
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Control Engineering
Practice.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/43194

Published paper

Valencia-Palomo, G., Rossiter, J.A. (2011) Efficient suboptimal parametric
solutions to predictive control for PLC applications, Control Engineering Practice,
19 (7), pp. 732-743
http://dx.doi.org/10.1016/j.conengprac.2011.04.001

http://eprints.whiterose.ac.uk/43194�
http://dx.doi.org/10.1016/j.conengprac.2011.04.001�

Efficient suboptimal parametric solutions
to predictive control for PLC applications

G. Valencia-Palomoa,∗, J.A. Rossitera,1

aDepartment of Automatic Control and Systems Engineering,
University of Sheffield, South Yorkshire, U.K. S1 3JD.

Abstract

The prime aim of this paper is to embed a predictive control (MPC) algorithm with constraint
handling capabilities into a Programmable Logic Controller (PLC). In order to achieve it, this
paper develops parametric approaches to MPC but differs from more conventional approaches in
that it pre-defines the complexity of the solution rather than the allowable suboptimality. The
paper proposes a novel parameterisation of the parametric regions which allows efficiency of defi-
nition, effective spanning of feasible region and also highly efficient search algorithms. Despite the
suboptimality, the algorithm retains guaranteed stability, in the nominal case. A laboratory test
was carried out to demonstrate the code on real hardware and the effectiveness of the solution.

Keywords: Predictive control, multi-parametric quadratic programming, PLC.

1. Introduction 1

Parametric solutions to predictive control (MPC) (Bemporad et al., 2002a,b; Pistikopoulos 2

et al., 2002) have the key advantages of (i) giving transparency to the control law which may 3

have advantages in safety critical or highly regulated environments and (ii) having the potential to 4

significantly reduce the on line computational load/complexity. This paper concerns itself primarily 5

with the second of these points because often the potential to reduce complexity is not realised; for 6

instance, especially with high order systems, the optimal parametric solution may be very complex 7

so that implementation is more difficult or slower than including an online quadratic programme 8

(QP). The aim is to achieve a reduction of complexity and data storage to the point the controller 9

can be used in a Programmable Logic Controller (PLC) as this hardware represents the standard 10

computer in industry. 11

Several authors have tried to tackle this issue with various research directions. Some au- 12

thors have looked at optimising the efficiency of storage of the parametric solution combined with 13

fast algorithms for implementation of the solution (e.g. Borrelli et al., 2001; Tondel et al., 2003; 14

Christophersen et al., 2007). Other authors have considered beginning from a suboptimal para- 15

metric solution in the hope that such a solution may be far simpler, but with a small loss in 16

performance only (e.g. Johansen, 2003; Johansen et al., 2002; Johansen and Grancharova, 2003; 17

∗Corresponding author.
Email address: g.valencia-palomo@sheffield.ac.uk (G. Valencia-Palomo)

1Tel.: +44 (0)114 222 5685; Fax.: +44 (0)114 222 5661.

Preprint submitted to Control Engineering Practice October 16, 2010

Grieder et al., 2004; Bemporad and Filippi, 2003, 2006). One approach in the literature has looked18

at using orthogonal spaces to speed up search times and sub-divides the parametric space into19

small enough regions to quantify the sub-optimality as small enough, either from a performance20

perspective or in terms of feasibility (Johansen, 2003). Another alternative is to look at making the21

regions larger (Bemporad and Filippi, 2003) by allowing some relaxation of the optimality, while22

ensuring feasibility. However, critically for the motivation here, none of the works above are able23

to give any strict bounds on the resulting complexity of the solution which thus may still be worse24

than desired.25

A less explored avenue is to base the parametric solution on points rather than regions (Canale26

et al., 2009, 2010a,b). In simple terms one predefines the optimum strategy for a number of27

possible initial conditions and then online select from these the one which is closest to the actual28

initial condition. However, once again the main failing of this approach is that it is hard to get29

bounds on the complexity of the solution because the focus of the work is on ensuring that the30

suboptimality meets some guaranteed requirement which thus can be conservative. The examples31

in those papers use numbers such as 104−106 vertices. An even less explored avenue is the potential32

to use interpolation (Rossiter and Grieder, 2005) to give a convex blend from nearby points, thus33

reducing the number of points/regions required while ensuring feasibility.34

Here the intention is to take a different viewpoint from those which either start from the explicit35

optimal and define efficient searches or look for ways of trading complexity with performance.36

Instead this paper proposes to predefine the complexity of the solution and then ask whether one37

is able to get sufficient performance and guarantees of feasibility. The argument taken is that38

any result which is based on sub-division until the difference from the optimal is small will, in39

general, lead to a large number of regions. In general, a convergence and feasibility guarantee40

with a pre-defined complexity are wanted; and then to ask what level of performance it can get41

from that, accepting that it will be suboptimal in comparison to a more complex solution. The42

advantage of predefining the complexity is the possibility, a priori, of giving strict limits on data43

storage and sample time requirements and thus being much cheaper and simpler to implement on44

systems which have available only low computational power like a PLC but may still require fast45

sample times (Valencia-Palomo and Rossiter, 2010).46

Hence the key contribution of this paper is a proposed approach which reduces complexity of47

the parametric solution and does not give large growth in complexity with the state dimension.48

Moroever, the online coding requirements are trivial as compared to the online implementation of49

a QP solver. In line with some concepts adopted by earlier authors (Johansen and Grancharova,50

2003; Grieder et al., 2004; Bemporad and Filippi, 2006) this paper intends to make use of regular51

shapes as this enables very efficient search methods and simple polytope definitions with predefined52

complexity.53

The paper is organised as follows: Section 2 will give a brief background on a standard MPC54

algorithm and explicit solutions; Section 3 discusses about complexity of polytope representations;55

Section 4 then introduces the proposed suboptimal parametric solution with proofs of feasibility56

and convergence; Section 5 presents some Monte-Carlo numerical illustrations; Section 6 presents57

the hardware overview and implementation of the algorithm; Section 7 presents an experimental58

example; the paper finishes with the conclusions in Section 8.59

2

2. Background on predictive control 60

2.1. Model and constraints 61

This paper assumes a standard state space model of the form 62

xk+1 = Axk + Buk; yk = Cxk; (1)

where xk ∈ Rnx , uk ∈ Rnu , yk ∈ Rny are the states, inputs and outputs at sample k respectively. 63

It is assumed that these are subject to polytopic constraints at every sample instant, for example: 64

Auuk ≤ bu; A∆u∆uk ≤ b∆u; Ayyk ≤ by; (2)

where ∆uk = uk − uk−1. 65

In the context of predictive control, it is common to take the following quadratic performance 66

index as the objective to be minimised at each sample 67

J =
∞∑

i=1

{
xT

k+iQxk+i + uT
k+i−1Ruk+i−1

}
, (3)

with Q ∈ Rnx×nx , R ∈ Rnu×nu positive definite state and input cost weighting matrices; as, under 68

some mild conditions, this allows a staightforward stability guarantee in the nominal case. In 69

the unconstrained case, the control law is given as uk = −Kxk, where the optimal feedback gain 70

