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We investigate the effect of spin-orbit (SO) interaction on the long-wavelength collective spin
excitation in a two-dimensional electron gas (2DEG) in the fractional quantum Hall regime. The
many-body correction to the single-particle electron spin resonance (ESR) energy is found to be
non-zero, providing theoretical evidence of a breaking of Larmor’s theorem. Such breaking is due to
the loss of spin-rotational invariance introduced by the SO-induced structural inversion asymmetry
in the system. This effect, whose magnitude is a significant percentage of the single-particle ESR,
exhibits remarkable features in a wide range of experimentally relevant parameters and is found to
be nearly material-independent.

PACS numbers: 73.43.Cd,73.21.Fg,75.10.-b

As early as in 1930 Bloch demonstrated [1] the inher-
ent interplay between long-wavelength excitations and
long-range magnetic order. Both reflect the impact of
symmetry on the effect of interaction in a many-body
system. For instance, in a two-dimensional electron gas
(2DEG) with continuous spin-rotational invariance, Lar-
mor’s theorem [2] predicts that the long-wavelength col-
lective spin-wave excitation will occur exactly at the Lar-
mor frequency of the single-particle electron spin reso-
nance (ESR). In such a system, according to Mermin-
Wagner’s theorem [3], long-range magnetic order is im-
possible at finite temperature. Conversely, the breaking
of Larmor’s theorem is associated with a manifestation
of long-range order in the discovery of He3 superfluid-
ity, which was based on the observation [4] of a shift in
the nuclear magnetic resonance frequency with respect
to the Larmor frequency due to a spontaneous break-
ing of the spin-orbit (SO) symmetry [5]. Investigating
the behaviour of collective spin excitations in a system
can therefore provide deep insights into the nature of its
long-range magnetic order. Here we provide theoretical
evidence of a SO-induced breaking of Larmor’s theorem
in a 2DEG in the fractional quantum Hall (FQH) state,
caused by structural inversion asymmetry, which results
in a non-zero many-body contribution to the ESR. Whilst
the presence of SO coupling could be expected to perturb
the spin invariance in the system, the effect reported here
is more subtle in that it originates from the asymmetry
introduced in the system by the presence of an external
electric field perpendicular to the plane of the 2DEG.
Such field interacts with the electron spin through the
Bychkov-Rashba SO term in the Hamiltonian, leading
to a field-dependent many-body shift in the ESR. The
calculated magnitude of this effect exhibits remarkable
features in a wide range of parameters relevant to exper-
iment: it is found to be rather insensitive to changes in
the g-factor, and not to depend sensitively on the specific
material properties.

A 2DEG confined in an asymmetric quantum well
(QW) of a narrow-gap diamagnetic semiconductor, such

as InAs, provides a unique system to investigate the be-
haviour of collective spin excitations and the nature of
their relationship to long range order. The presence of a
large SO coupling raises fundamental questions regarding
its impact on the spin symmetry. In the single-particle
picture without SO coupling, the Larmor precession fre-
quency for a 2DEG in a perpendicular B field can be
determined from the Zeeman splitting:

~ωL = EZ = |g∗|µBB. (1)

Equation (1) was confirmed by ESR measurements in
microwave conductivity experiments [6]. In an asymmet-
rically doped QW, the presence of structural inversion
asymmetry (SIA) causes SO coupling, characterised by
the zero-field spin splitting energy ∆SO [7]. The single-
particle spin precession frequency ωS is shifted from the
Larmor frequency and is given by

ωS = [(ωC + ωL)2 + ω2
SO]1/2 − ωC (2)

in which we have defined a SO precession frequency
ωSO = 2∆SO/~ and ωC = eB/m∗ is the usual cyclotron
frequency. This shift from Larmor frequency is not a con-
sequence of many-body (MB) corrections due to electron-
electron interaction, but results simply from the inclusion
of the additional SO term (it is easy to see that ωS re-
duces to ωL for vanishingly small ∆SO). In fact, Eq. (2)
can be visualised in the classical picture of a rotating gy-
roscope [8], with the rotating angular velocity ωC parallel
to the precession angular velocity ωL, but perpendicular
to the other precession angular velocity ωSO. It can also
be derived exactly from a single-particle quantum me-
chanical model, using the parabolic-band approximation
[7]. The two pictures are equivalent inasmuch as band
structure details are neglected, i.e., m∗ and g∗ are con-
sidered independent of the 2DEG’s kinetic energy. Equa-
tion (2) was recently confirmed by the measurement of
the combined resonance (CBR) in far-infrared photocon-
ductivity experiments [9].

