et al. (2006).

While the developments in relation to closed-form GEV as well as GEV
mixture models have led to gradual gains in modelling flexibility, little effort
has gone into the development of model forms allowing for a representation
of heterogeneity across respondents in the correlation structure (and hence
substitution patterns) in place between the different alternatives. Such cor-
relation heterogeneity is however potentially a crucial factor in the variation
of choice making behaviour across decision makers. Although some of the
covariance heterogeneity can conceivably be accommodated through an ap-
propriate segmentation of the population, it is likely that in general, some
within-segment heterogeneity remains. The existing literature seems to con-
tain only two examples of a model allowing for such heterogeneity. The first

1See also Ortúzar (2001) for a history of the NL structure.
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of these comes in the form of the Covariance Nested Logit (COVNL) model
discussed by Bhat (1997), which allows for a parameterisation of the nesting
parameters, and hence the substitution patterns in a simple Nested Logit
(NL) model. Koppelman and Sethi (2005) later expand this approach by
incorporating covariance heterogeneity in the more advanced Generalised
Nested Logit (GNL) model, where they additionally allow for heteroscedas-
ticity across respondents through a parameterisation of the scale factor, de-
scribing the resulting model as the Heterogeneous Generalised Nested Logit
(HGNL) model.

While it is highly desirable to explain any covariance heterogeneity in a
deterministic way, this is clearly not always possible. The aim of this paper
is therefore to develop a model structure that can accommodate random
covariance heterogeneity in addition to deterministic covariance heterogene-
ity. The discussion presented in this paper is based on an underlying GEV
model; the development of a corresponding framework based on an ECL
structure is described in Appendix A.

The remainder of this paper is organised as follows. The methodology
for the Mixed Covariance GEV model is introduced in Section 2. Section
3 presents the findings of an application comparing our Mixed Covariance
(MCOV) model to structures assuming covariance homogeneity. Finally,
Section 4 presents the conclusions of the research.

2 Methodology

We will now develop the structure for our Mixed Covariance GEV model,
where the derivation described here looks mainly at the case of a simple
two-level NL model; the extension to multi-level as well as cross-nesting
structures is possible, and several notes to that extent are made in the text.

The exposition of the theory is divided into several parts. We first look
at the general model form, in Section 2.1, before moving on to the cases
of purely random variation in Section 2.2, and combined deterministic and
random variation in Section 2.3. Finally, Section 2.4 briefly looks at the case
where a discrete mixture approach is used instead of a continuous mixture.
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2.1 General model form

In a two-level NL model, the choice probability of alternative i (belonging
to nest m) for individual n is given by:

Pn (i) = Pn (Sm) · Pn (i | Sm)

=
eλmIm,n∑M
l=1 e

λlIl,n

e
Vi,n
λm∑

j∈Sm e
Vj,n
λm

(1)

with logsum term

Im,n = ln
∑
j∈Sm

e
Vj,n
λm , (2)

where Vj,n corresponds to the systematic part of the utility for alternative
j and individual n, λm is the structural parameter associated with nest m,
Sm defines the set of alternatives contained in nest m, and M gives the total
number of nests.

The COVNL model of Bhat (1997) expands on the standard NL model,
by parameterising the structural parameters λ as:

λm,n = F
(
αm + γm′zn

)
, (3)

where αm is a constant, zn is a vector of attributes of decision maker n, and
where γm is a vector of coefficients. In this notation, λm,n is the structural
parameter for nest m and decision maker n. Both αm and γm are to be
estimated. The subscript on the parameters makes them specific to a given
nesting parameter.

To ensure consistency with utility maximisation, F () needs to be spec-
ified so as to produce values in the [0− 1] interval2. Furthermore, Bhat
(1997) states that increases in zn should have a monotonic effect on λm,n
(where this ensures consistency in the case of multi-level structures, cf. equa-
tion (7)). This double requirement can be satisfied by using a function F ()
with:

F (−∞) = 0
F (+∞) = 1

f (x) =
∂F ()
∂x

> 0 (4)

2It should be noted that this constraint can cause complications as it can prevent
problems with the data or model specification from manifesting themselves.
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These conditions are met by the use of a continuous cumulative probabil-
ity distribution function, where Bhat (1997) suggests the use of the logistic
distribution. Here, it is important to note that this does not equate to a
random formulation in which the nesting parameters follow a logistic distri-
bution. Here, the logistic distribution is simply used to translate from an
infinite space to a [0− 1] interval.

We now extend this approach to the case where λm follows a random
distribution across individuals. Conditional on a given set of values for the
vector of structural parameters λ, the NL choice probabilities are given by
equation (1). We now assume that the vector λ is distributed according
to f (λ | Ω), where Ω is a vector of parameters of the distribution of the
different elements of λ.

The conditional choice probability in equation (1) is now replaced by the
unconditional choice probability:

Pn (i) =
∫
λ
Pn (i | λ) f (λ | Ω)dλ (5)

=
∫
λ

eλmIm,n∑M
l=1 e

λlIl,n
· e

Vi,n
λm∑

j∈Sm e
Vj,n
λm

f (λ | Ω)dλ, (6)

where λ = {λ1, ..., λM}. Here, equation (6) is specific to the two-level NL
model given in equation (1), while equation (5) shows the general form,
where Pn (i | λ) can represent the conditional choice probability for any
GEV model3. The behaviour of the resulting model depends crucially on
the specification used for f (λ | Ω), where the requirements on the range
of the structural parameters need to be borne in mind (cf. Train, 2003).
This issue is discussed in more detail in the description of the two special
cases in Sections 2.2 and 2.3. However, it can already be mentioned at
this point that special care is required in the imposition of a priori bounds
on the distribution as this can prevent data or misspecification issues from
manifesting themselves4.

