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Abstract

This paper introduces an evolutionary algorithm for the solution of a class of
hierarchical (“leader-follower”) games known as Equilibrium Problems with
Equilibrium Constraints (EPECs). In one manifestation of such games, play-
ers at the upper level who assume the role of leaders, are assumed to act
non cooperatively to maximise individual payoffs. At the same time, each
leader’s payoffs are constrained not only by their competitor’s actions but
also by the behaviour of the followers at the lower level which manifests in
the form of an equilibrium constraint. By a redefinition of the selection crite-
ria used in evolutionary methods, the paper demonstrates that the solution
for such games can be found via a simple modification to a standard evolu-
tionary multiobjective algorithm. We give a proposed algorithm (NDEMO)
and illustrate it with numerical examples drawn from both the transporta-
tion systems management literature and the electricity generation industry
underlying the applicability of NDEMO in multidisciplinary contexts.

Keywords: Nash Equilibrium, Equilibrium Problems with Equilibrium
Constraints, Transportation Systems Management, Electricity Markets

1. Introduction

A major trend in the provision of transportation services and facilities has
been deregulation coupled with the private sector playing a larger role. When
it occurs in highway [60] or transit [62], entities providing such services face
competition from others with similar offerings. It is of interest to regulators
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to understand how such organizations make decisions on their service levels
in this deregulated environment.

In this environment, the service levels provided are an outcome of a non-
cooperative Nash game [39] amongst the players. However in transportation,
this game possesses a feature that distinguishes it from the classic Nash game:
The players’ actions are constrained by a condition defining equilibrium in the
transportation system [12]. Users of the transportation network make their
route choice decisions by choosing routes that are the lowest cost according to
Wardrop’s Equilibrium Principle [58] and their route choice is parameterized
in the decision variables of these firms. Therefore this is a hierarchical (i.e.
leader-follower) game with the firms as leaders at the upper level engaged in
a Nash game and travelers as followers at the lower level routing according to
an equilibrium condition. Thus the terms “firms”, “leaders” and “players”
are synonymous in this context.

The game just described is an instance of a broader class of Equilibrium
Problems with Equilibrium Constraints (or EPECs) ([35],[36]). EPECs have
emerged as an area of research ([2],[10],[57]) in mathematics applicable to
transportation systems management and other disciplines ([22],[36]). This
paper focuses on the determination of equilibrium values of the strategic
variables for each profit maximizing leader when in competition with others.

This paper is an extension of the earlier work by the present author [29]
but has been extended in two key areas. Firstly on the theoretical aspect,
we strengthen the theoretical justification of the proposed algorithm. On
the practical aspect, we demonstrate the applicability of our algorithm to
the examples of EPECs that arise not only within transportation systems
management but also those arising in the electricity generation industry to
demonstrate that our proposed algorithm is indeed applicable in multidisci-
plinary contexts.

The rest of this paper is organized as follows. In the next section we
outline the literature of the leader follower game paradigm that forms the
basis of this research. Section 3 subsequently focuses on the notions associ-
ated with the non-cooperative Nash game underlying the behaviour of the
leaders in the EPEC. Section 4 reviews both the deterministic (i.e. gradient
based) and evolutionary approaches for computing NE. Section 5 elucidates
the Nash Domination criteria developed in [33] and provides an algorithm.
Section 6 presents numerical examples of the solution of EPECs utilizing the
concept of Nash Domination. Section 7 concludes the paper with a summary
and directions for further research.
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Figure 1: Stackleberg Game - Single Leader
(MPEC)

Figure 2: Multiple Leader Follower Game
(EPEC)

2. Leader Follower Games

Figure 1 gives a pictorial representation of what has come to be known as
the Stackelberg game [56]. It is a model of the market structure whereby a
single leader is able to gain increased profits by anticipating the reactions of
the rest of the market participants (known as the “followers”). In the field of
mathematics, the Stackelberg game is referred to as a Mathematical Program
with Equilibrium Constraints (MPEC) and has been investigated in detail
by a number of researchers (see [31],[41]). The characteristic unifying feature
of MPECs is that in addition to general constraints, there exists a constraint
specifying equilibrium in some parametric system. The key point to note is
that the followers are assumed to take the single leader’s decision variables
as exogenous when optimizing their individual objectives [32].

This equilibrium constraint is also present in the case of a Multiple Leader
Follower Game shown in Figure 2. Though both models possess in common
the hierarchical feature, the key difference between Figure 1 and Figure 2 is
that multiple leaders are present in the latter and these leaders are assumed
to play a game amongst themselves. We thus seek the equilibrium points of
the game played by these upper level leaders. Hence as an extension of the
MPEC, Figure 2 illustrates the more general class of Equilibrium Problem
with Equilibrium Constraints (EPECs).

In this multi-leader generalization of the Stackelberg game articulated
e.g. in [35], researchers have conjectured that there could be two possible
potential behaviours of the leaders at the upper level [42]. At one extreme,
leaders could act cooperatively and this results in a multiobjective prob-
lem subject to an equilibrium constraint at the lower level (MOEPEC) [61].
At the other extreme, the leaders can act non-cooperatively and play a Nash
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game amongst themselves resulting in a Non Cooperative EPEC (NCEPEC).
In one of the numerical examples, we will revisit the distinction between the
MOEPEC and NCEPEC. For the main part of this paper though we con-
centrate exclusively on the situation in which leaders act non-cooperatively
with the objective of maximizing personal gain.

Casting our present work within the broader research context, the exis-
tence of the binding equilibrium condition distinguishes the games we de-
scribe herein from standard Nash Games. In particular [12] have pointed
out that the NCEPEC is a special case of a Generalised Nash Equilibrium
Problem as described in (e.g. [19],[24],[52]).