K is obtained via the solution of the corresponding Linear Quadratic Regulator (LQR) problem. 71

However, it is noted here that this paper omits the fine details associated to integral action and 72

offset free tracking to simplify the presentation. 73

2.2. Optimal MPC (OMPC) 74

The key idea in Scokaert and Rawlings (1998); Rossiter et al. (1998), is to embed into the 75

predictions the unconstrained optimal behaviour and handle constraints using perturbations about 76

this. Assuming that K is the optimal feedback, the input predictions are defined as follows: 77

uk+i =
{ −Kxk+i + ck+i i = 0, ..., nc − 1
−Kxk+i i ≥ nc,

. (4)

where nc is the prediction horizon for the perturbations ck. It is known that, the input predictions 78

(4) and associated state predictions for model (1) satisfy constraints (2) if 79

Mxk + N c−→k ≤ 1; c−→k =
[
cT

k , cT
k+1, . . . , c

T
k+nc−1

]T
; (5)

for suitable M, N with a finite number of rows (Gilbert and Tan, 1991). Details of how to compute 80

these matrices are omitted as by know well known in the literature (Gilbert and Tan, 1991; Scokaert 81

and Rawlings, 1998; Rossiter, 2003). 82

Definition 2.1 (MAS). Define the Maximum Admissible Set (MAS) as the region in the state 83

space for which the unconstrained feedback uk = −Kxk satisfies constraints, i.e. {xk ∈ Rnx |Mxk ≤ 84

1} 85

3

Definition 2.2 (MCAS). Define the Maximum Controllable Admissible Set (MCAS) as the re-86

gion in the state space whereby it is possible to find a c−→k such that the future trajectories satisfy87

constraints; i.e. {xk ∈ Rnx |∃ c−→k ∈ Rncnu s.t. Mxk + N c−→k ≤ 1}88

The MCAS gets larger as nc increases, but usually up to a finite limit if the state constraints89

give a closed region (Gilbert and Tan, 1991). It is not the purpose of this paper to consider nuances90

in that discussion topic. nc is taken to be large here and in fact it is known from work in parametric91

solutions that often a relatively small finite value is enough to capture the maximum MCAS.92

In practice, optimal predictions may violate constraints (2), so prediction class (4) is used93

instead. It is easy to show (Scokaert and Rawlings, 1998; Rossiter et al., 1998) that the optimisation94

of J over input predictions (4) is equivalent to minimising c−→
T
k S c−→k (S = BTWB + R, W− (A−95

BK)TW(A−BK) = Q+KRK) and thus, in the absence of constraints, the optimum is c−→k = 0.96

Where the unconstrained predictions would violate constraints and non-zero c−→k would be required97

to ensure constraints are satisfied.98

Algorithm 2.1 (OMPC). The OMPC algorithm is99

c−→
∗
k = arg min

c−→k

c−→
T
k S c−→k s.t. (5) (6)

Use the first element of c−→
∗
k in the control law of (4), with K. This algorithm will find the global100

optimal, with respect to (3), whenever that is feasible and has guaranteed convergence/recursive101

feasibility in the nominal case.102

Definition 2.3. For initial states xk = vj, define the corresponding optimal control sequences as103

c−→k = c−→j,k. By definition therefore the recursive use of the this sequence of ck+i values in (4) will104

give input/state trajectories that satisfy constraints and converge to the origin.105

Definition 2.3 explicitly associates the optimal trajectory c−→j,k with the initial condition vj this106

will be useful in the next sections where the vertices (vj ’s) of the feasible regions are important107

elements of the proposed algorithm.108

2.3. Parametric solutions109

The solution of problem (6) has a parametric solution (mp-QP) (Bemporad et al., 2002b) of110

the form111

xk ∈ Rr ⇒ c−→
∗
k = −Krxk + tr; Rr = {xk : Mrxk ≤ dr}; (7)

for suitable Kr, tr,Mr,dr where the interiors of the polytopes Rr do not overlap and the union112

gives the MCAS. The main weakness of parameteric solutions is that the number of regions r113

can grow very quickly both with state dimension and indeed nc. This paper seeks alternative but114

suboptimal parametric solutions which require far fewer regions.115

3. Facet or vertex representations of polytopes and parametric solutions116

The main assumption of this paper is that an efficient parametric realisation requires an as-117

sumption of regular polytopes, such as nx-dimensional cubes, as opposed to the more general118

shapes possible for Rr. This is because such an assumption carries several simple benefits: (i) the119

4

number of facets may be small; (ii) the number of vertices may be small and equispaced to some 120

extent; (iii) the shape, facets and vertices are regular and hence easy to handle and define. This 121

allows for very efficient search algorithms. In fact, the assumption in this paper is slightly different 122

from a cube, although the proposed algorithm is seeded by a cube. 123

This section will first present a discussion about the complexity of facet and vertex based 124

representations of polytopes (Section 3.1 and 3.2). It then goes to present convexity arguments for 125

MPC (Section 3.3), the definition of the particular shape used (Section 3.4) and the algorithm to 126

solve the point location problem (Section 3.5). The section finalises with a brief summary of the 127

results (Section 3.6). 128

3.1. Facet based parametric solutions 129

A major concern is related to the efficiency of search algorithms. It is recognised (Borrelli 130

et al., 2001; Rossiter and Grieder, 2005) that one can define very efficient algorithms for finding 131

an active facet [Definition 3.1] and thus an MPC algorithm which utilises this mechanism (there is 132

an explicit link between the active facet and the control law) has the potential to be very efficient; 133

it has also been shown that efficient mp-QP parameterisations, can use active facet computations 134

to infer the set membership computations in (7). 135

Definition 3.1. Consider a closed polytope, containing the origin, given as R = {xk : Rxk ≤ 1}, 136

R ∈ Rq×nx with q (non-redundant) inequalities and facets {Rf
1 , . . . ,Rf

q }. Then for any state xk, 137

the active facet is Rf
a with 138

a = arg min
j∈{1,...,q}

eT
j Rxk, (8)

where ej is the jth standard basis vector. 139

Thus, the search algorithm efficiency depends only on q, the number of inequalities defining R. 140

However, this is where the goal of a highly efficient search algorithm may break down because there 141

may be many different optimal solutions contributing to a single facet; moreover there may be too 142

many inequalities. Thus this paper considers to what extent a suboptimal solution which enforces 143

a single solution on each facet and/or keeps the number of facets small is amenable to guarantees 144

of feasibility and convergence. 145

3.2. Facet vs vertex representations of polytopes 146

A key issue for the user is to ask which representation is more efficient, one based on the vertices 147

or one based on facets. For an arbitrary region such as the MAS one cannot give a simple answer 148

to this. It is difficult to form a systematic link between the number of vertices and facets except for 149

a few cases such as the nx-dimensional cube. For a general nx-dimensional polytope, it is possible 150

that some facets have far more than nx vertices and equally some vertices contribute to many more 151

than nx facets. 152

In summary, if one wants efficient or consistent relationships between facets and vertices then 153

one is steered towards using regular polytopes. 154

5

3.3. Convexity155

Assume that some global optimum and feasible control/state sequences c−→i,k = {ck, ck+1, . . .},156

x−→i,k = {xk,xk+1, ...}, Mvi+N c−→i,k ≤ d, are known for a set of initial points xk = vi, i = 1, 2, ..., m.157

Then one can use convexity arguments to show that the following sequence c−→k is also feasible.158

xk =
∑m

i=1 λivi

c−→k =
∑m

i=1 λi c−→i,k

x−→k =
∑m

i=1 λi x−→i,k

λi ≥ 0,
∑m

i=1 λi = 1





⇒ Mxk + N c−→k ≤ d. (9)

Moreover, by definition of (4), the use of c−→k will give rise to convergent state trajectories.159

Lemma 3.1. Assuming nx states, then given nx+1 affinely independent vertices vi, i = 1, ..., nx+1160

and the corresponding optimal control sequences c−→i,k, a feasible convergent sequence for the initial161

state xk is given from:162

c−→k =
[

c−→1,k, c−→2,k, . . . , c−→nx+1,k

]



λ1

λ2
...