The approach becomes more complicated in the case of multi-level struc-
tures, due to the condition that the structural parameters need to decrease
as we move down the tree. In the COVNL model, this is made possible by

3In the case of cross-nesting structures, there is an additional dependency on a vector
of allocation parameters, which is not explicitly stated in equation (5). There is in that
case also a possibility of allowing for deterministic as well as random variations across
agents in the allocation parameters.

4This issue is similar to that discussed by Hess et al. (2005b) in the context of the
specification of random taste heterogeneity.
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specifying the structural parameter of a lower-level nest, λl, as in equation
(3), and by adapting the specification of the upper-level nesting parameter
as:

λm,n = F
[(
αl + γl′zn

)
+G

(
δm + ηm′wn

)]
, (7)

where wn is an additional vector of individual characteristics, which can be
the same as zn, and where δm and ηm are a constant and vector respectively
that need to be estimated. Finally, G () is a monotonically increasing func-
tion mapping real numbers onto the space of positive real numbers, such as
for example with the exponential distribution.

In the case of the Mixed Covariance NL model, the issue becomes more
complicated, as the different structural parameters are now random vari-
ables. To ensure consistency with utility maximisation, the distribution of
the structural parameters must be specified such that structural parameters
belonging to the same link in a tree are no longer distributed independently.
As it is desirable not to have to impose a constraint of equality of the struc-
tural parameters on a given level (as in the approach taken by Bhat 1997),
it is preferable to use a top-down approach in the notation for the Mixed
Covariance NL model, given that a specific node may have multiple descen-
dants, while, in a model without cross-nesting, each node has only one direct
ancestor.

One possible way of ensuring decreasing structural parameters is to spec-
ify the values as follows. With an upper-level structural parameter being
given by:

λu ∼ f (λu | Ωu) , (8)

the structural parameter of one of its descendants, λli, is given by:

λli = λu · λ̂li, (9)

with

λ̂li ∼ f
(
λ̂li | Ωλ̂li

)
, (10)

where, in either case, the subscript imposed on Ω refers to the subelements
linked to the structural parameter in question. This approach avoids the
need to specify a complete joint density for the structural parameters. Ex-
tension of this theory to models with more than three levels is straight-
forward. Extensions to models allowing for cross-nesting are also possible,
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although slightly more complex. In this case, a given node can have multi-
ple ancestors, and the condition of decreasing structural parameters needs
to apply for each of the links to an ancestor. This means that the structural
parameter at a given node needs to be less than or equal to that of the
direct ancestor with the lowest structural parameter. Hence, in equations
(9) and (10), λu is accordingly replaced by the structural parameter of this
specific ancestor node. As it is thus possible to adapt this approach for
models allowing for cross-nesting as well as for models allowing for multi-
nest membership, it can be seen that the approach should be applicable for
all existing GEV structures. Again, special care is required when imposing
a priori bounds on parameters or constraints on the relationship between
parameters, as it is important to still allow the effects of structural mis-
specifications to manifest themselves in the results. In the present context,
misspecification would for example become apparent when the majority of
the mass for λ̂li is close to 1, suggesting that a reversal of the order of nesting
may be appropriate.

The final step in the theoretical development of our proposed model form
is the representation of taste (as opposed to covariance) heterogeneity across
individuals. The above framework clearly already allows for deterministic
variations in tastes; additional random variation can be accommodated very
easily in the present model form, through integration of the choice proba-
bilities that are conditional on β over the assumed distribution of the taste
coefficients. This comes in addition to the integration over the distribution
of the structural parameters.

Let Pn (i | β,λ) give the choice probability of alternative i for individual
n, conditional on β and λ. Following the theory described in this section,
we then have:

Pn (i | β) =
∫
λ
Pn (i | β,λ) f (λ | Ω)dλ. (11)

By assuming that the tastes are distributed randomly across decision makers
according to g (β | Θ), with parameter vector Θ, we obtain the unconditional
choice probability:

Pn (i) =
∫
β
Pn (i | β) g (β | Θ)dβ

=
∫
β

(∫
λ
Pn (i | β,λ) f (λ | Ω)dλ

)
g (β | Θ) dβ. (12)

Although beyond the scope of the present discussion, it is possible to ex-
pand this approach to the case where β and λ follow some form of joint
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distribution.
Before proceeding with a detailed discussion of various specific formu-

lations of our proposed model structure, a word should be said about pa-
rameter identification. With the formulation using a specific GEV model
as the integrand, the only difference between our model and a typical GEV
mixture model is that the nesting parameters are given a random treatment
as opposed to the taste parameters. Similarly, the model can be seen as an
extension of the COVNL model of Bhat (1997) with the only difference being
a random as opposed to deterministic treatment of covariance heterogeneity.
From either basis, there seem to be no reasons for additional identifiability
conditions5. In estimation, the model was also found to be well behaved.
It is possible that issues with confounding may arise between random taste
heterogeneity and random covariance heterogeneity (as in Equation 12), but
such issues can also arise when allowing jointly for inter-alternative correla-
tion and random taste heterogeneity (cf. Hess et al., 2005a).

2.2 Model with purely random covariance heterogeneity

We now look at the case where any variation in the structural parameters
(and hence the correlation) across individuals is purely random. Two pos-
sible approaches arise in this case.

In the first approach, we rewrite the choice probabilities in equation (5)
as:

Pn (i) =
∫
x
Pn (i | λ = T (x)) f (x | Ω)dx, (13)

where T (x) is a transform that maps the elements in x from the real space of
numbers into the 0−1 interval. With this approach, any choice of statistical
distribution can be used for f (x | Ω), and an appropriate transform can be
used for T (x). The issue with this approach is that it imposes a priori
bounds on the distribution of λ, such that data or model misspecification
issues can be difficult to detect. As such, special care is required in the
interpretation of the results when using this approach6.