3. Nash Equilibrium

Much of the game theory literature deals with games that are either zero
sum where victory or gains for one player is exactly balanced by the defeat or
losses for the other (as in games such as checkers [3]) or where the actions of
players are constrained to be in a discrete set ( such as the binary options of
confess/do not confess in games like the Prisoner’s Dilemma [49]). However
the solution algorithms proposed for these are generally not applicable to
NCEPECs. In such games, the payoffs to the players are continuous and
the strategic decision variables are subsets of the real line (as described in
Chapter 6 of [59]).

Consider the leaders’ problem in the NCEPEC. This is a single shot
normal form game with a set N of players indexed by i ∈ {1, 2, ..., n} and each
player can play a strategy si ∈ Si which all players are assumed to announce

simultaneously. S =
n∏

i=1

Si is the collective action space for all players. It

is convenient to denote s−i as the combined strategies of all players in the
game excluding that of player i i.e. s−i ≡ (s1 , ..., s(i−1)

, s
(i+1)

, ..., sn) . So with
a slight abuse of notation, we have that s ≡ (si, s−i). We emphasize that
the notation (si, s−i) does not imply that the components of s are reordered
such that si becomes the first block. We refer to s as a strategy profile of all
players in the game. Let Ui(s) be the payoff to player i, i ∈ N if s is played.

Definition 1. [39] A combined strategy profile s∗ = (s∗
1
, s∗

2
, ..., s∗n) ∈ S is a

Nash Equilibrium (NE) for the game if :

Ui(s
∗

i , s
∗

−i) ≥ Ui(si, s
∗

−i) ∀si ∈ Si , ∀i ∈ N (1)
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Definition 1 emphasises the fact that at a NE no player can benefit (in-
crease individual payoffs) by unilaterally deviating from its current strategy.
Hence each player is doing the best taking into account what the competi-
tors are doing [16]. The NE problem is the determination of strategies that
satisfy Equation 1.

4. Computation of Nash Equilibrium

4.1. Deterministic Approaches

In a game, the optimal strategy for a player is governed by the best re-
sponse function. If Ui(s) is continuously differentiable, then the best re-
sponse function for player i is given by dUi(si, s−i)/dsi = 0 ([16], [59]).
The NE is the intersections of these best response functions for all players
which amounts to finding solutions to n simultaneous equations i.e. solving
dUi(si, s−i)/dsi = 0, ∀i ∈ {1, 2, ..., n} ([7],[59]).

While useful for providing insights into the behaviour of players, the an-
alytical method is not feasible for realistic problems and even less so for
NCEPECs due to the binding equilibrium condition. Thus the practical
approach for finding NE is by using variants of fixed point iteration (e.g.
non-linear Gauss-Siedel) ([25],[57]) or by formulating it as a Complemen-
tarity Problem [26]. Applications of these methods are found in (e.g. [18],
[30]). Convergence of these algorithms rely on the payoff functions being con-
tinuously differentiable and possessing diagonally dominant Jacobians ([16],
Theorem 4.1, pp. 280). However, if the payoff functions of the players are not
concave, there may exist NE that satisfy Equation 1 locally but not globally.
This is known as a “local NE trap” ([54], Definition 3, pp.306). There is thus
a parallel with the literature on multi-modal function optimization where
the potential for multiple optima cannot be ignored. Thus apart from their
differentiability requirements, another drawback of deterministic approaches
is that they can fall prey to the local NE trap, an occurrence crucially de-
pendent on the starting point used in these algorithms. For details of these
and other deterministic methods, see ([13],[14],[38]).

4.2. Evolutionary Methods

Due to the proven ability of evolutionary algorithms to deal with non-
smooth and non-differentiable functions as evidenced by their reported suc-
cess in escaping local optima and potentially local NE traps, evolutionary
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counterparts of deterministic fixed point iteration methods were proposed in
([48],[50] and [53]).

In particular, the motivation of the work reported in [53] was to employ
the NE paradigm as an alternative to multiobjective optimization. In this
work the authors provided an example which suggested that the NE point
is on the Pareto Frontier which was generated by a standard evolutionary
multiobjective optimization (EMO) algorithm. It was stated in [53] that
the EMO required much more computing resources to generate the Pareto
Frontier and the Nash Genetic Algorithm that these authors proposed would
be robust for finding at least one solution and is hence useful as an alternative.
However there is a need to exercise caution. Though there exists games where
the NE is also Pareto Optimal, this is generally not the case. Since the NE
fundamentally assumes non-cooperative behaviour between players with each
maximizing personal rather than collective interests, it is clearly possible that
one player can be made better off without making another worse off and thus
in this case the NE is not Pareto Optimal. This fact has been demonstrated
in [21] and will also be shown in a numerical example to be presented later
in Section 6.

A parallel research strand has been the exploitation of co-evolution since
it was first demonstrated [44] for tackling multi-dimensional function opti-
mization. Several sub populations (one representing each problem dimension)
are evolved simultaneously to avoid premature convergence and to widen the
search of the problem space. Ideas from co-evolution have been exported
into algorithms designed for the detection of NE; here each sub population
encodes the strategies of individual players ([6],[43],[47]). However doubts
have been cast on the performance of co-evolutionary methods. In [54],
the co-evolutionary algorithm had to be hybridized with local search tech-
niques to enable successful detection of NE. [27] developed a co-evolutionary
particle swarm optimization method which attempted to detect the NE by
learning the best response functions of the players. Instead of using the co-
evolutionary paradigm of previous works, a novel idea exploiting the concept
of Nash Dominance was proposed [33] to find NE as discussed in Section 5.