λnx+1




︸ ︷︷ ︸
Λ

;

Λ =
[

v1 . . . vnx+1

1 . . . 1

]−1 [
xk

1

]
;

(10)

if λi ≥ 0, ∀i; the condition
∑nx+1

i=1 λi = 1 is given by definition of Λ in eqn. (10).163

Proof: This is obvious from (9). tu164

Definition 3.2 (Simplex). Define a simplex S ⊂ Rnx as the convex hull of nx+1 affinely indepen-165

dent vertices: one vertex is the origin and the remaining nx vertices define a facet not intersecting166

with the origin.167

Corollary 3.1. The computation of λi in (10) will be such that
∑nx+1

i=1 λi = 1 and λi ≥ 0 if xk is168

inside the simplex S made from these vertices. This is obvious from trivial vector algebra.169

Theorem 3.1. If xk lies inside the simplex defined by nx vertices and the origin, then a feasible170

convergent trajectory can be determined from (10) using those vertices.171

Proof: The proof follows directly from the Lemma and Corollary above. tu172

173

The key insight offered in this section is that one can use convexity arguments very easily to174

form convergent and feasible trajectories for an arbitrary state xk if one has knowledge of feasible175

and convergent trajectories c−→i,k, x−→i,k for a large enough number of possible initial points vi (here176

denoted vertices) spanning the space and, if xk lies inside the polytope defined by those vertices177

and the origin. Nevertheless, it is necessary to select the right nx vertices, not only to ensure178

6

−1
0

1

−1.5−1−0.500.511.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 1: Three dimensional cube with extended centres to the facets.

λi ≥ 0,
∑nx+1

i=1 λi = 1 but also in general it will be non-trivial to identify the best2 nx vertices 179

from m possible, m À nx. For instance, Definition 3.1 may suggest a facet which has many more 180

than nx vertices in which case several different combinations of nx vertices from these may give a 181

simplex in which xk lies and satisfying the requirement on λi. 182

3.4. Building a regular polytope for which each facet has only nx vertices 183

If a facet has only nx vertices, then one can use convexity arguments to argue that, for any 184

xk for which that facet is active, there is a unique affine linear combination of the vertices as in 185

(9) which will give a feasible convergent trajectory. This section outlines one such set of polytopes 186

which are easy to define and has only nx vertices per facet. In essence, the proposed shape will be 187

based from a cube and a cross-polytope. 188

Definition 3.3. Define a polytope P ⊂ Rnx as the following convex hull: 189

P = hull{C,X}; (11)

where C is a nxD cube of volume 2nx centered in the origin, i.e. the convex hull of all sign 190

permutations of the vertices [±1,±1, . . . ,±1]T ; and X is a nxD cross-polytope of volume (2µ)nx/nx! 191

(with µ =
√

nx) centered in the origin, i.e. the convex hull of the vertices ±eiµ, i ∈ {1, . . . , nx}. 192

Remark 3.1. The reader will note that P is a full-dimensional polytope by construction and de- 193

fines the corners of an nxD cube and the centre of the facets of this cube stretched to the same 194

modulus (ei being the ith standard basis vector). The total number of vertices of this polytope is 195

given as 2nx + 2nx. The total number of facets, however, grow quicker with nx, i.e. nx2nx. 196

Figure 1 demonstrates what P might look like in the 3D case and the reader can clearly see 197

that each facet has 3 vertices, but vertices contribute to 4 or 6 facets each. 198

2The quality of the vertices is measured by the cost (3) of the resulting trajectory obtained from those vertices.
In general, the smaller simplex the better.

7

3.5. Locating the active facet/vertices on proposed simple shape199

Having defined the shape in Definition 3.3, one wants to know how easily one can identify the200

active facet for an arbitrary initial point xk, that is to find which are the nearest nx vertices such201

that xk lies inside the simplex formed by those vertices and the origin, thus satisfying (9). This202

section shows that for vertices defined as in Definition 3.3, one can find these vertices with a trivial203

search, simpler even than that used in Definition 3.1. The idea is simply to find the nearest nx204

vertices to a point; these will always form a simplex, with the origin, enclosing the point. Further205

note that nx − 2 vertices can be given by inspection due to the regular definitions of the vertices.206

Algorithm 3.1 (Define active vertices). Assume an nxD space, an initial point x = [x1, . . . , xnx]T207

and define the j vertices of P as tj. The active vertices t∗j which form a simplex with the origin208

containing x in its interior can be found with the following algorithm.209

1. Create a vector p = [p1, . . . , pnx], so that its elements pi’s are the indices of the elements of210

x sorted from the largest to the smallest absolute values.211

2. The active vertices include standard basis vectors corresponding to p1, . . . , pnx−2, with the212

choice being t∗i = µepisgn(xpi), i = 1, ..., nx − 2.213

3. The vertex t∗nx−1 is calculated with t∗nx−1 =
∑nx

i=1 episgn(xpi). The remaining vertex t∗nx
is214

taken from the selection of one of the vertices v1, v2; where215

v1 = µepnx−1sgn(xpnx−1);

v2 =
nx−1∑

i=1

episgn(xpi)− epnx
sgn(xpnx

).