The second approach avoids the use of the additional transform T (x),
and draws for the structural parameters are produced directly from the
function f (λ | Ω), as shown in equation (5). In this case, the condition

5The same is not necessarily the case when basing the model on a ECL structure, as
discussed in Appendix A.

6The same issue arises in the COVNL model discussed by Bhat (1997) through the use
of a transform such as the logistic distribution.
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on the range of the structural parameters applies directly at the level of
f (λ | Ω), leading to a requirement to use distributions bounded on either
side. However, the direct estimation of the bounds on the distribution al-
lows modellers to establish consistency with utility maximisation directly,
by testing whether the range for λ falls within the 0−1 interval. The vector
Ω now contains the parameters of the actual distribution of the structural
parameters, as opposed to the distribution of the random vector x used as
the base of the transform described in the first approach. A number of differ-
ent statistical distributions can be used with this approach, including basic
examples such as the Uniform or Triangular, or more advanced options such
as the Johnson SB distribution.

It is not clear a priori which of the two approaches is preferable. The
former approach allows for greater freedom in the choice of distribution for
f (x | Ω), while the latter approach can potentially offer more flexibility in
the shape of the distribution of the structural parameters. The issue of a
priori bounds also disappears. However, it should also be noted that models
using flexible distributions with estimated bounds, such as the Johnson SB,
are often very difficult to estimate.

2.3 Model with deterministic and random covariance het-
erogeneity

It is clearly desirable to explain as much covariance heterogeneity as pos-
sible in a deterministic manner, as in the COVNL model of Bhat (1997).
However, even the most comprehensive deterministic treatment will leave
residual heterogeneity, which can be accounted for using the Mixed Covari-
ance models presented earlier in this paper. Clearly, the most attractive
general approach is to formulate a model that can account for both deter-
ministic and random effects, such that for example λ = F (α+ γ ′zn + ε),
where ε is a random component. Two approaches are possible in this case,
one is to use a mixed version of a COVNL-style formulation (but within
a top-down approach), while the other is to use a functional form for the
parameters of the distribution employed to represent covariance heterogene-
ity in the Mixed Covariance GEV model. We will now look at these two
approaches in turn.
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2.3.1 Extension of COVNL approach

We begin the description of this approach by rewriting the choice probabil-
ities in equation (5) as:

P (i) =
∫
θ
P (i | λ = T (H (zn,θ))) f (θ | Ω)dθ. (14)

In this notation, T () is defined as previously as a transform mapping inde-
pendent elements from the real space of numbers into the 0−1 interval. The
function H (zn,θ) is used to generate a vector of length m of real numbers,
as a function of the parameters contained in the vector θ and the vector
of individual-specific attributes zn, with θ being distributed according to
f (θ | Ω). This model can be seen to be an extension of the COVNL model
described in Section 2.1 as follows. Let us assume that we have a model
with a single structural parameter λ. It can be seen that, by specifying
T () to be the logistic transform, H (zn,θ) to yield α + γ ′zn, and setting
f (θ = (α,γ) | Ω) = 1, the model reduces to the COVNL model. In this
case, the parameters contained in the vector θ are fixed across individu-
als. However, the model uses a top-down approach, which makes for easier
adaptation in the case of multi-level or cross-nesting structures (see Section
2.1).

By removing the assumption that f (θ = (α,γ) | Ω) = 1, we obtain a
model with random variation in the structural parameters across individu-
als. Depending on the specification of f (θ | Ω), only some of the elements
in θ will be random, allowing for example for a random offset α across in-
dividuals, with purely deterministic variation on top of it, or a fixed offset
point with random and deterministic variation on top of it, or both. Differ-
ent choices for H () and T (), with appropriate domain conditions, lead to
differences in model behaviour. Finally, it can be seen that by setting all el-
ements in zn to be zero, we obtain a model with purely random variation as
in the first approach described in Section 2.2. This completes the extension
of the COVNL framework to the case with random parameters.

2.3.2 Parameterisation of distributional parameters

We will base our derivation of the parameterisation method on the second
approach described in Section 2.2, such that draws for λm are obtained
directly from an appropriate distribution with an acceptable domain, as op-
posed to requiring the use of a transform (which is also possible). Let us
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assume that we have ωm ∈ Ω, such that ωm represents for example the
mean used in the distribution function of structural parameter λm, with a
corresponding standard deviation term σm ∈ Ω for the distribution of struc-
tural parameter λm. For now, let us assume that σm stays constant across
individuals; extension to the case where it varies (deterministically) across
individuals in addition to ωm is straightforward. We now look at the case
where some of the variation in λm is explained by random variation, through
using the distribution f (λm | ωm, σm), and some variation is explained by
the attributes of the decision maker, by parameterisation of ωm. Specifying
ωm,n to be the mean value of the distribution of λm for decision maker n,
we can then simply use:

ωm,n = αωm + γωm
′zn, (15)

where zn represents a vector of attributes of decision maker n, and αωm and
γωm represent a constant and a vector of coefficients respectively, both of
which are specific to the parameter ωm7. In the case where no such param-
eterisation is (or can be) used, only the constant αωm will be estimated. In
this case, ωm,n stays the same across respondents, and the only differences
in the value of λm across respondents are due to random variation.