5. Nash Domination

5.1. Theoretical Foundations

At their most abstract level, evolutionary multi-objective (EMO) algo-
rithms ([4],[11]) apply stochastic operators to a parent population with the
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aim of evolving a fitter child population to solve vector valued optimiza-
tion problems. Subsequently, in the selection phase, a comparison is made
between a chromosome x from the parent population and a chromosome y
from the child population on the basis of fitness and the weaker of the two
is discarded. This is entirely consistent with the principle of survival of the
fittest. Given that one of the objectives of EMO is to identify the entire
Pareto front [11], fitness is assigned based on Pareto Domination (PD): x
Pareto Dominates y if x is strictly no worse off than y in all objectives and
x is better than y in at least one objective ([11], Definition 2.5, pp. 28).

[33] define a concept analogous to PD called Nash Domination for the
NE problem. A chromosome in this context represents the strategies of all N
players concatenated into a row vector i.e. a strategy profile. Then instead
of using PD to compare two chromosomes i.e. two strategy profiles, Nash
Domination operates by counting the number of players that can benefit if
each player switches strategies in turn. The fewer the number of players that
can profit from unilaterally deviating from one profile compared to the other,
the closer the former is to a NE following Definition 1.

Consider two strategy profiles {x, y} ∈ S, (x ≡ (x1, ..., xn), y ≡ (y1, ..., yn))
and introduce an operator k : S×S → N associating the cardinality of a set
defined by 2:

{i ∈ {1, ..., n} |Ui(yi, x−i ) ≥ Ui(x), yi 6= xi} (2)

The set thus defined by (2) comprises the players that would potentially
benefit by playing yi when everyone else plays x−i. The total number of
players in this set is given by k(x, y). A similar interpretation applies, mu-
tatis mutandis, for k(y, x). The procedure is summarized in Algorithm 1.
Note that in order to evaluate k(x, y) and k(y, x), the payoff to each player,
individually, from deviating has to be computed. Following this procedure
outlined in Algorithm 1, one of the following outcomes must be true: ([33],
Remark 4, pp. 365)

1. k(x, y) < k(y, x)→ x Nash Dominates y or

2. k(y, x) < k(x, y)→ y Nash Dominates x or

3. k(x, y) = k(y, x) → x and y are Nash Non Dominated (NND) with
respect to each other.

Lemma 1. All Nash Non Dominated (NND) chromosomes are NE.

7



Algorithm 1 Nash Domination Comparison

Initialize k(x, y) = 0, k(y, x) = 0
for i = 1 to n do

if Ui(yi, x−i) ≥ Ui(x) then
k(x, y) = k(x, y) + 1

else if Ui(xi, y−i) ≥ Ui(y) then
k(y, x) = k(y, x) + 1

end if

end for

Proof. See [33], Proposition 9, pp. 366. �

The theoretical basis of the Nash Domination Comparison procedure pro-
posed in [33] and outlined in Algorithm 1 is in fact founded on the Nikaido
Isoda (NI) function. This function as given in Eqn. 3 is a mathematical tool
that plays a key role in the study of NE problems [5],[12],[20],[24]. Consider
again two strategy profiles {x, y} ∈ S, then the interpretation of Ψ(x, y) is
as follows: each summand shows the increase in payoff a player will receive
by unilaterally deviating and playing a strategy y while other players play
according to x.

Ψ(x, y) =

n∑

i=1

[Ui(yi, x−i)− Ui(x)] (3)

The interpretation of Ψ(y, x) is analogous: each summand in this case
is the increase in payoff a player will receive by unilaterally deviating and
playing a strategy x while other players play according to y. Ψ(x, y) is
everywhere non-positive for all feasible y when x is a NE profile, a result
that follows directly from Definition 1 because at a NE no player can increase
their payoff by unilaterally deviating. Thus the NI function plays the role
of a “merit function” measuring the proximity of a strategy to NE. In other
words, the closer Ψ(x, y) when compared to Ψ(y, x), is to 0, the closer x is
to a NE compared to y. Without explicitly using the NI function, the Nash
Domination procedure suggested in [33] achieves the same goal by instead
counting the number of players that can profitably deviate.
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5.2. The NDEMO Algorithm

Based on Lemma 1, we can find the NE by checking for Nash Dominance
when comparing chromosomes. This replaces the usual Pareto Dominance
check when using a standard EMO algorithm. Hence instead of locating the
Pareto Front, we collect its analogue: the Non Nash Dominated Front to
which the population converges. A proposed Nash Domination Evolution-
ary Multiplayer Optimization (NDEMO) algorithm is given in Algorithm 2.
NDEMO is based on the method of [51] which relies on Differential Evolu-
tion (DE) [46]. By modification of this selection criteria, any other EMO
algorithm (see [4] or [11] for alternatives) can be used.

NDEMO operates as shown in Algorithm 2. The user specifies the max-
imum number of iterations Maxit, the population size NP , the convergence
tolerance, ǫ(> 0), control parameters required in DE, namely Mutation Fac-
tor F and Probability of Crossover CR [46] and a procedure to compute
payoffs. Initial parent strategy profiles P are generated randomly. A hypo-
thetical example of such a profile is shown in Table 1. Each chromosome is a
vector in D dimensions with D being equal to the number of strategy vari-
ables per player multiplied by the number of players (assuming that every
player has the same number of strategy variables). In the hypothetical ex-
ample given in Table 1 since there are two player with two strategic variables
each, we have that D is 4.