The choice is taken by selecting the vertex that is nearer to x according to the Euclidean216

distance.217

4. Given [t∗1, . . . , t
∗
nx

] and the origin, define the corresponding input trajectory using eqn. (10).218

Remark 3.2. Note that only a fixed number of control laws, given by 2nx +2nx, needs to be stored.219

Theorem 3.2. If x ∈ P, Algorithm 3.1 always defines vertices which in turn define a simplex with220

xk inside the simplex. Consequently, the vertices can be used to find a feasible convergent trajectory221

using (10).222

Proof: Note that P can be tessellated by j simplices Sj , each of them formed by the convex223

hull of the origin and the nx vertices of the jth facet, with j ∈ {1, . . . , nx2nx}. Then it is obvious224

that x will lie in one of the Sj ’s, specifically in the simplex dubbed Sx. Algorithm 3.1 constructs225

the simplex Sx using the vertices [t1, . . . , tnx−1] calculated in Step 2 and 3, completes it with one226

more vertex: v1 or v2 calculated in Step 3, the choice depends in the dimension (nx) of the simplex.227

Therefore, Algorithm 3.1 can always select Sx (which is probably a suboptimal choice) if x ∈ P.228

Finally, it is noted that some vertices of P not included in Sx could also allow a smaller (valid)229

simplex for x. The most likely vertex to swap is the vertex (v1 or v2) discarded to form Sx reducing230

the size of the simplex and therefore validating if Sx is or not the best option; Step 3 determines231

which vertex gives the smallest simplex on the basis that this gives best feasibility although in fact232

both alternatives would be feasible in general! tu233

8

3.5.1. Illustration of algorithm to find active vertices 234

Consider the initial points x1 = [0.2, 0.3, 1]T , x2 = [0.5, 0.8, 1]T . It is shown that the algorithm 235

gives different choices for the last active vertices; the first nx − 1 are the same. 236

1. The largest component of x1 is the 3rd, so include µe3 = [0, 0, µ]T as t∗1. As the next highest 237

component is the 2nd, and the 3rd component is positive, therefore, include t∗2 = e3 +e2 +e1. 238

Finally, the last vertex t∗3 is chosen from e3 + e2 − e1 = [−1, 1, 1]T and µe2, whichever is 239

closer; in this case t∗3 = [−1, 1, 1]T . Including the origin to complete the simplex, eqn. (10) 240

then gives Λ = [0.4, .25, .05, 0.3]T which are clearly all positive and
∑

λi = 1. 241

2. In the case of x2, clearly one should include t∗1 = µe3 and t∗2 = [1, 1, 1]T and then one from 242

[−1, 1, 1]T , [0, µ, 0]T . In this case the t∗3 = [0, µ, 0]T is closest to x2. Including the origin to 243

complete the simplex, eqn. (10) then gives Λ = [0.29, 0.5, 0.17, 0.04]T which are clearly all 244

positive and
∑

λi = 1. 245

3.5.2. Comments on algorithm for finding active vertices 246

The reader will note that Algorithm 3.1 identifies the active vertices (and implicitly a facet with 247

only nx vertices) without at any point needing to define the facet representation for the implied 248

shape. This is key later when the shape will be distorted and hence the vertex combinations making 249

up the facets cannot be determined simply; as will be seen these do not need to be known and the 250

paper uses only the vertices throughout. Also, the number of facets grows faster than the number 251

of vertices. 252

It is noted that eqn. (10) requires a matrix inversion. However, the matrix to be inverted 253

comprises columns which are mostly scaled standard basis vectors and one or two columns of the 254

form [±1,±1, . . .]T . Consequently the inversion is trivial in general and one could easily generate 255

highly efficient code for this. Having identified Λ, the predicted control is computed from (10) and 256

thus the overall algorithm is highly efficient. 257

3.6. Summary 258

This section has outlined the key background information required to develop an efficient para- 259

metric solution. 260

1. Definition of a regular polytope for which all facets have nx vertices. 261

2. A link between optimal trajectories at nx predefined initial values and possible feasible tra- 262

jectories at other points inside the corresponding simplex. 263

3. A fixed number of vertices 2nx + 2nx, with the associated control laws, needs to be stored. 264

4. A highly efficient algorithm for identifying the active vertices for an arbitrary initial point. 265

It remains to modify this polytope to more general shapes or feasible regions, but as will be shown 266

none of the efficiency benefits or key attributes are lost in doing so. 267

4. A suboptimal parametric MPC algorithm 268

This section first develops the vertex based polytopes to encompass a region close to the MCAS 269

and therefore applicable to OMPC. Then, it proposes an efficient suboptimal parametric predictive 270

control law. 271

9

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x 2

 Feasible regions

Figure 2: Controller partition obtained with mp-QP and P (in thick line) for a two state example.

4.1. Definition of the vertices of the feasible region272

The first objective is to find vertices corresponding to the polytope of Definition 3.3 which lie273

on the boundary of the MCAS as these are the points furthest from the origin, in those directions,274

for which a feasible control trajectory is known.275

Algorithm 4.1. Given the vertices tj of P, find points in the same direction which lie on the276

MCAS by performing the following optimisations277

β∗j = arg max
βj , c−→j,k

βj s.t. Mtjβj + N c−→j,k ≤ 1, βj > 0; (12)

and hence define the vertices Vj = β∗j tj and corresponding optimal sequences c−→j,k [Capital V is278

used to distinguish between MCAS vertices and lower case t for the regular shape]. Define the279

convex hull P = hull{V1,V2, . . .}.280

The vertices Vj will describe a polytope P which may be close to the MCAS, but clearly smaller281

in general due to the predefined assumptions on the directions of the vertices3 and restrictions to282

the complexity .The argument that will be made is that the loss in the volume of P as compared to283

the MCAS is countered by the huge gains in the simplicity of definition as the vertices have regular284

directions as given in Definition 3.3 and are small in number. An example is given in Figure 2. It285

is clear that there is a huge gain as compared to the MAS and the feasible region for P is quite286

close to the MCAS given the simplicity of the assumed shape.287

3It can also be considered an axis rotation of P in order to match the semi-axis of the largest ellipsoid contained
in the MCAS. This will make P even closer to the MCAS. This has not been done here.

10

Remark 4.1. As noted earlier, the controller partition obtained with mp-QP R may have a very 288

large number of facets and it is not obvious, a priori, which vertices will make up those facets (it 289

is not necessarily the same as for the shape in Figure 1). In this paper, no attempt is made to 290

compute the facet representation as this is not needed. 291

4.2. Locating the active vertices from polytope P 292

The advantage of building P from a regular polytope is that the directions of the vertices are 293

the same and therefore locating the simplex in which a current point lies can be based on the same 294

logic as Algorithm 3.1. 295

Algorithm 4.2 (Define active vertices). Assume an nxD space, an initial point x = [x1, . . . , xnx]T296

and use the vertices Vj produced in Algorithm 4.1. The active vertices V∗
j which form a simplex 297

with the origin containing x in its interior can be found with the following algorithm. 298

1. Define a correspondence ti ≡ Vi, in that the values differ only by a positive scaling factor β∗i . 299

2. Follow the steps of Algorithm 3.1 (note that v1, v2 of step 3 needs to to be scaled to the 300

corresponding Vj term in order to select the nearest to x). 301

3. The final choices V∗
i ’s will be the corresponding Vi’s from t∗j obtained from Algorithm 3.1. 302

4.3. Proposed suboptimal control law 303

This section defines the proposed MPC algorithm assuming that the only information available 304

to the user is: 305

• The vertices Vj of P on the boundary of the MCAS. 306

• The optimal sequences c−→j,k corresponding to each vertex. 307

• The constraint inequalities (2). 308

• The tail of the optimum sequence taken at the previous sample; typically the tail is taken as 309

c−→tail,k = [ck|k−1, ck+1|k−1, . . . , ck+nc−2|k−1, 0]4. 310

The proposed MPC algorithm is as follows. 311

Algorithm 4.3. At each sample perform the steps: 312

1. If the current state satisfies Mxk ≤ 1, the unconstrained control law uk = −Kxk is feasible 313

and should be used, otherwise do steps 2-6. 314

2. Using the current state xk, find the active vertices V∗
j (and corresponding c−→j,k’s) using 315

Algorithm 4.2. 316

3. Find the feasible control sequence c−→k (using V∗
j ’s, c−→j,k’s) with eqn. (10) [Note, strictly this 317

is guaranteed feasible iff λi > 0, i = 1, . . . , nx + 1]. If λi < 0 implement the first element of 318

c−→tail,k in (4), update the sample instant and return to Step 1. 319

4. Define the optimum sequence as (α ∈ R) 320

c−→
∗
k = (1− α) c−→k + α c−→tail,k . (13)

4k + i|k means the prediction for sample k + i made at sample k.