2.4 Discrete mixture approach

Thus far, we have looked solely at the case where the covariance hetero-
geneity is represented through a continuous mixture, i.e., by using integra-
tion over the assumed continuous distribution of the structural parameters.
However, it is similarly possible to work on the basis of a discrete mixture
approach, such that the structural parameters take on only a finite number
of values across the population, meaning that the integration is replaced by a
weighted summation. This relates to the case of discrete mixture models for
random taste heterogeneity, as discussed for example by Hess et al. (2007a).
In some cases, the justification for using a discrete mixture approach will
be primarily a pragmatic one. Indeed, while it can simply be seen as an
approximation to a continuous mixture, it has the clear advantage of not
requiring simulation in estimation. However, the use of a discrete mixture
approach can potentially also give greater freedom in terms of the shape of
the distribution. Finally, the discrete approach also has some advantages in
terms of interpretation, by providing modellers with some guidelines for a
deterministic segmentation of the population.

7The interaction between γωm and zn could also be non-linear.
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In a discrete mixture model for covariance heterogeneity, the choice prob-
ability for alternative i and individual n in a model with K nests would be
given by:

Pn (i | β) =
M1∑
m1=1

. . .

MK∑
mK=1

Pn
(
i | β,λ =< λm1

1 , . . . , λmKK >
)
·πm1

1 ·. . .·π
mK
1 ,

(16)

where the structural parameter λk, associated with the kth nest, takes on Mk

separate values, defined as λ1
k to λMk

k , where each has an associated proba-
bility (or mass), with 0 ≤ πmkk ≤ 1 ∀k,mk, and where

∑Mk
mk=1 π

mk
k = 1 ∀k.

Here, in addition to the taste coefficients, estimates need to be produced
for the different levels for all the structural parameters, as well as for the
associated probabilities. For an application of a discrete mixture model for
covariance heterogeneity, see Hess (2005).

3 Application

This section summarises the findings of an empirical study conducted to
compare our MCOV model to model structures assuming covariance ho-
mogeneity. We first present the estimation data in Section 3.1. We then
discuss model specification in Section 3.2, before presenting the main esti-
mation results in Section 3.3. Finally, Section 3.4 presents two forecasting
applications.

3.1 Data

The analysis makes use of time of day (TOD) data collected in 2000 for
the development of the Dutch National Model System (cf. de Jong et al.,
2003). An initial Revealed Preference (RP) survey was conducted to select
a sample of respondents for the follow up Stated Preference (SP) survey.
The RP survey included rail travellers as well as car travellers, contacted
at a selection of sites across The Netherlands, concentrating on areas where
road and rail congestion was encountered in peak period journeys. In the
ensuing SP survey, respondents were presented with four alternatives in each
choice situation, three alternatives using their current mode of travel, and
one alternative involving a change of mode. The choice thus involves the
retiming of an existing tour or the switch of this tour to an alternative mode.
The three alternatives on the current mode are described as “retimed ear-
lier”, “base”, and “retimed later”, with the “base” alternative being close
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in departure time to the actual observed tour. Respondents were presented
with 16 SP replications, spread over two games. The travel purposes distin-
guished were commuting, business, education, and other. This dataset has
recently been used in the estimation of ECL and NL models by Hess et al.
(2007c) and Hess et al. (2007b) respectively, while Hess et al. (2005c) make
use of the data in a time period choice model looking at different ways of
specifying the time period constants. In the present analysis, we make use
of 2, 720 observations collected from 170 car commuters, who were presented
with three car alternatives (base, early and late) and one public transport
(rail) alternative.

3.2 Model specification

Four different models were estimated on the TOD data, a simple MNL
model, a NL model with a homogeneous correlation structure, and two
different MCOV models. In the models allowing for a nesting structure,
the three car alternatives were nested against the public transport alterna-
tive. Attempts to retrieve covariance heterogeneity in a deterministic fashion
(such as in the model of Bhat 1997) were unsuccessful, while accounting for
random taste heterogeneity was beyond the scope of the analysis. A linear in
parameters specification was used for all models, with a utility specification
based largely on the work of Hess et al. (2005c) and Hess et al. (2007c).

No further details are required for the MNL and NL models. For the two
MCOV models, a specification falling into the group described in Section 2.2
was used, i.e., a purely random approach used in conjunction with a trans-
form mapping to the 0−1 interval. Specifically, we use a logistic distribution,
such that T (x) = 1

1+e−x , and use two different choices for the distribution
of x. In the first model, MCOVU, we set f(x) ∼ U [xa, xa + xb], while, in
the second model, MCOVN, we set f(x) ∼ N (xµ, xσ). Attempts at using
other choices for f (x) led to very similar results, as did attempts at using
other formulations for T (x). Finally, some attempts were also made to use
a distribution with estimated bounds and without the use of an additional
transform T (x), hence not imposing a priori bounds on the distribution of
λ, and allowing data issues or model misspecification problems to manifest
themselves. However, these attempts were unsuccessful, with the estimated
bounds not being significantly different from 0 and 1 respectively, suggesting
that the imposition of the 0 − 1 bounds is in this case acceptable. Here, it
should be noted that the estimation of a model using Johnson’s SB distri-
bution with bounds fixed at 0 and 1 is equivalent to model MCOVN, i.e.,
using a logistic transform of a normally distributed variable.
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All models were coded in Ox 4.2 (Doornik, 2001), where the two MCOV
models were specified so as to acknowledge the repeated choice nature of the
data, by carrying out the integration (respectively simulation) at the level
of the probabilities for sequences of choices for a given individual, rather
than the level of individual choices.

3.3 Estimation results

The estimation results for the four different models are summarised in Table
1, where the specification for the utility function is the same across the four
models. The results show significant negative impacts of increases in travel
time (βTT,car, βTT,PT) and travel cost (βTC,car, βTC,PT), for both car and
public transport (PT). Estimates for the effect of increases in frequency for
public transport are positive, but not significantly different from zero at
reasonable levels of confidence.