In 1993, Longo and Kallin [2] investigated the MB cor-
rections to spin-flip excitations, in which an electron is
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FIG. 1: (Color online) Calculated energy levels of a 2DEG in
the ν = 1/3 FQH state as a function of the applied magnetic
field in the Single-Particle [both with (SP) and without (SP-
nSO) SO interaction] and Many-Body (MB) approximation.
States with the same “principal” quantum number m are dis-
played with the same color. The solid line “0+” coincides
with the dashed line labeled “0+” and the dotted line labeled
“0↓” and is not shown for clarity.

both promoted from one Landau level to the next and
its spin reversed, in the highly correlated electron fluid
described by Laughlin’s wave function [10]. In the single-
particle picture the frequency of this transition is exactly
ωSF = ωC + ωL. No work has been published as yet for
the MB counterpart of Eq. (2), which should shed light
on the nature of broken spin symmetry in a MB system
with strong SO coupling, and could form the basis for
investigating interplays between long-wavelength excita-
tions and long-range magnetic order in 2DEGs. This is
what we aim to do in this report.

In the absence of SO interaction, Kohn’s theorem and
Larmor’s theorem predict MB corrections to be identi-
cally zero for both cyclotron and ESR collective excita-
tions in a 2DEG with translational- and spin-rotational
invariance. The introduction of SO brakes the spin-
rotational invariance of the system, and leads to a non-
zero many-body contribution to the ESR excitation en-
ergy. In this situation, the energy levels can no longer be
characterised using the Landau level index n = 0, 1, 2, . . .
and the spin projection sz = −1/2, 1/2, as in the case
for single-particle levels in the absence of SO. Each new
level is now a mixture of Landau levels with indices n and
(n+1) and also of spin-up and spin-down states. The new
quantum numbers are j = 1, 2, . . . and s̃z = −,+. The
relationship between the two sets of quantum numbers
is visualised in Fig. 1, that shows the lowest calculated
energy levels in the single-particle and MB pictures. We
see that the SP levels labelled as “-” (“+”) are very close
in energy to those that, in the absence of SO, were char-
acterised as spin-up (-down). This is because the main
spin component of “-” (“+”) levels is up (down), and the
contribution of the opposite-spin, minority, component
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FIG. 2: Calculated electron-electron interaction energy, de-
fined as the difference between the values of ~ωS in the MB
and SP approaches, as a function of the applied magnetic field,
for α = 1, 10, 20, 40 nm·meV: (a) percentage, (b) absolute
value.

is proportional to the SO coupling constant α (∝ ∆SO).
Although electron-electron interactions introduce further
level mixing, the MB levels can still be labelled with the
same quantum numbers used for SP levels, as the main
contribution to the MB level labelled as j, s̃z comes from
the SP level with quantum numbers j, s̃z. The equiva-
lent of Eq. (2) in the MB approach can therefore still
be formally written as

ωS = (E+

1 − E−
1 )/~ − ωC (3)

even though there is now no analytical expression for
E+

1 , E−
1 . As it was the case for Eq. (2), ωS → ωL for

∆SO → 0.
The energies in Eq. (3) are obtained by solving the

MB Schrödinger equation for four electrons per supercell
[11] via the exact diagonalisation technique. The MB
wavefunctions are expanded in terms of a complete basis
expressed as a superposition of solutions of the single-
particle Hamiltonian that includes the effects of Rashba
coupling in a ν = 1/3 FQH state (for more details on this
technique see Ref. [12, 13] and references therein).

We define the interaction energy ∆e−e as the difference
between the values of ~ωS calculated in the MB and SP
approaches. Figure 2 shows this difference as a func-
tion of the applied magnetic field for four different values
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FIG. 3: Calculated electron-electron interaction energy, [(a)
percentage, (b) absolute value of the difference between the
values of ~ωS in the MB and SP approaches] as a function of
α for two values of the applied magnetic field B = 1, 12 T.

of the SO coupling constant α (all within the experi-
mental range [14]), both in absolute value (in µeV) and
as percentage relative to the single-particle ESR energy.
If not otherwise specified, all calculations are performed
for InAs, using m∗/m0 = 0.042 and g∗ = −14. We see
that although percent-wise the largest MB corrections
are found at low magnetic fields, the most sizeable en-
ergy shifts in absolute value take place at high magnetic
fields where the MB corrections are a factor of 3–4 larger
than for B = 1 T. In both cases the interaction energy
decreases when α is increased from 1 to 40 nm·meV (see
Fig. 3). This is rather expected since for larger α there
is greater mixing of the higher Landau level [13] with the
spinor components. This provides more degrees of free-
dom for the Coulomb interaction and hence the decrease
of the Coulomb energy.