11

5. Perform the optimisation321

min
α

Jc = (1− α) c−→k + α c−→tail,k

s.t. Mx + N c−→
∗
k ≤ 1;

0 ≤ α ≤ 1.

(14)

Use the optimum α to compute c−→
∗
k of eqn. (13).322

6. Implement the first element of c−→
∗
k in (4), update the sample instant and return to Step 1.323

Theorem 4.1. In the nominal case, Algorithm 4.3 has a guarantee of convergence and recursive324

feasibility.325

Proof: Convergence relies on the standard argument that the inclusion of c−→tail,k allows an upper326

bound on the cost Jc and moreover Jc(k) ≤ Jc(k − 1)− cT
k−1Sck−1 and therefore Jc is Lyapunov;327

once Jc = 0 the system is inside the MAS and unconstrained control applies. Recursive feasibility328

also follows automatically from c−→tail,k being feasible by definition. tu329

330

Ironically, there is no guarantee that the set P is invariant and thus trajectories which begin331

in P may go outside P and thus the optimal c−→k produced by Step 3 of Algorithm 4.3 may be332

infeasible (because λi < 0). In this case one may rely more extensively on the tail until the state333

trajectory re-enters P. However, insisting on invariance of c−→k as opposed to c−→
∗
k each sample334

instant would require either more complex set definitions and/or more demanding optimisations335

and thus defeats the object of this paper.336

Nevertheless, should this be desired, one could easily determine, offline, a separate region337

P2 ⊂ P such that xk ∈ P2 ⇒ xk+i ∈ P, ∀i > 0, thus preserving the feasibility of both c−→tail,k338

and c−→k.339

Remark 4.2. This paper has not looked at robustness issues but it is also worth repeating that the340

focus here is simplicity and in general algorithms with strong robustness results come at a price of341

increased complexity.342

5. Numerical examples343

This section will demonstrate several aspects of the proposed algorithm, but primarily the344

two main attributes: (i) despite the restriction to so few points, the performance is only slightly345

suboptimal and moreover recursive feasibility and convergence are achieved for all initial points in346

P and (ii) the complexity is always low relative to the norms in the literature for a given state347

dimension. To this end, this section will give four examples, one with 2 states (slightly under348

damped mass-spring-damper), two with 3 states (one a simplified two-input-two-output model of349

electrical power generation) and one with 4 states. In each case nc = 5 as much beyond this offered350

little benefit by way of feasibility. Details of the systems used for the examples can be found in351

the Appendix.352

12

0 100 200 300 400 500

0.4

0.6

0.8

1

 R=10

 D
is

ta
n

ce
 t

o
 M

C
A

S

 Index of initial conditions

0 100 200 300 400 500

1

1.05

1.1

1.15
 R=10

 R
at

io
 o

f
co

st

 Index of initial conditions

0 100 200 300 400 500
0.2

0.4

0.6

0.8

1

 R=0.1

 Index of initial conditions

 D
is

ta
n

ce
 t

o
 M

C
A

S

MAS
Polyhedral P

0 100 200 300 400 500
1

1.1

1.2

1.3

 R=0.1

 R
at

io
 o

f
co

st

 Index of initial conditions

Figure 3: Cost and feasibility comparisons for example 1.

5.1. Performance and feasibility comparisons 353

Figures 3-6 show the efficacy of the proposed approach as compared to a standard OMPC 354

algorithm in terms of performance and feasibility for two different choices of control weighting R. 355

Several initial conditions are chosen randomly with Monte-Carlo method. 356

• The top plots show the normalised size (distance to boundary of P from the origin) of the 357

feasible region for a large number of different directions, as compared to the MCAS. For 358

completeness the figure includes the corresponding distance for the MAS, that is when nc=0. 359

The directions are ordered by normalised magnitude of the distance from the origin to P. 360

• The lower plots show the normalised performance of Algorithm 4.3 as compared to OMPC, 361

again for a large number of random initial points on the boundary of P; the same points as 362

for the upper figures. 363

These figures demonstrate two clear conclusions. First, despite the very restricted shape of P, 364

there can be significant feasibility improvements as compared to the MAS, although unsurprisingly 365

it is smaller than the MCAS which may have a very complex shape. Second, the performance 366

degradation from using a suboptimal strategy is often quite small (here only the 3rd example has 367

serious performance degradation) and, unsurprisingly again, the loss in performance was dependent 368

on the initial condition. 369

In order to further emphasise the feasibility improvements of P over the MAS and the proximity 370

of the boundary of P to the MCAS, the unsigned volumes for these polytopic sets are shown in 371

Table 1. In this table, it is evident that P allows larger feasible sets than the MAS, specially in 372

the cases when the optimal feedback gain K is highly tuned. On the other hand, the volume of 373

P is obviously smaller than the MCAS due its restricted shape, and in fact, there may be cases 374

when the approximation is unacceptable (e.g. a non-symmetric MCAS) where other strategies not 375

covered in this paper may be needed. 376

13

0 100 200 300 400 500
0.6

0.7

0.8

0.9

1

 R=10

 D
is

ta
n

ce
 t

o
 M

C
A

S

 Index of initial conditions

0 100 200 300 400 500

1

1.002

1.004

1.006

1.008

1.01
 R=10

 R
at

io
 o

f
co

st

 Index of initial conditions

0 100 200 300 400 500
0.2

0.4

0.6

0.8

1

 R=0.1

 Index of initial conditions

 D
is

ta
n

ce
 t

o
 M

C
A

S

MAS
Polyhedral P

0 100 200 300 400 500
1

1.02

1.04

1.06
 R=0.1

 R
at

io
 o

f
co

st

 Index of initial conditions

Figure 4: Cost and feasibility comparisons for example 2.

0 100 200 300 400 500
0.2

0.4

0.6

0.8

1

 R=10

 D
is

ta
n

ce
 t

o
 M

C
A

S

 Index of initial conditions

0 100 200 300 400 500
1

1.01

1.02

1.03

1.04
 R=10

 R
at

io
 o

f
co

st

 Index of initial conditions

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1

 R=0.1

 Index of initial conditions

 D
is

ta
n

ce
 t

o
 M

C
A

S

MAS
Polyhedral P

0 100 200 300 400 500
1

1.5

2

2.5

3

 R=0.1

 R
at

io
 o

f
co

st

 Index of initial conditions

Figure 5: Cost and feasibility comparisons for example 3.