In addition to the marginal utility coefficients for travel time, travel cost
and frequency, three sets of dummy variables were estimated, associated
with shifts away from the base alternative to either of the two retimed
car alternatives or the PT alternative. The three generic dummy variables
(δearly, δlate, and δPT) are all negative and significantly different from zero.
There are additional effects for respondents who regularly work from home
and respondents in part-time employment. The former are less likely than
the overall population to choose the early alternative8 or the PT alternative9,
but are more likely to choose a late departure10. For part-time workers, there
is an additional negative penalty for both retimed alternatives, along with
a positive additional dummy11 for the PT alternative12.

Additional parameters were estimated for the three remaining models to
account for the correlation between the three car alternatives. In the NL
model, we obtain a value of 0.5 for the structural parameter λ, which is
significantly different from 0 and 1 at high levels of confidence. This implies
a high correlation of 0.75 between the error terms for the three car alterna-
tives. Both MCOV models retrieve significant levels of heterogeneity for the
structural parameter λ, where, before transformation using the logistic dis-
tribution 1

1+e−x , MCOVU has x distributed uniformly between −2.324 and

8δearly,regularly work from home is not different from zero beyond the 89% level of confi-
dence.

9δPT,regularly work from home is not different from zero beyond the 77% level of confidence.
10However, the combined effect of δlate and δlate,regularly work from home is still negative.
11δPT,part-time work is significant only at the 76% level.
12Where the combined effect of δPT and δPT,part-time work is still negative.
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1.9679, while MCOVN has x distributed normally with a mean of −0.4347
and a standard deviation of 1.3558, where the mean xµ is only significantly
different from zero at the 90% level. After transformation using the logistic
distribution, this gives a range for λ between 0.0892 and 0.8774 in MCOVU

and between 0 and 1 in in MCOVN.
In terms of model fit, and in comparison to the base MNL model, we ob-

serve an improvement in log-likelihood (LL) by 8.84 units for the NL model,
which at the cost of one additional parameter, is significant, but far from
dramatic. On the other hand, for the two MCOV models, at the cost of two
additional parameters when compared to the MNL model, we observe very
significant improvements by 137.65 units for the MCOVU model and 139.27
units for the MCOVN model. The difference in these improvements shows
the advantage of allowing for covariance heterogeneity. Here, it should how-
ever be acknowledged that part of the gains in model fit could also be due
to capturing serial correlations across replications for the same respondent,
through using a panel approach in estimation. Although not generally dis-
cussed, it should be said that the same issue arises when comparing results
from a MMNL model estimated with a panel formulation to those from a
MNL model13. In the present context, it should however be said that the
models clearly indicate the presence of covariance heterogeneity, indepen-
dently of the issue of how much of the gains in model fit the representation
of this heterogeneity may be responsible for.

As a final comparison between the models, we look at the implied valu-
ation of travel time savings (VTTS) for the two modes of transport. Here,
consistent with the findings of Hess et al. (2007c), all models show higher
VTTS for car travel than for rail travel. However, there are important differ-
ences across the different model structures. Indeed, the difference between
the VTTS measures for the two modes is especially marked in the MNL
model, where the ratio is of the order of 2.3. This decreases to 1.7 in the
NL model, but reduces further to around 1.4 in the two MCOV models. As
such, the differences between the models are not solely confined to model fit,
where it can be seen that, especially when comparing NL to MNL, the dif-

13It is a common observation that MMNL models estimated using a panel formulation
produce much better model fit than models estimated using a cross-sectional formulation
(see for example ?. A large part of these additional gains can be explained on the basis that
an assumption of constant tastes across choices for the same respondent makes more sense
than an assumption of equal variation across respondents and choice situations. However,
the panel formulation potentially also captures factors unrelated to taste heterogeneity,
such as correlation across choices for the same respondent. The disentangling of the various
effects accounted for by the panel formulation (and explaining the gains in model fit) is
an important area for further research.
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ferences in model fit are relatively small when compared to the differences
in the VTTS. Finally, there are also important differences in the implied
substitution patterns between alternatives; these are looked at in detail in
the following section.

3.4 Forecasting

To give an account of the differences across the four models in terms of the
implied substitution patterns between alternatives, two forecasting exercises
were conducted, looking at the change in sample shares following increases
in travel time and travel cost for the base alternative by 20%. This allows us
to gauge respondents’ behaviour in terms of changing departure time (i.e.,
shifting to earlier or later) or mode following changes to the base alterna-
tive14.

An important question arises at this stage. No major complications
arise in the forecasting using the two closed form models, MNL and NL,
where the applicable formulae are used in conjunction with the parameter
estimates from Table 1 to produce probabilities for each of the four alter-
natives. However, in the two MCOV models, issues arise due to the use
of a panel formulation in estimation. With this approach, during model
estimation, the integration/simulation over random distributions is carried
out over respondents rather than individual choice situations. As such, it
is the probability of a sequence of choices that is simulated as opposed to
the probability of individual choices. The reasoning behind this method is
the assumption that tastes vary across respondents but stay constant across
observations for the same individual.

However, in forecasting, we require probabilities for individual choice
situations. This means that the simulation over whole sequences is not pos-
sible15. Similarly however, it is not appropriate to use a cross-sectional ap-
proach in forecasting, i.e. using simulation over individual choices. Indeed,
this would equate to treating two observations from the same respondent
in the same manner as two observations from two separate respondents, an
approach that would not be consistent with the method used during estima-
tion. To get around this issue, we rely on individual-specific draws obtained

14In actual policy analysis, some calibration of the data would be required when fore-
casting on the basis of SP data. Here, with the aim being purely methodological, this can
be avoided.

