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Abstract. The Earth’s magnetic field is by and large a steady dipole, but
its history has been punctuated by intermittent excursions and reversals.
This is at least superficially similar to the behaviour of differential equa-
tions containing structurally stable heteroclinic cycles. We present a model
of the geodynamo that is based on the symmetries of velocity fields in a
rotating spherical shell, and that contains such a cycle. Patterns of excur-
sions and reversals that resemble the geomagnetic record can be obtained
by introducing small symmetry-breaking terms. '

1. Introduction

It has long been known that the Earth’s magnetic field is due to dynamo
action in its liquid core. An important part of the observational evidence for
a self-excited field is the presence in palaecomagnetic data of reversals of the
main axial dipolar part of the field. The timescale of these reversals (107
10%y) is very long compared with the natural diffusion time scale of the core,
which is about 15000y. There is an increasing amount of palaeomagnetic
data on reversals, and it is clear that the distribution of reversal intervals is
highly non-uniform — suggesting some sort of intermittent process [1]. More
recently it has been discovered that between each reversal epoch there are
many oscillations of the dipole direction and orientation which do not result
in full reversals [2]; these have been termed ezcursions.
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It is only recently that detailed numerical simulations of the geodynamo
have been able to show evidence of both these phenomena (see [3, 4, 5]
and references therein). The time dependence of the fields in these exper-
iments is spatially complex, and the difficulty of the calculation means
that only a few reversals have been observed. It seems natural then to sac-
rifice spatial structure in favour of a model that can be integrated over
many reversals. This has been done many times in the past, starting with
the work of Bullard [6] and Rikitake [7], and continuing with many oth-
ers [8, 9, 10, 11, 12]. A common feature is that the dynamo is modelled by
low-order sets of ODEs that show oscillations and reversals of the field, but
do not exhibit separation of timescales between quasi-steady polarity con-
figurations and rapid reversal events. The equations are derived as highly
truncated low-order models, or as descriptions of mechanical circuits very
different from the Earth’s core. Recent efforts [13, 14] to capture the separa-
tion of timescales rely on heteroclinic cycles in the underlying velocity field,
which occur for convection in slowly rotating spheres. However, the Earth’s
rotation period is much less than the timescale for convection in the core.

Here we consider the more realistic situation of convection in a rotating
sphere without restricting to slow rotation rates. We suppose that buoy-
ancy forces drive a fully nonlinear flow, and focus on secondary dynamo
instabilities. We use the symmetry of the velocity to write down a set of
normal form equations as a model of reversals. Our model has structurally
stable heteroclinic cycles, and when the symmetries are weakly broken, we
can identify the residence time near these cycles with the excursion time.
The reversal period in the model is many multiples of the excursion time,
and appears to depend sensitively on details of the system.

2. Symmetries of the geodynamo

Our supposition is that the velocity field that leads to dynamo action has
symmetries that can be used to distinguish different magnetic field pat-
terns. Analytical [15] and numerical [5] convection studies yield ‘cartridge
belt’ roll configurations with pairs of columnar cells aligned with the rota-
tion axis, having definite rotation and reflection symmetries. There is some
observational evidence (see [16]) that the actual velocity field v has this
structure, though the number of rolls is not well-defined by the data. We
look at the case of three pairs of rolls, though any number of pairs could
be considered and would yield similar results. Then v is invariant under
equatorial reflections (k) and 120° rotations (p) about the Earth’s axis.
The growth of the magnetic field is described by the induction equation

B
%—t:vX(va)+nv23, (1)

which clearly has the symmetry B: B < —B. Because of the symmetries
of v, solutions to (1) can be of the following symmetry types:
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p K
Axial Dipole (z3) D, +1 -1
Axial Quadrupole (z2) Q, +1 +1
Equatorial Dipole (z1) D, e T 41

Equatorial Quadrupole Q. e —1
The axial modes retain the 120° rotation symmetry of the underlying ve-
locity field, while the equatorial modes break this symmetry.

One can imagine taking a flow with the symmetries above and chang-
ing one physical parameter (e.g. the magnetic diffusivity 7) to investigate
(codimension 1) bifurcations to dynamo action. Because of the symmetry B
such bifurcations are either pitchfork or Hopf bifurcations (in fact the latter
is generic for the equatorial modes with an odd number of pairs of rolls).
It turns out, however, that for some dynamo models (based on Kumar-
Roberts flows [17]), there can be a near degeneracy between the critical
parameter for three modes, namely D,, D, and @, [18]. While there can
be no rigorous proof of this (though see e.g. [19]), we shall make use of it
as a motivation for investigating the effects of a codimension 3 bifurcation
involving modes with these three symmetries. Three modes with different
symmetries are required for a heteroclinic cycle.