14

0 100 200 300 400 500
0.85

0.9

0.95

1

 R=10

 D
is

ta
n

ce
 t

o
 M

C
A

S

 Index of initial conditions

0 100 200 300 400 500
1

1.01

1.02

1.03
 R=10

 R
at

io
 o

f
co

st

 Index of initial conditions

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1

 R=0.1

 Index of initial conditions

 D
is

ta
n

ce
 t

o
 M

C
A

S

MAS
Polyhedral P

0 100 200 300 400 500

1

1.05

1.1

1.15
 R=0.1

 R
at

io
 o

f
co

st

 Index of initial conditions

Figure 6: Cost and feasibility comparisons for example 4.

Table 1: Unsigned volumes of the polytopic sets of the examples.

Example 1 Example 2 Example 3 Example 4

R=10 R=0.1 R=10 R=0.1 R=10 R=0.1 R=10 R=0.1

MAS 4.99 0.703 50.48 5.59 2313 209 18736 414
P 17.91 8.23 69.58 52.69 9607 5643 19232 7512

MCAS 20.74 9.43 86.65 73.42 12983 10611 27447 13056

15

5.2. Complexity comparisons377

In this section complexity of the proposed strategy is compared with the complexity of the ex-378

act parametric solution to the optimisation problem (mp-QP) (Bemporad et al., 2002a) and to an379

algorithm to approximate the exact parametric solution (Bemporad and Filippi, 2006). It is worth380

to repeat here that the aim of methods proposed in this paper is not to approximate the parametric381

solution of the optimisation problem, is rather to provide a MPC algorithm with constraint han-382

dling capabilities for the implementation in hardware with very low processing power and memory383

resources (e.g. a PLC) achieving enough guarantees of stability and recursive feasibility.384

The idea of Bemporad and Filippi (2006) is to partition the MCAS into simplices where the385

approximate solution inside each simplex is given by linear interpolation of the exact solution at386

the vertices; for each simplex, if the resulting absolute error in the objective exceeds a prescribed387

tolerance then it is divided into smaller simplices where it applies recursively. The initial set of388

simplices is obtained with a Delaunay tessellation (DT) (Yepremyan and Falk, 2005) of the MCAS.389

The resulting approximate solution is organised over a tree structure for efficiency of evaluation, a390

similar tree structure based on cubes was used in Johansen and Grancharova (2003).391

The approach of Bemporad and Filippi (2006) gives substantial reduction in the number of392

regions compared to mp-QP (Bemporad et al., 2002a) and the resulting size of the feasible set for393

the approximate solution is the same as the MCAS. However, as argued in the introduction, any394

result which is based on sub-division until the difference from the optimal is small will, in general,395

lead to a large number of regions. Even if the error bound is generously relaxed the minimum396

number of simplicies to describe the MCAS will depend on the shape and number of facets of the397

MCAS (for the algorithm that determines the initial tessellation) and in this case tree structure398

will not be very useful, all simplicies will be at the first level of the tree (just after the root of the399

tree which is the set Rnx) and a conventional search will follow, i.e. the simplices have to be tested400

one by one until the simplex containing x is found. In contrast, Algorithm 3.1 will find the simplex401

containing x in a very small fixed number of arithmetic operations.402

It is very important to mention that the original paper of Bemporad and Filippi (2006) does403

not discusses issues about implementing this parametric approximation in the receding horizon404

context, so stability and recursive feasibility cannot be guaranteed a priori and further conditions405

need to be considered.406

Table 2 focuses on the complexity of the solution as compared to a standard parametric ap-407

proach of Bemporad et al. (2002a) and the approximation of Bemporad and Filippi (2006). Specif-408

ically, the table compares (i) the number for regions for a standard mp-QP; (ii) the minimum409

number of simplices needed to describe the MCAS obtained from a DT which is the initialization410

algorithm from Bemporad and Filippi (2006) (with no error bounds to get the minimum number411

of simplices); and (iii) vertices for Algorithm 4.3. This is a fair statement of data storage require-412

ments. However, it should be noted further, that the search efficiency for the proposed algorithm413

is far better, even if the number of regions/simplices/vertices were the same.414

It is clear that the proposed algorithm allows significant reductions in complexity.415

6. Implementation of the algorithm on a Programable Logic Controller416

The principal objective of Algorithm 4.3 is to be as efficient as possible to lower memory and417

processing requirements, thus improving the potential for the application on standard industrial418

hardware. This section introduces the PLC with its limitations and describes the implementation419

of Algorithm 4.3.420

16

Table 2: Number of regions obtained using mp-QP, simplices from a Delaunay tessellation (DT) and vertices using
Algorithm 4.3.

Regions (mp-QP) Simplices (DT) Vertices (Alg. 4.3)

R=10 R=0.1 R=10 R=0.1 R=10 R=0.1

Example 1 67 63 12 12 8 8
Example 2 77 77 31 30 14 14
Example 3 297 285 99 92 14 14
Example 4 727 251 137 94 24 24

Figure 7: Allen Bradley PLC – SCL500 processor family.

6.1. Allen Bradley – Rockwell Automation PLC 421

PLCs are by far the most accepted computers in industry which offer a reliable, safe and robust 422

system. The arrangement and packaging of the PLC system is tailored for ease of integration 423

into on-site control racks or cabinets with minimal effort. PLCs are also suited for the ease of 424

implementation of standard wiring terminations. Each of these means that any on-site technician 425

will have no difficulty or require any additional skills or tools when it comes to installing a controller. 426

PLC systems also offer an added advantage that the program can be monitored online. The visual 427

nature of the language means that the user can view in real-time the changing nature of bits, the 428

value of counters or timers etc and how these relate to the overall program structure. Another 429

advantage which PLC systems afford is that in the most cases, adjustments to programs can be 430

made online without having to take the process or system under control offline. This is obviously 431

an attractive property to industry as shutting down parts of a process can be a very costly affair 432

indeed. However, it must be noted that this does present some safety issues which must be carefully 433

addressed beforehand. 434

Nevertheless, normally their use is only to implement control sequences in open loop and/or 435

different structures of PID controllers. For the purposes of this paper, the implementation is based 436

on the family of SLC500 processors belonging to the Allen Bradley PLC systems, e.g. see Fig. 7. 437

The Allen Bradley set of PLC includes 64 Kbs of memory size with 0.37 µ-sec of bit execution 438

and the facilities to be programmed in 3 of 5 languages in agreement with the IEC 61131-3 stan- 439

17

dard using Control Logix 5000TM software programming package. Each of these allows for any440

combination of programming languages to be used for a single project. These three languages are:441

1. Ladder Diagram is a graphical language that uses a standard set of symbols to represent442

relay logic. The basic elements are coils and contacts which are connected by links. Ladder logic443

is thus a highly visual, easy to understand, program and diagnose as previously stated.444

2. Function Block Diagram is a graphical language that corresponds to circuit diagrams. The445

elements used in this language appear as blocks wired together to form circuits. The wires can446

communicate binary and other types of data between Function Block Diagram elements (e.g. Real,447