Table 1: Example of chromosome encoding of a strategy profile in a hypothetical game
with 2 players and 2 strategic variables per player

Player 1’s strategies Player 2’s strategies

Variable 1 2 1 2
Value 2.75 20.14 0.126 30.133

Child strategy profiles C are created by applying the DE operators via the
stochastic combination of randomly chosen parents as discussed in [46]. Algo-
rithm 3 uses the “DE/rand/1/bin” [46] strategy which means that the child
vector is formed by adding 1 difference vector to a randomly selected pop-
ulation member and then undergoes binary crossover. Whilst the mutation
procedure (line 11 of Algorithm 3) is performed on the entire vector, it must
be noted that crossover (line 13 of Algorithm 3) operates dimension-wise. In
lines 14 of Algorithm 3, rand(0, 1) is a pseudo random number between 0
and 1 and intr(1, D) is a pseudo random integer between 1 and D. Finally to
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Algorithm 2 Nash Domination Evolutionary Multiplayer Optimization

1: Input: NP , Maxit, ǫ, DE Control Parameters, payoff functions
2: it← 0
3: Randomly initialize a population of NP parent strategy profiles P
4: Evaluate payoffs to players with P
5: while it < Maxit or P not converged do

6: for j = 1 to NP do

7: use Algorithm 3 to create child strategy profiles vector y
8: Citj ← y
9: end for

10: Evaluate payoffs to players with C
11: T ← ∅
12: for j = 1 to NP do

13: x← P it
j

14: y ← Citj
15: use Algorithm 1 to carry out Pairwise Nash Domination Comparison

between x and y to determine k(x, y) and k(y, x)
16: if k(x, y) < k(y, x) then
17: discard y
18: T ← x
19: else if k(y, x) < k(x, y) then
20: discard x
21: T ← y
22: else

23: T ← x
24: T ← y
25: end if

26: end for

27: if |T | > NP then

28: Randomly trim T until NP remain
29: end if

30: Randomly choose a chromosome m from T
31: Compute Euclidean norm between m and every member in T
32: if maximum of norm ≤ ǫ then
33: Terminate
34: else

35: P(it+1) ← T
36: it← it + 1
37: end if

38: end while

39: Output: Nash Non Dominated Solutions
10



enforce bound constraints, we also utilise the method suggested in [45] (line
16 of Algorithm 3 ) so that if the child vector produced violates the bound
constraints, it is reset to a point half way between its pre-mutation value and
the bound violated.

Algorithm 3 Creating a child vector via Differential Evolution

1: Input: Current Population P
2: Input: Mutation Factor F , Probability of Crossover CR
3: Input: Lower Bounds LBd and Upper Bounds UBd in each dimension d
4: Randomly choose 3 integers: r1, r2, r3 between 1 and NP such that:
5: r1 6= j, r2 6= r1 6= j and r3 6= r2 6= r1 6= j,
6: x← Pj

7: a← Pr1

8: b← Pr2

9: c← Pr3

10: Mutation: Produce a mutant vector z via a stochastic combination of
donor vectors

11: z ← a + F (b− c)
12: for d = 1 to D do

13: Crossover

14: yd ←

{
zd
xd

if rand(0, 1) < CR ∨ d = intr(1, D)
otherwise

15: Enforce Bound Constraints

16: yd ←







(xd + LBd)/2 if yd < LBd

(xd + UBd)/2 if yd > UBd

yd otherwise
17: end for

18: Output: child vector y

At each generation, parent and child strategy profiles are compared one
by one pairwise, following the Nash Domination Comparison procedure of
Algorithm 1. Those chromosomes that are NND are stored in a temporary
population T . However, this means that the size of T , shown in line 27 of
Algorithm 2 as |T |, may exceed NP . If this happens, we randomly trim T
so that there will always be only NP parents for the next generation (lines
27 to 29 of Algorithm 2). To check convergence to the NE, randomly select
a chromosome m and compute the Euclidean norm between m and every
member of T (lines 30 to 31 of Algorithm 2). If the maximum distance is
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less than ǫ, the population is judged to have converged to a NE and the
algorithm can terminate. Otherwise the counter is increased and the process
is repeated.

6. Numerical Examples

In this section six numerical examples occurring in three multidisciplinary
contexts are provided to demonstrate the applicability of NDEMO to solving
realistic problems. Table 2 gives the parameters used for the numerical exper-
iments. Note that though we allowed for a maximum of 400 iterations, all the
examples required less than this to meet the specified termination tolerance
ǫ of 0.0001. All numerical experiments were conducted using MATLABTM

7.8 running on a 32 bit WindowsTM XP machine with 4 GB of RAM.

Table 2: Parameters used in the NDEMO for all Numerical Experiments

Control Parameter

Mutation Factor F 0.45
Probability of Crossover CR 0.35

Population Size NP 50
Maximum Number of Iterations Maxit 400

Termination Tolerance ǫ 0.0001

6.1. Examples from Production of Homogeneous Product

The first example presented arises when firms compete in the production
of a homogeneous product. The purpose of this example is three fold. Firstly,
we demonstrate that NDEMO successfully converges to previously reported
results for games without any equilibrium constraint (i.e. when the game
is not hierarchical in nature) and thus show that NDEMO can be applied
to standard Nash games. Secondly, we use this example to demonstrate
an instance of an MOEPEC when the players are assumed to cooperate.
Finally, we wish to compare the solution of the MOEPEC with the NCEPEC
for the purpose of emphasising the distinction between a non cooperative
Equilibrium and a Cooperative Equilibrium.

The player dependent parameters (ωi, λi and θi) shown in Table 3 are
found in [34]. These will be the parameters that we will use for the 3 case
studies for this example.
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Table 3: Production Cost Function Parameter Specification for Players

Firm i ωi λi θi

1 10 5 1.2
2 8 5 1.1
3 6 5 1.0
4 4 5 0.9
5 2 5 0.8

6.1.1. Case 1: Example 1 as a Cournot Nash Game

Here we consider the situation in which the firms engage in a Cournot-
Nash game amongst themselves. Because of the absence of a hierarchical
structure, this game is neither a NCEPEC nor a MOEPEC. However its in-
clusion serves to demonstrate that the proposed algorithm is able to detect
the NE and replicate the reported results in [18] and [30] where deterministic
methods were proposed. In this setting, each firm maximises individual prof-
its from the sale of the homogeneous good (given as the difference between
revenues and production costs) as given by 4.