We represent the magnetic field by the ansatz

B(I‘, t) =z (t)De(r) + xZ(t)Qa(r) + $3(t)Da(r) . (2)

Note that the D, mode is oscillatory. The action of the symmetries p and
K on z1, £9 and z3 are in the table above. Supposing that the bifurcations
are all supercritical, we have the following truncated normal form:

fo= (p+iw)z + z1(—|z | + Apas + Agszs) (3)
fI.IQ = H2T2 + 9 (AQI(I;% — ZE% + A23(II§) s (4)
51.33 = Hu3T3 + 5133(1431513% + A32$% - :I?%) . (5)

These equations are nonlinear, in spite of the linearity of (1), because of
the dynamical effects of the magnetic field on the flow. We note that at
this stage the phase of z; decouples from the other variables (normal form
symmetry), and so the dynamics may be described in terms of z; = |z1].
It is easy to find conditions for a cycle of the standard type between three
axial equilibria. For example, to achieve a connection between the equilibria
De = (\/M_laoao) - Qa = (03 \/N'_an)a we need M2+A21M1 > 03 /1'3+A31/1'1 <
0. Similar connections can be found between the other pairs of equilibria
under similar conditions. We can ensure that the cycle is attracting if the
product of the moduli of the contracting eigenvalues at the fixed points is
greater than the product of the corresponding expanding eigenvalues [20].
There is little difficulty in meeting all these conditions.

We have shown that with proper choices of the coefficients A;; the dy-
namics exhibits a structurally stable heteroclinic cycle, which takes the
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form of long period fluctuations in the amplitudes; these can perhaps be
identified with excursions. Nonetheless, the model is unsatisfactory, not
only because there are no reversals, but because an attracting cycle is char-
acterised by ever increasing intervals between excursion-type events. Thus
our definitive model consists of a refinement of the simple system (3-5).

3. A model for reversals

In order to obtain a model with the required properties we make the fol-
lowing changes: (a) we make the z; periodic orbit non-circular. This corre-
sponds to breaking the normal form symmetry of the oscillatory D, mode
— this is entirely natural since there are higher order harmonics generated
naturally in the nonlinear regime. The effect of this is that the secular
increase in transit times produced by the simpler system is replaced by
chaotic/intermittent cycling behaviour [21]; (b) we weakly break the p and
k symmetries; this is also natural in the context of the Earth as there are
lateral inhomogeneities in mantle heat fluxes, topography etc. This has the
effect of allowing reversals of the main D, mode, on a timescale that differs
from that for the excursions. The symmetry breaking terms in the model
below are proportional to €; (normal form symmetry), e2 (normal form
and p), and €3 (k). The B — —B symmetry is of course retained. After
some redefinition to bring out the role of the expanding and contracting
eigenvalues near the fixed points, we obtain our model system

2 0= (1 +iw)z — |z1)?2 — 2t Tz + e r3z

+ elzi’ + 62|2’1|4ZE2 + egzlxgxg , (6)
By = pomy — i — 2 - 2 p2wn + 21202 20y

+ €1 Re(2}) 22 + exa} + €323, (7)
i3 = p3x3 —Th — 61:71'[‘3|21|2:1:3 + 2 N3$%$3

+ €1 Re(2}) wox3 + exadroxs + ez, (8)

where z; = x1 + iy1, p1, 2, g3 and w are growth rate parameters and a
frequency, c1, co and c3 are the contracting eigenvalues at the three fixed
points of the cycle and eq, es and eg are the expanding eigenvalues.

In this preliminary report we focus on results for just one set of param-
eter values, selected to produce reversal-like behaviour. These are:

AM=03(wi=1) =07 =11
Ay =0.2 eo =17 ¢ =12
A3 =04 e3 =002 c¢3=1.3
er =0.12 ea = 0.1 ez = 0.001
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Figure 1. Behaviour of (6-8) for the parameters given in the text. (a) shows a long time
series for the dipole mode z3, and (b—d) show the z1, 2 and z3 evolution in the first
part of the time series. (ef) show phase portraits: (e) zs vs. T2 (f) T3 vs. 1.

Figure 1(a) shows a typical long time series (details shown in figure 1b-
d). The z3 variable, measuring the dipole strength, vacillates many times
without changing sign, punctuated by much rarer reversal events. The phase
portrait in figure 1(e) shows that the dynamics is close to a heteroclinic
cycle, while figure 1(f) shows the oscillatory nature of the 1 variable. The
probability distribution of reversals and excursions is in figure 2. While the
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Figure 2. Distributions of durations of (a,c,e) excursions and (b,d,f) reversals. (a,b) his-
tograms. (c,d) cumulative plot (log-log). (e,f) cumulative plot (log-linear).

excursion data show an unrepresentative peak at about 300 (arbitrary) time
units, the reversal data is smoother and the cumulative picture is similar
(though without ‘superchron’ outliers) to the real dataset (figure 3).

4. Discussion

In this paper we have shown some results from a normal form model
based on the (approximate) symmetries of the full geodynamo problem.
This model captures certain intermittent phenomena associated with the
geodynamo in the form of excursions and field-reversals. Our model re-
quires magnetic fields of three different symmetry types in order to have
a heteroclinic cycle, and it differs from earlier low order models of rever-
sals in that the symmetries are paramount in obtaining the form of the
model equations. Of course, as for other low-order calculations, the param-
eters cannot be related to Earth-like quantities at this stage. That said,
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Figure 3. Distribution of reversal durations: cumulative plot (log-log) for the geomag-
netic field (reproduced from [1]). Compare with figure 2(d).

transitions between magnetic fields with different types of symmetry are a
prominent feature of large-scale geodynamo calculations [3, 4]. In addition,
our model suggests that weakly broken symmetries may play an important
role in determining the ratio between excursion and reversal timescales.
More detailed investigations of the model will be reported elsewhere [22].
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