We tested the accuracy of our method by calculating
the MB correction to the spin-flip excitation in the ab-
sence of SO coupling (α = 0) and compared our results
with those obtained by Longo and Kallin [2] using the
generalised single-mode approximation. This approach
was first applied [15] to find the dispersion relations for
intra-Landau-level excitations for filling factors less than
1. It has since then been generalised [2, 16] to treat
inter-Landau-level transitions and has proved to be most
accurate for small values of the wave vector (k = 0 in the
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FIG. 4: Electron-electron interaction energy [(a) percentage,
(b) absolute value], defined as the difference between the val-
ues of ~ωS in the MB and SP approaches, calculated as a
function of the g factor, for α = 1, 40 nm·meV and B = 1T.

present case). For GaAs we calculated a MB shift of 0.075
(in units of e2/ǫl0) which is in excellent agreement with
the value of ∼ 0.07 obtained in Ref. [2]. Furthermore
energies of the same order of magnitude were recently
obtained [17] in inelastic light scattering measurements.
Also very close is our calculated shift in InAs (0.069),
showing that the correction does not depend sensitively
on the material properties.

This is confirmed further by Fig. 4, that shows the
effect on the interaction energy of the variation of the g
factor in the range −0.25 ÷ −20, for α = 1, 40 nm·meV
and B = 1 T. The sensitivity of ∆e−e on the actual value
of g∗ is an important factor as in a 2DEG g∗ can vary
significantly from its value in the bulk, depending on the
experimental conditions. We find that the MB correction
is rather insensitive to changes in g∗ in this range. The
large percentual value of the ESR correction for small g∗

and α = 1 in Fig. 4a is due to the very small value
of Eq. (2) in this parameter range. In fact the absolute
value of the MB correction is constant for all values of
g∗ considered, as shown in Fig. 4b, whereas, in the SP
approximation, ~ωS spans almost 2 orders of magnitude,
ranging from 0.03 meV, for g∗ = −0.5, to 1.16 meV, for
g∗ = −20.

We find therefore that the most important parameters
that determine the magnitude of the MB shift are: (i)
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the intensity of the applied magnetic field B and (ii) the
strength of the SO coupling constant α. Both can be ad-
justed externally: the former in an obvious way and the
latter by tuning the intensity of an electric field applied
perpendicularly to the 2DEG plane, obtained either by
controlling an applied gate voltage, or by specific design
of the heterostructure (e.g., by asymmetrically doping
the QW). This field, “felt” in the electron rest frame as
an effective in-plane magnetic field (a purely relativistic
effect), is the cause of the breaking of the spatial inversion
symmetry in the 2DEG that gives rise to the zero-field
spin splitting ∆SO. A different kind of spatial inversion
asymmetry (not considered in the present work), that is
also a source of an effective magnetic field, can be caused
by the bulk inversion asymmetry (BIA) of the underlying
(zinc-blende) crystal structure. However, whereas the ef-
fective magnetic field due to SIA is always in the 2DEG
plane, the direction of the field due to BIA depends on
the crystallographic orientation of the QW. In a (110)-
oriented QW, the BIA effective field is along the external
magnetic field and its direction varies from parallel to an-
tiparallel to B, depending on the position. Its effect can
be modelled as a modulation of the g factor which makes
it position-dependent.

As shown in Fig. 4, however, the interaction energy

is not very sensitive to variations of g∗. In (001)-grown
QWs, where the effective field due to BIA is in the 2DEG
plane, its effects are small compared to those due to SIA
in InAs-based heterostructures at low applied magnetic
fields [18].

In summary we provided theoretical evidence of a SO-
induced breaking of Larmor’s theorem in 2DEGs. The
magnitude of the calculated many-body correction to the
single-particle ESR frequency is found to be rather in-
sensitive to changes in the g-factor in a wide range, and
not to depend sensitively on the specific material prop-
erties. In contrast we find that the MB shift is influ-
enced mainly by externally-tunable parameters such as
the intensity of the applied electric field. As the lat-
ter is precisely the source of the loss of spin-rotational
invariance (through the SO-induced structural inversion
asymmetry) in the system, we conclude that investigat-
ing the long-wavelength collective spin excitations in a
2DEG can be a very powerful tool to gain deep insights
into the nature of its long-range magnetic order.
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