Ui(q) = P (q)qi
︸ ︷︷ ︸

Revenues

−ωiqi + (
θi

θi + 1
)λi

−1
θi xi

θi+1

θi

︸ ︷︷ ︸

Production Costs

where P (q) = 5000
1
1.1 (

5∑

i=1

qi)
−( 1

1.1
)

(4)

However the price (P (q)) and hence individual firm revenues is dependent
not only on their on individual production levels but also on that of their
competitors. Using the parameters of NDEMO as mentioned earlier, Table
4 reports results obtained from applying NDEMO to this problem and also
compares it against the results published in the literature.

6.1.2. Case 2: Example 1 as a MOEPEC

Let us now consider the example from [37] where a separate problem to be
described , using the same parameters as in Case 1, is cast as a MOEPEC. In
[37] it was assumed that Firms 1 and 5 become the leaders in the game and
cooperate to maximize individual profits again following 4 while the followers
(firms 2,3 and 4) play a Nash game amongst themselves. This therefore gives
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Table 4: Example 1 Case 1 - Comparison of the Results of NDEMO with results published
in literature

Firm 1 2 3 4 5

[18] 36.9318 41.8175 43.706 42.659 39.1800
[30] 36.9325 41.8182 43.7066 42.6593 39.179

Results from NDEMO:
Mean 36.9368 41.8198 43.7092 42.6612 39.18

Standard Deviation 0.0012 0.0006 0.0008 0.0005 0.0005

rise to a MOEPEC 1. Given the production levels of the leaders and treating
these as exogenous, the followers seek to individually maximize their profits
using 4. Assuming that the payoff functions are continuously differentiable
(a condition easily verifiable for this example) the first order conditions for
a profit maximum for each of the followers are defined by 5:

CP







fi =
∂Ui

∂qi
≥ 0

∂Ui

∂qi
qi = 0

qi ≥ 0






i ∈ {2, 3, 4} (5)

It is easy to see that 5 in fact defines a Complementarity Problem (CP)
[13],[26],[30] which when written in generic form is to find q ∈ R

n where
f : Rn → R

n such that:

f(q) ≥ 0
qf(q) = 0
q ≥ 0

(6)

As the leaders (firms 1 and 5) cooperatively maximise their profits, the
actions of the followers leads to 5 which is imposed as an implicit nonlinear
constraint on the leaders’ actions. The resulting MOEPEC can be written
as a vector optimization problem (with T denoting the transpose) in 7.

1This is in fact a MultiObjective Equilibrium Problem with Complementarity Con-
straints (MOEPCC) but the MOEPCC is a special case of the MOEPEC and the distinc-
tion does not affect our ensuing discussions.
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max
q1,q5

[U1(q1, q−1), U5(q5, q−5)]
T

subject to
q1, q5 ≥ 0
{q2, q3, q4} → sol CP

(7)

In 7 “sol CP” emphasises that the production levels of the followers is the
solution of the (nonlinear) CP given by 5. The Multiobjective Self Adaptive
Differential Evolution (MOSADE) [23] algorithm was used to generate the
Pareto Front corresponding to 7 and the resulting front is shown in Figure
3. In doing so, we integrated within MOSADE, the PATH Solver from [9] to
solve the CP (i.e. 5) for each vector of the production levels of the leaders.
On Figure 3, the two points marked with a ⋆ correspond to the two solutions
reported in [37] (see Table 5 ) which were obtained using a deterministic
non smooth method. If negotiations between the leaders were allowed under
prevailing anti-trust legislation, we conjecture that this Pareto Front would
play a key role in these negotiations.

Table 5: The two solutions reported in [37] and indicated on Figure 3 with ⋆

Solution 1 Solution 2

Profit of Leader 1/Firm 1 840.86 978.89
Profit of Leader 2/Firm 5 485.63 410.97
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Figure 3: Example 1-Case 2 Pareto Front for
MOEPEC
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Figure 4: Example 1-Case 3 The NCEPEC
solution (×) is not on the Pareto Front
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6.1.3. Case 3: Example 1 as a NCEPEC

Using the same parameters as in the previous two cases, assume that these
same leaders, firms 1 and 5 do not cooperate as they were assumed to do in
Case 2 but instead play a Nash game amongst themselves. The optimization
problem facing each leader individually is given in 8 and 9 respectively. As
the leaders (firms 1 and 5) individually maximise their profits, the production
levels of the followers leads to the complementarity problem which is imposed
as an implicit nonlinear constraint on the leaders’ actions.

Player 1 /Leader 1







max
q1

U1(q1, q−1)

subject to
q1 ≥ 0
q5 = q̄5
{q2, q3, q4} → sol CP

(8)

Player 5 /Leader 2







max
q5

U5(q5, q−5)

subject to
q1 ≥ 0
q1 = q̄1
{q2, q3, q4} → sol CP

(9)

Critically compared to the MOEPEC, in the NCEPEC, when optimising
their individual profits, each leader searches for the best response to the other
firm’s production level. Integrating NDEMO with the PATH Solver [9] to
resolve the CP as before, we apply NDEMO to solve the resulting NCEPEC.