15As an example, we might be interested in predicting the change in a specific alter-
native’s probability in a certain setting following changes in one of the attributes of this
alternative.
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after estimation through conditioning on observed choices (for discussions
on this approach, see for example Train 2003, Sillano and Ortúzar 2004).
With this approach, we choose for each respondent the value from the dis-
tribution of λ that is most likely to have led to the observed sequence of
choices. With L (Yn | λ) giving the probability of the observed sequence of
choices for respondent n at a specific value for λ, the probability of observing
the specific value of λ given the choices of respondent n is given by:

K (λ | Yn) =
L (Yn | λ) f (λ)∫

λ L (Yn | λ) f (λ) dλ
, (17)

where λ is distributed according to f (λ).
Here, we replace the continuous formulation by a discrete approximation,

using summation over a very high number of draws. As such, a mean for
the conditional distribution for respondent n is obtained as:

λ̂n =
∑R

r=1 [L (Yn | λr)λr]∑R
r=1 L (Yn | λr)

, (18)

where λr with r = 1, . . . , R are independent draws with equal weight from
the distribution of λ.

Using the approach from equation (18), draws for λ were produced
for each of the 170 respondents for the two different models MCOVU and
MCOVN. In this very simplistic forecasting exercise, we only make use of the
conditional means, where the use of the distribution around the conditional
means would additionally provide us with confidence intervals.

The results of the two forecasting exercises are shown in Table 3 for
an increase in travel time for the base alternative by 20% and Table 4 for
an increase in travel cost for the base alternative by 20%. For the two
MCOV models, the forecasting exercise was carried out using the simula-
tion approach as well as using the means of the conditional distributions,
to illustrate the differences between the two approaches. In this context,
it is of interest to look briefly at the substitution patterns for one specific
observation. The results of this process are shown in Table 2, where the
specific individual chosen for this example had all four alternatives avail-
able. The means of the conditional distribution of λ for this individual are
0.5934 in MCOVU and 0.5353 in MCOVN, so both relatively close to the NL
value of 0.5. Here, it can be seen that the MNL model predicts a decrease
in the choice probability for the base alternative by 7.23%, where, due to
the independence from irrelevant alternatives (IIA) assumption, this is dis-
tributed proportionally across the three remaining alternatives, leading to
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using simulation using conditional means
MNL NL MCOVU MCOVN MCOVU MCOVN

base alt. 70.16% 70.33% 66.83% 62.50% 59.78% 60.64%
early dep. 18.61% 17.84% 18.80% 21.22% 23.45% 22.94%
late dep. 8.45% 8.01% 10.21% 12.24% 12.78% 12.19%B

as
e

PT 2.78% 3.82% 4.16% 4.04% 4.00% 4.23%
base alt. 65.09% 63.16% 61.06% 56.99% 53.89% 54.42%

early dep. 21.77% 22.47% 22.58% 24.71% 27.03% 26.77%
late dep. 9.89% 10.09% 11.77% 13.89% 14.73% 14.23%

P
re

di
ct

ed

PT 3.25% 4.28% 4.58% 4.41% 4.34% 4.58%
base alt. -7.23% -10.19% -8.63% -8.83% -9.85% -10.25%

early dep. +17.00% +25.95% +20.10% +16.46% +15.30% +16.67%
late dep. +17.00% +25.95% +15.30% +13.54% +15.30% +16.67%

C
ha

ng
e

PT +17.00% +12.04% +10.23% +9.14% +8.65% +8.42%

Table 2: Results for first forecasting exercise for a single choice situation

increases by 17%. In the NL model, the decrease in probability for the base
alternative is slightly larger, but, more importantly, the IIA assumption now
only holds inside the car nest, but not across nests, there is a bigger shift
towards the remaining two car alternatives than towards the rail alterna-
tive. The same principle applies when using the means of the conditional
distributions with the two MCOV models, where the percentage increases
are slightly less pronounced, due to the lower initial probability for the base
alternative. The difference in substitution towards the car alternatives and
the PT alternative remains very similar (roughly two to one). The most
interesting observation from Table 2 can however be made when looking at
the predicted changes in the MCOV models when using simulation rather
than the means of the conditional distributions. Here, the IIA assumption
within nests is violated, where there is now a bigger shift towards the early
departure than towards the late departure. This is not consistent with the
underlying structure of the MCOV model, reinforcing the idea that it is im-
portant to use the conditional draws rather than simulation in application
and forecasting.

We next move on to the sample level forecasts in Table 3 and Table
4. Due to the averaging across respondents, the IIA assumption clearly
does not hold at the level of sample shares in any of the models. However,
some interesting differences still arise. Across both forecasting scenarios, the
MNL model tends to underestimate the changes in sample shares following
the increases in travel time or travel cost for the base alternative. The results
for the NL model are roughly similar to those for the two MCOV models,