Integers, etc.).448

3. Structured Text is a general purpose, high-level programming language, similar to PASCAL449

or C. Structured Text is particularly useful for complex arithmetic calculations, allows to create450

boolean and arithmetic expressions as well a structured programming constructs such as conditional451

statements (IF, THEN, ELSE). Functions and function blocks can be invoked in this language.452

6.2. PLC programming issues453

There are some barriers and criteria required before an MPC algorithm can be coded effectively454

into the PLC; these are discussed next.455

The SCL500 Control-Logix Controllers together with RS-Logix 5000 allows for the memory456

allocation of matrices (which it refers to as data arrays), for up to 3 dimensions. However, with the457

exception of one-dimensional, simple element by element arithmetic, it cannot be easily performed458

other matrix operations, notably: transposition, inversion and multiplication. To achieve such459

functions, it is thus necessary to code functions from scratch within the software to perform such460

operations. One could code an entire control algorithm in Structured Text, but for the ease461

of understanding by technicians it is strongly advisable to program most of the algorithm in a462

graphical language. In this way, the technical staff could view all the realtime data of the controller463

and debug the program if need it, in a more intuitive way. Finally, all the computations to calculate464

the next control movement should be done in a limited time dictated by the sampling period, so465

the computational load should be kept as low as possible to avoid accumulated errors during the466

tests. There is a need therefore to check and evaluate the algorithm timing after coding while467

noting that a bigger program inevitably requires more memory and therefore a more powerful PLC468

with the associated cost.469

6.3. Implementation of Algorithm 4.3 on the target PLC470

Algorithm 4.3 is programmed in the High Priority Periodic Execution Group (This periodicity471

is set up with the chosen sample time). The file structure of the program is shown in Figure 8,472

and the description of the routines is presented next:473

B MPC MAIN (Ladder Logic Diagram). This is the main routine whose purpose is to control the pro-474

gram execution, calling routines in the correct order. Specifically, this routine first calls Observer;475

if xk satisfies Mxk ≤ 1, sets c−→
∗
k = 0, c−→tail,k+1 = 0 and calls Controller Output; otherwise, calls476

the subroutines sequentially: Vertex Id, Optimisation and Controller Output.477

B Observer (Structured text). This subroutine is used to reconstruct the state vector using a478

Kalman filter. Invokes the subroutine Matrix Multiply to complete the operations.479

B Vertex Id (Structured text). This subroutine gets from Data Vertex the optimal sequence c−→k480

associated with the active vertices using Algorithm 4.2 and eqn. (10).481

B Data Vertex (Structured text). This is not properly a program routine, is a data bank. Contains482

the information about the vertices Vj of the polytope P and associated optimal solutions c−→j .483

18

Figure 8: File structure of Algorithm 4.3 in the target PLC.

B Optimisation (Structured text). This subroutine is used to calculate the optimum c−→
∗
k from 484

equation (13) finding the optimal α in problem (14). Before ending, this routine stores c−→tail,k+1. 485

B Controller Output (Structured text). This subroutine sends to the plant the calculated output 486

using uk = −Kxk + ck. 487

B Matrix Multiply (Structured Text). The matrix dimensions are passed to this along with two 488

matrices. The routine returns the resulting answer matrix of the multiplication. 489

B Matrix Inverse (Structured Text). The matrix dimensions are passed to this along with one 490

matrix. The routine returns the resulting inverted matrix using an augmented matrix with Gaus- 491

sian elimination. 492

B PLANT SIMULATION (Ladder Logic Diagram). This subroutine is for development purposes only. 493

It is used to simulate the plant dynamics/response and thus off-line testing of the controller coding. 494

7. Experimental laboratory test 495

This section shows the experimental results from applying the MPC law via the PLC, the aim is 496

to show the effectiveness of Algorithm 4.3 on real hardware. The process consists of a motor fitted 497

with a speed sensor, the control objective is to regulate the speed of the motor by manipulation of 498

the input voltage. The mathematical model of the system with a sampling time of 0.5 sec is: 499

xk+1 =
[

0.93 −0.007
1 0

]
xk +

[
1
0

]
uk;

yk =
[−0.1078 29.68

]
xk;

with constraints −3.5V ≤ u ≤ 3.5V , −0.05 ≤ ∆u ≤ 0.05V . In order to get a closed polytope, the 500

output is bounded to −1100 RPM ≤ y ≤ 1100 RPM. The experimental validation of the model is 501

shown in Fig. 9. 502

19

35 40 45 50 55 60

700

750

800

850

900

950

1000

1050

1100
 Speed process

 O
u

tp
u

t
(R

P
M

)

 Time (sec)

Experimental data
Mathematical model

Figure 9: Model validation of the speed process.

In order to allow tracking of a time-varying reference, it is necessary to use an augmented state503

vector formulation:504

ξk =
[

xk d̂k uk−1 rk

]T
, (15)

where xk are the model states of the controlled plant, d̂k is the disturbance estimate, uk−1 is the505

previous control input and rk is the reference signal. Therefore, the dynamics are formulated in506

∆u-form; in this framework, the system input at time k is ∆uk whereby uk−1 is an additional507

state in the dynamical model, i.e. the system input can be obtained as uk = uk−1 + ∆uk.508

Remark 7.1. Note that the augmented vector ξk replaces xk in all the algebra presented in Sec-509

tions 2-6.510

The tuning parameters for the controller are nc = 3, R = I, Q = I. Figure 10 shows the conven-511

tional mp-QP partitions and the polytope P for this problem in the case when d̂k = 0, uk−1 = 0.512

In this case submpOMPC only needs to store information about 42 vertices and the associated513

control laws opposed to 97 regions from the mp-QP.514

The program uses 15% of the available storage of the PLC including required memory for515

I/O, running cache and other necessary subroutines as it can be seen from the properties of the516

controller with the RSLogixr programming tool in Figure 11. This number indicates that one can517

even think in embed more than one controller in a single PLC as long as the scheduling is possible.518

Two setpoint step changes are demanded; the results show that the proposed controller is519

tracking the setpoint accurately as can be seen in Figure 12. To complete the assessment of the520

implemented program, the diagnostics tool from the hardware (shown in Fig. 13) displays that the521

time for scanning the program each sample time which in the worst case is 9.85 ms while the elapsed522

time between triggers (sampling instants) for the speed process oscillates around 100.00 ± 0.425523

ms. The significance of this is the potential to apply the algorithm on much faster processes.524

20

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.5

0

0.5

1

x
1

x 2

 Feasible regions
 Cut on r=0

−1 −0.5 0 0.5 1
−4

−2

0

2

4

x
2

r
(v

ol
ts

)

 Cut on x
1
 = 0

−10 −5 0 5 10
−4

−2

0

2

4

x
1

r
(v

ol
ts

)

 Cut on x
2
 = 0

Figure 10: Cuts on the mp-QP controller partition and polytope P for the speed process (d̂k = 0, ∆uk−1 = 0).

Figure 11: Algorithm 4.3 memory usage on the target PLC.

21

0 5 10 15 20 25 30 35
650

700

750

800

850

900

950

1000
 Speed process

 O
u

tp
u

t
(

R
P

M
)

0 5 10 15 20 25 30 35
1.5

2

2.5

3

3.5

4

 In
p

u
t

(V
)

0 5 10 15 20 25 30 35
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

 In
p

u
t

ra
te

 (
V

)

 Time (sec)

Figure 12: Experimental test for the speed process.