The result produced by the NDEMO algorithm is given in Table 6 and
this solution (in profit space) is marked with × on Figure 4. As illustrated in
Figure 4, the non cooperative outcome is not Pareto Optimal. It is obvious
that any one of the leaders can be made better off (i.e. increase individual
profits) without making the other worse off. For example, holding the profit
from Leader 1 fixed at × of 950.56, one can move upwards (in the direc-
tion of the arrow) towards the Pareto Front and hence increase the profit of
Leader 2 without reducing the profit accruing to Leader 1. This outcome
highlights the key difference between the MOEPEC and the NCEPEC and
the proposed NDEMO algorithm is designed for the latter. Our finding is
similar to that concluded in [21] 2 who also found that the result obtained by

2Figure 2 in [21] is analogous to Figure 4 in this paper.
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the Nash Genetic Algorithm [53] lies inside the Pareto Front generated by a
conventional EMO algorithm when optimizing a problem arising in the steel
forging industry. In our example, the primary reason that the Nash point lies
inside the Pareto Front is attributable to the assumption of non-cooperative
behaviour between the leaders.

Table 6: Example 1 Case 3 - Production levels and Profits for Leaders in NCEPEC

Leader 1 Leader 2

Production Profit Production Profit
97.70 950.56 42.14 414.72

6.2. Examples from Private Sector Participation in the Operation of Toll
Roads

The next three examples presented are typical of situations when pri-
vate profit maximizing firms compete with one another in the operation of
toll roads. The private firms, acting as leaders, set their strategic decision
variables and the followers (who are in effect the highway users) optimize
their route choice according to Wardrop’s Equilibrium Condition [58]. We
seek therefore to compute the Nash Equilibrium strategic variables of these
games 3.

We define the notation for a mathematical statement of the problem:
A: the set of directed links in a traffic network,
B: the set of links which are subject to tolls B ⊂ A,
Q: the set of origin destination (O-D) pairs in the network,
v: the vector of link flows v = [va] a ∈ A,
τ : the vector of link tolls with τa = 0, ∀a 6∈ B,
c(v): the vector of monotonically non decreasing travel costs as a function

of link flows on that link only,
c = [ca(va)] a ∈ A,
µ: the vector of generalized travel cost for each OD pair µ = [µq], q ∈ Q,
δ: the continuous and monotonically decreasing demand function for each

O-D pair as a function of the generalized travel cost between OD pair q alone,
δ = [δq], q ∈ Q,

3We measure tolls in units of seconds and revenues/profits in seconds following con-
ventions in the transportation planning literature [40].
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δ−1: the inverse demand function giving the highway travel cost as a
function of the demands and

Ω: feasible region of flow vectors, defined by a linear equation system of
flow conservation constraints.

For simplicity suppose that each player is able to set tolls only on a
single link in the network then each seeks to maximize its individual revenue
(payoff) as given in 10

Max
τi

Ui(τ ) = vi(τ)τi, ∀i ∈ 1, 2...n (10)

Where vi is obtained by solving the variational inequality (11) i.e.

c(v∗, τ)T (v − v∗)− δ−1(δ∗)T (δ − δ∗) ≥ 0, ∀(v, δ) ∈ Ω (11)

Hence for a specified toll vector τ , the solution of the Variational Inequal-
ity defined by 11 results in a vector of link flows and demands (v∗, δ∗ ∈ Ω)
that satisfies Wardrop’s Equilibrium principle [58] of route choice (see [8, 55]).
It is well known that the variational inequality in 11 can be solved by means
of a standard traffic assignment algorithm once the vector of tolls have been
input [8].

6.2.1. Example 2

Figure 5: Highway Network with 18 directed links from [28] for Examples 1 and 2 (links
labeled are road numbers)

This example is taken from [28]. Let roads number 7 and 10 shown in
Figure 5 be the only toll roads operated by two independent players. This
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Table 7: Example 2 - NCEPEC Tolls (seconds)

Firm Road NDEMO [27] [28]

1 7 141.36 141.36 141.37
2 10 138.28 138.29 138.29

example was solved as a complementarity problem in [28] and via a Coevo-
lutionary Particle Swarm Algorithm in [27]. We employed NDEMO with the
parameters given in Table 2 and NDEMO took 12 minutes to converge to
the tolls shown in Table 7 which agrees with previous results. The standard
deviation of the variables at convergence were both less than 0.0001.

6.2.2. Example 3

Next we consider the situation when, in addition to roads 7 and 10 be-
ing tolled as in Example 2, another player maximizes payoffs by charging
tolls on road 17. The results are reported in Table 8. The standard devi-
ation of the variables at convergence were both less than 0.0001. Although
NDEMO again successfully converged to the NE (as verified by solving it
as a complementarity problem following the method described in [28]), this
time NDEMO took 19 minutes to meet the same convergence criteria. Thus
with one additional player, the time taken has increased by 40% over the
2 player case. The increase in computing time stems from the domination
checking procedure of Algorithm 1 combined with the hierarchical nature of
the game. This arises from the need to solve a traffic assignment problem
for each unilateral deviation (so as to obtain k(x, y) and k(y, x)).

Table 8: Example 3 - NCEPEC Tolls (seconds)

Firm Road NDEMO Method of [28]

1 7 140.94 140.96
2 10 137.51 137.56
3 17 711.25 712.88
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Figure 6: Highway Network with 11 directed links from [60] for Example 3 (links labeled
are road numbers), Dash lines indicate links (9,10 and 11) which are subject to Tolls and
Capacity Expansion

6.2.3. Example 4

In this example we consider the 11 link network from [60] where each
player has two strategic variables. In this case, beyond collecting the toll
revenues, each player also has to finance capacity expansion of the network
link operated. In addition to the notation introduced earlier, we redefine B to
be the set of links which are subject to both tolls and capacity enhancements,
B ⊂ A. Further let β represent the vector of link capacity enhancements with
βa = 0, ∀a 6∈ B.