19



MNL NL MCOVU MCOVN

base alt. 69.34% 69.34% 69.86% 69.95%
early dep. 16.91% 16.91% 16.19% 16.11%
late dep. 8.75% 8.75% 8.93% 8.92%B

as
e

PT 5.00% 5.00% 5.02% 5.02%
base alt. 60.09% 56.48% 57.31% 57.00%

early dep. 22.11% 24.72% 24.45% 24.70%
late dep. 11.49% 12.91% 12.44% 12.53%

P
re

di
ct

ed

PT 6.31% 5.89% 5.81% 5.77%
base alt. -13.33% -18.54% -17.96% -18.51%

early dep. 30.72% 46.17% 51.01% 53.36%
late dep. 31.27% 47.51% 39.22% 40.39%

C
ha

ng
e

PT 26.27% 17.81% 15.62% 14.93%

Table 3: Results for first forecasting exercise

MNL NL MCOVU MCOVN

base alt. 69.34% 69.34% 69.86% 69.95%
early dep. 16.91% 16.91% 16.19% 16.11%
late dep. 8.75% 8.75% 8.93% 8.92%B

as
e

PT 5.00% 5.00% 5.02% 5.02%
base alt. 65.61% 63.15% 63.57% 63.42%

early dep. 18.99% 20.63% 20.27% 20.39%
late dep. 9.88% 10.79% 10.73% 10.78%

P
re

di
ct

ed

PT 5.52% 5.44% 5.43% 5.41%
base alt. -5.38% -8.93% -9.00% -9.34%

early dep. 12.30% 22.02% 25.22% 26.63%
late dep. 12.91% 23.19% 20.14% 20.76%

C
ha

ng
e

PT 10.40% 8.74% 8.06% 7.78%

Table 4: Results for second forecasting exercise

where, in the MCOV models, there is however a more pronounced shift
towards the early car alternative. Here, the small level of differences between
the NL and MCOV models can be partly put down to the averaging across
respondents, where more significant differences arise at the individual level,
as highlighted in Table 2. Finally, from a more policy oriented perspective,
the results across models show a bigger effect of changes in travel time than
travel cost, characterised by a bigger shift away from the base alternative
(by a factor of around two to one), where the actual substitution patterns
clearly remain unaffected.
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4 Summary and Conclusions

The aim of this paper was to extend the standard discrete choice modelling
framework so as to allow for random variations in the covariance structure
across respondents. The discussion in this paper has centred on the case
of an underlying GEV model, and specifically, a two-level NL model. The
extension to other underlying GEV structures poses no major difficulties, as
described in the text, while the use of an alternative approach, based on an
underlying ECL structure, is described in more detail in Appendix A.

The development of the Mixed Covariance GEV structure in this paper
has shown how it is possible to allow jointly for random as well determinis-
tic variations in the covariance structure across respondents. Additionally,
it is possible, by adding an extra layer of integration, to allow for random
taste heterogeneity, in addition to covariance heterogeneity. Here, it should
also be noted that additional random terms can be added to allow for het-
eroscedasticity across alternatives. Finally, the model can be specified as a
continuous mixture or as a discrete mixture.

The application presented in Section 3 has illustrated the advantages of
allowing for random covariance heterogeneity in an example making use of
stated preference data for the choice of departure time and travel mode in
the Netherlands. The results have shown that, while moving from a simple
MNL model to a NL structure leads to minor gains in model performance,
far more significant gains can be obtained through additionally allowing for
a variation across respondents in the level of correlation between alternatives
that are nested together. Here, the application shows great variation across
respondents, ranging from low levels of correlation in the error terms (to the
order of 30%), to almost perfectly correlated error terms for nested alterna-
tives for some individuals. This leads to very different patterns of substitu-
tion between the alternatives across respondents, a phenomenon that cannot
be represented with models assuming a homogeneous correlation structure.
The insights gained by allowing for such covariance heterogeneity can be of
great value in forecasting applications, as illustrated in Section 3.4, most
notably at the observation specific level (cf. Table 2). However, another
important difference arises between the models in terms of significant dif-
ferences in the values of willingness to pay indicators, such as the VTTS.
This suggests that by making an assumption of covariance homogeneity,
modellers potentially are at risk of obtaining biased estimates for marginal
utility coefficients, leading to unreliable policy indicators.

Several avenues for further research can be identified, including the devel-
opment of more sophisticated mixed covariance structures, and the testing
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of mixed covariance structures on other datasets. Here, it should be noted
that the discussion in this paper has focussed primarily on variations in the
extent of correlation across respondents, rather than variations in the actual
correlation structure. The latter applies for example in the case where, for
individual A, there is correlation between alternatives 1 and 2, while, for in-
dividual B, there is correlation between alternatives 2 and 3. Such variations
in the actual structure can, in the absence of an appropriate segmentation,
be accommodated in a cross-nesting framework, with the variation in struc-
ture accounted for primarily through variations in the allocation parameters.
Finally, it also remains of interest to estimate models with different distri-
butional assumptions for the structural parameters, partly with a view to
avoiding a priori range assumptions as is the case when using a transform
mapping onto the 0− 1 interval.

In closing, it should be said that mixed covariance models should in part
be seen as an explanatory tool, which, unlike other models, have the power
to highlight the presence of variations in the covariance across respondents.
On the basis of such results, and with the help of posterior analyses, the
modeller can then attempt to refine the model to accommodate some covari-
ance heterogeneity in a deterministic fashion, either through a segmentation
of the data, or by parameterising the covariance structure, as described by
Bhat (1997), potentially with additional random covariance heterogeneity,
as described in Section 2.3. If such attempts at a deterministic approach
fail, then it is clearly preferable to account for the variation in a random
way (in interpretation as well as forecasting), as opposed to maintaining the
assumption of covariance homogeneity. Either way, the modelling approach
described in this paper is thus a valuable tool for the analysis of choice
behaviour.
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A Appendix: Development of ECL approach

We now describe how the ECL formulation of the MMNL model can be
adapted to allow for covariance heterogeneity. We first review the basic
theory behind the ECL model (Section A.1) and show how it can be used
to approximate the COVNL model (Section A.2). We then proceed to the
case where the covariance heterogeneity is purely random (Section A.3),
and to the case where part of the variation is deterministic with a remaining
random part (Section A.4).