Figure 13: Execution time and sampling jittering of Algorithm 4.3.

22

8. Conclusions 525

This paper has demonstrated that a simple but very efficient constrained MPC algorithm can 526

be effectively coded in a standard PLC unit. Thus, it is an industrial affordable alternative for 527

replacing standard controllers with poor performance particulary in loops primarily controlled with 528

PLC units. Along with this, the paper has made two important contributions. 529

First, it has evolved work on efficient parametric solutions to predictive control by removing 530

the requirement for a specified bound on suboptimality and instead replaced that assumption 531

with a specified bound on solution complexity. This is done without loss of recursive feasibility 532

and stability and is a key advance when considering application to systems with low processor 533

capability or highly complex optimal parametric solutions. 534

Secondly, it has proposed a novel choice of regions which allows for highly efficient search 535

algorithms in conjunction with a simple definition which allows more shape flexibility than nxD 536

cubes. Specifically, the choice of regions allows one to define the feasible region in terms of facets 537

with at most nx vertices thus allowing simple convexity statements and thus simple computations; 538

critically the facets do not need to be enumerated explicitly offline and are computed implicitly, 539

with a trivial iteration, as required; hence the data storage requirements are lower. 540

While it would be impossible to give a generic statement that the proposed approach always 541

gives at most a given degree of suboptimality or percentage loss in feasibility, the numerical exam- 542

ples show that these comparisons are easy to determine and in many cases the gain in simplicity 543

and efficiency far outweighs any performance loss. Future work will look at the potential of using 544

this approach recursively, that is to derive smaller additional polytopes near the boundary as is 545

done typically by authors using a nxD cube assumption. 546

References 547

Bemporad, A., Borrelli, F., Morari, M., 2002a. Model predictive control based on linear programming - The explict 548

solution. IEEE Transactions on Automatic Control 47 (12), 1974–1985. 549

Bemporad, A., Filippi, C., 2003. Suboptimal explicit receding horizon control via approximate multiparametric 550

quadratic programming. Journal of Optimization Theory and Applications 117 (1), 9–38. 551

Bemporad, A., Filippi, C., 2006. An algorithm for approximate multiparametric convex programming. Computational 552

optimization and applications 35 (1), 87–108. 553

Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E., 2002b. The explicit linear quadratic regulator for constrained 554

systems. Automatica 38 (1), 3–20. 555

Borrelli, F., Baotic, M., Bemporad, A., Morari, M., 2001. Efficient on-line computation of constrained optimal 556

control. In: Proceedings of IEEE Conference on Decision and Control. 557

Canale, M., Fagiano, L., Milanese, M., 2009. Set membership approximation theory for fast implementation of model 558

predictive control laws. Automatica 45 (1), 45–54. 559

Canale, M., Fagiano, L., Milanese, M., 2010a. Efficient Model Predictive Control for Nonlinear Systems via Function 560

Approximation Techniques. IEEE Transactions on Automatic Control 55 (8), 1911–1916. 561

Canale, M., Fagiano, L., Razza, V., 2010b. Approximate NMPC for vehicle stability: Design, implementation and 562

SIL testing. Control Engineering Practice 18 (6), 630–639. 563

Christophersen, F., Kvasnica, M., Jones, C., Morari, M., 2007. Efficient evaluation of piecewise control laws over a 564

large number of polyhedra. In: Proceedings of European Control Conference. 565

Gilbert, E., Tan, K., 1991. Linear systems with state and control constraints: The theory and application of maximal 566

output admissable sets. IEEE Transactions on Automatic Control 36 (9), 1008–1020. 567

Grieder, P., Wan, Z., Kothare, M., Morari, M., 2004. Two level model predictive control for the maximum control 568

invariant set. In: Proceedings of American Control Conference. 569

Johansen, T., 2003. Reduced explicit constrained linear quadratic regulators. IEEE Transactions on Automatic 570

Control 48 (5), 823–828. 571

23

Johansen, T., Grancharova, A., 2003. Approximate explicit constrained linear model predictive control via orthogonal572

search tree. IEEE Transactions on Automatic Control 48 (5), 810–815.573

Johansen, T., Petersen, I., Slupphaug, O., 2002. Explicit sub-optimal linear quadratic regulation with state and input574

constraints. Automatica 38 (7), 1099–1111.575

Pistikopoulos, E., Dua, V., Bozinis, N., Bemporad, A., Morari, M., 2002. On-line optimisation via off-line parametric576

optimisation tools. Computers and Chemical Engineering 24 (2-7), 175–185.577

Rossiter, J., 2003. Model-based predictive control, a practical approach. Prentice Hall Int.578

Rossiter, J., Grieder, P., 2005. Using interpolation to improve efficiency of multiparametric predictive control. Auto-579

matica 41 (4), 637–643.580

Rossiter, J., Kouvaritakis, B., Rice, M., 1998. A numerically robust state-space approach to stable predictive control581

strategies. Automatica 34 (1), 65–73.582

Scokaert, P., Rawlings, J., 1998. Constrained linear quadratic regulation. IEEE Transactions on Automatic Control583

43 (8), 1163–1168.584

Tondel, P., Johansen, T., Bemporad, A., 2003. Evaluation of piecewise affine control via binary search tree. Auto-585

matica 39 (5), 945–950.586

Valencia-Palomo, G., Rossiter, J., 2010. PLC implementation of an auto-tuned predictive control based on minimal587

plant information. ISA Transactions. In press, doi: 10.1016/j.isatra.2010.10.002.588

Yepremyan, L., Falk, J., 2005. Delaunay partitions in Rn applied to non-convex programs and vertex/facet enumer-589

ation problems. Computers & Operations Research 32 (4), 793–812.590

AppendixA. Systems for the numerical examples591

Example 1592

A =
[−0.2 −1

1 0

]
; B =

[
1
0

]
; C =

[
1 0

]
;

u = 0.4 = −u; ∆u = 10 = −∆u; y = 10 = −y.

Example 2593

A =




1.4 −0.105 −0.108
2 0 0
0 1 0


 ; B =




0.2
0
0


 ;

C =
[

5 7.5 5
]
;

u = 4 = −u; ∆u = 1 = −∆u; y = 12 = −y.

Example 3594

A =




0.914 0 0.04
0.166 0.135 0.005

0 0 0.135


 ; B =




0.054 −0.075
0.005 0.147
0.864 0


 ;

C =
[

1.799 13.216 0
0.823 0 0

]
;

u =
[

1
2

]
= −u; ∆u =

[
0.25
0.5

]
= −∆u; y =

[
3
1

]
= −y.

Example 4595

A =




0.9 −0.105 −0.108 0.2
0.6 0 0 −0.1
0 0.8 0 0.3
0 0 0.8 0


 ; B =




2
0
0

0.5


 ;

C =
[

5 7.5 5 1
]
;

u = 2 = −u; ∆u = 0.08 = −∆u; y = 2.4 = −y.

24

	1.pdf
	Rossiter_Efficient