The payoff to player i, i ∈ N is the difference between the toll revenue
obtained by collecting tolls from traffic using the link and the amortized cost
of providing the capacity enhancements, I(βi). Thus α is a parameter that
transfers the costs of the project into unit period costs. Mathematically, the
resulting choice of the strategic variables for each player may be represented
by the optimization problem in 12:

Max
τi,βi

Ui(τ, β) = vi(τ, β)τi − αI(βi), ∀i ∈ N (12)

Where vi is obtained by solving the variational inequality representing
Wardrop’s User Equilibrium Condition (13)

c(v∗, τ, β)T (v − v∗)− δ−1(δ∗)T (δ − δ∗) ≥ 0, ∀(v, δ) ∈ Ω (13)

The three links (numbered 9,10 and 11) subject to tolls and capacity
enhancements are shown as dashed lines in Figure 6. Details of the link pa-
rameters and the functional forms of the travel demand relationships can be
found in [60] where this was solved via a heuristic gradient based procedure.
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The results in [60] are compared with those produced by NDEMO in Table
9. At convergence, the standard deviation of the population of toll and ca-
pacity enhancement variables are all less than 0.0001. Although NDEMO
took about 18 minutes to converge to the specified tolerance (which is simi-
lar to the time taken in Example 2) this finding suggests that increasing the
number of strategic variables per player did not have a significant effect on
the performance of the algorithm.

Table 9: Example 4 - NCEPEC Tolls and Capacities

NDEMO [60]
Firm Link Toll Capacity Profit Toll Capacity Profit

(secs) (vehicles) (secs/hr) (secs) (vehicles) (secs/hr)

1 9 4.53 151.74 302.04 4.52 151.60 301.43
2 10 4.76 193.01 417.63 4.76 193.04 417.14
3 11 2.97 61.29 25.98 2.97 61.88 25.92

We provide plots of the mean and standard deviation of the population at
each iteration to illustrate the convergence of NDEMO for this problem. The
left and right panes of Figures 7 to 9 show the means and standard deviation
of the population of toll variables for each player over the 300 iterations of the
algorithm. Similar plots are provided in Figures 10 to 12 of the population
of the capacity variables for each player.

6.3. Examples from the Electricity Generation Industry
In deregulated electricity markets, electricity generating companies (“GEN-

COs”) submit bids of the quantities of electricity they propose to supply to
meet the market demand to maximize their profits. These bids are then
cleared by the Independent System Operator (ISO). However the price and
individual profits are not only dependent on their individual bids but also
that of their competitors and the prices are not known until the market clear-
ing is performed by the ISO [1],[15], [17]. This results in a NCEPEC and
NDEMO can be applied to such “pool based bidding” games. The last two
examples in this paper illustrate the performance of NDEMO in this context.

6.3.1. Example 5: Two Bus Model with 2 players

Two players, indexed by i, i ∈ {1, 2}, submit bids to generate electricity
to maximize individual profits. As shown in 14, this is given by the difference
between revenues and costs from production of qi units of electricity.
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Figure 7: Example 4-Mean and Standard Deviation of Toll for Player 1 on Link 9
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Figure 8: Example 4-Mean and Standard Deviation of Toll for Player 2 on Link 10
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Figure 9: Example 4-Mean and Standard Deviation of Toll for Player 3 on Link 11
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Figure 10: Example 4-Mean and Standard Deviation of Capacity for Player 1 on Link 9
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Figure 11: Example 4-Mean and Standard Deviation of Capacity for Player 2 on Link 10
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Figure 12: Example 4-Mean and Standard Deviation of Capacity for Player 3 on Link 11
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Ui(qi, q−i) = λ∗

i qi − ci(qi), i ∈ {1, 2} (14)

Figure 13: Two bus network model from [54], Players 1 and 2 are located at G1 and G2
respectively.

However, as mentioned before, the prices λ∗

1, λ
∗

2 can only be determined
by the solution of a market clearing problem carried out by the ISO [15],
[17]. Specific to the Two Bus Model shown in Figure 13 with player 1 and
2 located at buses G1 and G2 respectively, the ISO’s market clearing task
is embodied in the solution of the system of equations in 15 for given bid
submissions i.e. {q1, q2}.

max
δ1,δ2,κ1

B1(δ1) +B2(δ2) (15a)

subject to

δ1 − q1 + κ1 = 0 (15b)

δ2 − q2 − κ1 = 0 (15c)

−TMax ≤ κ1 ≤ TMax (15d)

The objective function 15a of the market clearing problem is maximization of
the total benefits, the equality constraints in 15b and 15c represent Kirchoff’s
Law and the inequality constraint 15d represents the transmission limits on
the line. The prices, λ∗

1 and λ∗

2, are given by the Lagrange multipliers of the
equality constraints in the market clearing problem 15b and 15c respectively.
Within the scope of this paper it is the market clearing problem 15 that
represents the equilibrium constraint facing each player which is a function
not only of their own bids but also that of their competitor’s.

The benefit functions at each node/bus and the cost functions for each
player from [54] are shown in Table 10. The line transmission limit TMax is
80. Table 11 compares the results from [54] with that obtained by NDEMO
where 200 iterations were required to achieve the tolerance ǫ of 1e-4.
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Table 10: Parameters of the Demand Function for Two Bus Model [54]

Bus/Player Benefit Function Bi(δi) Cost ci(qi)

1 −0.08(δ1)
2 + 50(δ1) 0.01(q1)

2 + 10(q1)
2 −0.04(δ2)

2 + 30(δ2) 0.01(q2)
2 + 10(q2)

Table 11: Example 5 - 2 Bus Model NCEPEC Bid Quantities (Megawatts/Hr)

Player 1 2

[54] 148 148
Results from NDEMO:

Mean 148.1267 148.1542
Standard Deviation 0.000289 0.000097

6.3.2. Example 6: Three Bus Model with 3 players

In this example, we consider the three player model from [7] and the 3 bus
network used is shown in Figure 14. Three players submit bids to generate
electricity to maximize individual profits from the generation of electricity
according to 16.