A.1 General ECL formulation

In the ECL model, correlation across alternatives is introduced through
the use of error components that are shared between alternatives that are
closer substitutes for each other. The error components take on the form of
normally distributed random variables with a mean of zero, and a standard
deviation of σ, where the estimate for σ is related to the correlation between
the alternatives.

Ignoring for the moment the issues of identification discussed by Walker
(2001), and the question of homoscedasticity16, the utilities of two alterna-
tives that have some correlation in the unobserved part of utility would be
written as:

Ui,n = Vi,n + εi,n + σ1ξ1 (19)

and

Uj,n = Vj,n + εj,n + σ1ξ1, (20)

where Vi,n and Vj,n give the observed part of utility for alternatives i and
j and respondent n, and εi,n and εj,n are iid type I extreme-value terms.
The additional error term ξ1 is distributed N (0, 1). With this, the covari-
ance between the two alternatives is given by σ2

1, while the variance for the
individual utilities is given by σ2

1 + π2

6 , leading to a correlation of:

ρ2 =
σ2

1

σ2
1 + π2

6

. (21)

16Basic ECL approximations to GEV models are heteroscedastic, while GEV models
are homoscedastic, an issue that can be addressed by cancelling out the heteroscedasticity
in ECL models through the use of additional error components.
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For the choice probabilities, integration over the N (0, 1) draws for the
error components is required. Let Ψj define the set of error components
included in the utility function of alternative j, such that:

Uj,n = Vj,n + εj,n +
∑
k∈Ψj

σkξk (22)

This notation allows for any structure for the error components, including
homoscedastic as well as heteroscedastic ones. The choice probability for
alternative i and individual n is now given by:

Pn (i | σ) =
∫
ξ1

. . .

∫
ξK

 exp
(
Vi,n +

∑
k∈Ψi

σk · ξk
)

∑
j∈Cn exp

(
Vj,n +

∑
l∈Ψj

σl · ξl
) · K∏

k=1

φ (ξk)

dξK . . . dξ1,

(23)

where K gives the total number of error components used, and φ () is the
standard Normal density function.

A.2 Adapting the ECL formulation for deterministic covari-
ance heterogeneity

The ECL formulation can be extended straightforwardly to allow for de-
terministic covariance heterogeneity by parameterising σk, for example by
setting σk = f (θ, zn), where θ is a vector of parameters, and where zn
is defined as before. The only condition applying to f () is that it yields
positive values for the standard deviations17; equation (21) guarantees that
the resulting correlation falls between 0 and 1.

A.3 Adapting the ECL formulation for purely random co-
variance heterogeneity

In the standard ECL formulation of the MMNL model, the choice proba-
bilities are obtained by integration over the distribution of the error com-
ponents, with additional integration over the distribution of random taste

17This merits some clarification. Estimation code can deal with negative values for
standard deviation parameters in the case where they are only used in the form of variances
as opposed to standard deviations; in fact, in unconstrained estimation, it can often be
observed that estimation packages produce negative estimates for the standard deviations.
The problems arise in the case where f () allows for positive as well as negative values for
σ depending on the values of zn, leading to an underestimated mean level of correlation.
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coefficients in the case of added random taste heterogeneity. Focussing for
now on the case of error components for correlation only (as opposed to
additional taste heterogeneity), random covariance heterogeneity can be in-
troduced by additional integration over the distribution of the variances of
the error components.

The choice probability is in this case given by:

Pn (i) =
∫
σ1

. . .

∫
σK

[
Pn (i | σ) ·

K∏
k=1

g (σk | θk)

]
dσK . . . dσ1, (24)

where Pn (i | σ) is the choice probability for alternative i, conditional on the
vector of standard deviations σ, as in equation (23), and where g (σ1 | θ1)
is the density function for σ1, with parameters given by the vector θ1. Here
an appropriate choice of distribution for the standard deviations is of crucial
importance, given that they need to take on positive values18. An alternative
to the use of bounded distributions comes in the use of a transform mapping
monotonically from the real domain to the space of positive numbers. The
adaptation of equation (24) to this case is straightforward.

A.4 Adapting the ECL formulation for joint deterministic
and random covariance heterogeneity

The extension of the approach described in Section A.3 to the case allowing
jointly for deterministic and random covariance heterogeneity is straight-
forward. We reuse the formulation from Section A.2, where σ = f (θ, zn).
This time however, we allow some of the elements of θ to be randomly
distributed across individuals. The choice probability for alternative i and
decision maker n is now rewritten as:

Pn (i) =
∫
θ1

. . .

∫
θK

[
Pn (i | σk = f (θk, zn)∀k) ·

K∏
k=1

g (θk | Ωk)

]
dθK . . . dθ1,

(25)

where θk is distributed according to g (θk | Ωk), where the notation allows
for correlation between individual elements in θk. It can easily be seen that
this approach reduces to the purely random formulation in Section A.3 if

18Again, this requirement is used solely to avoid an underestimation of the mean level of
correlation in the case where the distribution yields positive as well as negative estimates
for σ.
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those parameters associated with zn are zero19, and the purely deterministic
formulation in Section A.2 in the case where g (θk | Ωk) produces only a
single (fixed) value for the vector θk.

A.5 Discussion

The discussion presented here has shown how the ECL framework can be
adapted to allow for deterministic as well as random covariance heterogene-
ity. In practice, it should be said that, due to the additional dimensions of
integration, the mixed covariance ECL approach is generally more expensive
in estimation and application than its GEV based counterparts described in
the main part of this paper, albeit that it has the advantage of a simpler
form for the integrand (MNL vs more general GEV). An additional issue
however arises with regards to identification, where appropriate conditions
on identifiability need to be worked out on a case by case basis.

19I.e., only a constant is estimated, which is distributed randomly across respondents.
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