Ui(qi, q−i) = λ∗

i qi − ci(qi), i ∈ {1, 2, 3} (16)

Figure 14: Three bus network model from [7],[54]. Players 1, 2 and 3 are located at G1,G2
and G3 respectively.
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Once again the prices are determined by the market clearing problem
given in 17. The equality constraints 17b, 17c and 17d represent the dc
powerflow equations. The market clearing price tuple (the so-called loca-
tional marginal prices) λ∗

i , i ∈ {1, 2, 3} is, as before, given by the Lagrange
multiplier of these equality constraints. In this system of equations 17, θ1
and θ2 represent the powerflows on lines AC and -AC respectively. The last
constraint 17e is the transmission limit on the line.

max
δ1,δ2,δ3

B1(δ1) +B2(δ2) +B3(δ3) (17a)

subject to

2θ1 − θ2 = q1 − δ1 (17b)

−θ1 + 2θ2 = q2 − δ2 (17c)

−θ1 − θ2 = q3 − δ3 (17d)

−TMax ≤ κ1 ≤ TMax (17e)

The line transmission limit TMax is 100 and the individual benefit func-
tions at each node/bus and the cost functions for each player are shown in
Table 12 as reported in [7].

Table 12: Parameters of the Demand Function for Three Bus Model [7]

Bus/Player Benefit Function Bi(δi) Cost ci(qi)

1 −0.0278(δ1)
2 + 108.4096(δ1) 0.0079(q1)

2 + 1.360575(q1) + 9490.366
2 −0.0335(δ2)

2 + 103.8238(δ2) 0.0105(q2)
2 − 2.07808(q2) + 11128.95

3 −0.0319(δ3)
2 + 105.6709(δ3) 0.0065(q3)

2 + 8.105354(q3) + 6821.482

Table 13 compares the results from [7] with that obtained by NDEMO
where 300 iterations were required to achieve the tolerance ǫ of 1e-4. Figures
15,16 and 17 show the mean and standard deviation of the population of
each player’s bids, qi, i ∈ {1, 2}, over the iterations.

7. Conclusions

In this paper, we proposed modifying an evolutionary algorithm for solv-
ing EPECs by extending the procedure suggested in [33]. The resulting
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Figure 15: Example 6-Mean and Standard Deviation of Bids for Player 1 on Bus 1
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Figure 16: Example 6-Mean and Standard Deviation of Bids for Player 2 on Bus 2
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Figure 17: Example 6-Mean and Standard Deviation of Bids for Player 3 on Bus 3
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Table 13: Example 6 - 3 Bus Model NCEPEC Bid Quantities (Megawatts/Hr)

Player 1 2 3

[7] 1105 1046 995
Results from NDEMO:

Mean 1105.396 1046.238 995.177
Standard Deviation 0.00104 0.00053 0.0008815

Nash Domination Evolutionary Multiplayer Optimization (NDEMO) algo-
rithm enabled us to handle Nash games where players encounter a system
equilibrium constraint. We highlighted the fact that the critical Nash Dom-
ination procedure used in NDEMO to select between parent and child chro-
mosomes is in fact theoretically rooted in the well established Nikaido Isoda
function extending the original contribution of [33].

To assess the performance of NDEMO, six examples were given in this
paper. The first,broken down into three case studies, used parameters from
a well documented 5 player Cournot Nash model. The three case studies of
the first example were given to underline the salient points of the market
structure of competition assumed. In the first case study, we assumed that
the players were competing non cooperatively but on an equal footing and
this resulted in a standard Cournot Nash game for which NDEMO could be
applied. In the second and third case studies, two players presented them-
selves as “market leaders ” and this results in either the cooperative EPEC
which is a MultiObjective Equilibrium Problem with Equilibrium Constraints
(MOEPEC) (second case study) or the Non Cooperative Equilibrium Prob-
lem with Equilibrium Constraints (NCEPEC) (third case study). The pro-
posed algorithm, NDEMO, is designed for the latter case and conventional
evolutionary multiobjective optimization (EMO) algorithms could be used
for the former. This example highlights the difference between a MOEPEC
and a NCEPEC, with the former arising from the assumption of coopera-
tive behaviour amongst the leaders and the latter stems from assuming that
the leaders engage in a Nash game amongst themselves. In both cases the
strategies the leaders can play are subject to the actions of the followers which
manifests in the form of an implicit nonlinear constraint on the actions of
the leaders.

Three numerical examples illustrating competition in private sector par-
ticipation in highway transportation and two examples drawn from pool
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based bidding in the the electricity generation industry were further used
to demonstrate the performance of NDEMO. In all instances, it was clear
that NDEMO successfully converged to previously reported results in the
literature and underscores the fact that the proposed algorithm is suitable
for multidisciplinary applications.

While the examples suggest that this could be a potentially useful method
for EPECs, we stress the need, in the pairwise comparison, to compute the
payoff to each player, one by one, from deviating. This implies that the
computational complexity of NDEMO increases significantly as the number of
players increase as evidenced by the increase in computational times required
in our examples. However, increasing the strategic variables available to each
player did not significantly increase the time taken to solve the problem.

Further research would consider the effects of the control parameters of
NDEMO on the speed of convergence to NND solutions. In this research we
have used control parameters of the embedded Differential Evolution opera-
tors suggested in [51]. Nevertheless these parameters are in no way regarded
as perfect and it is hypothesized that well chosen parameters may reduce the
run time of the NDEMO algorithm.
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