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Abstract

The spatial scan statistic is well established in spatial epidemiology. However, studies of its spatial accuracy are
infrequent and vary in approach, often using multiple measures which complicate the objective ranking of different
implementations of the statistic. We address this with three novel contributions. Firstly, a modular framework into
which different definitions of spatial accuracy can be compared and hybridised. Secondly, we derive a new single
measure, Ω, which takes account of all true and detected clusters, without the need for arbitrary weightings and
irrespective of any chosen significance threshold. Thirdly, we demonstrate the new measure, alongside existing ones,
in a study of the six output filter options provided by SaTScanTM. The study suggests filtering overlapping detected
clusters tends to reduce spatial accuracy, and visualising overlapping clusters may be better than filtering them out.
Although we only address spatial accuracy, the framework and Ω may be extendible to spatio-temporal accuracy.
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1. Introduction

The spatial scan statistic, hereafter SSS, is a
widely used tool in spatial and spatio-temporal epi-
demiology. Introduced by Kulldorff and Nagarwalla
(1995) and Kulldorff (1997), the purpose of the SSS
is to detect the presence and location of clusters
within spatial and spatio-temporal data sets. Imple-
mented within the freely available SaTScanTM software
(www.satscan.org), it has been used in well over one
hundred published scholarly studies; see list in Kull-
dorff (2009).

Whilst the capacity of the SSS to accurately detect the
presence of clusters has been widely studied, much less
so its capacity to accurately detect their location. This
should be of some concern. As Kulldorff (1997) states:

... the scan statistic has the ability to identify
the zone responsible for rejecting the null hy-
pothesis, and if we fail to detect the real clus-
ter, it is of little comfort if the null hypothesis
is rejected based on an untrue cluster in an-
other part of the study area.

The reason that fewer studies consider spatial (or
spatio-temporal) accuracy, may be because it is not im-
mediately obvious how to measure it. The literature

presents a patchwork of different measures and nomen-
clatures, with the most suitable scheme dependent on
the type of data used and the aims of the study. The first
objective of this paper is to explore a modular frame-
work into which different measures of spatial accuracy
can be classified, the aim being to ease the comparison
and hybridization of different measures. This is pre-
sented in Section 2.

One additional complication is that most measures of
spatial accuracy have multiple output parameters. This
is problematic if one wishes to rank cluster detection
systems in terms of spatial accuracy, without making
an arbitrary choice about the relative weighting of these
parameters. A second complication is that most existing
measures of spatial accuracy are dependent upon an ar-
bitrary choice of significance threshold. For non-spatial
performance measures, a solution to both these prob-
lems already exists in the form of the two-alternative-
forced-choice (hereafter 2AFC) test. The 2AFC test
forms the basis of the area under curve (AUC) mea-
sure used with receiver operating characteristic (ROC)
curves, providing a single performance measure that is
independent of significance threshold, or the relative
weighting of sensitivity and specificity.

The second objective of this paper is thus to provide a
novel measure of spatial accuracy, based on a intuitively
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straightforward 2AFC test, which is customised for the
spatial scan statistic. We provisionally call this Ω; a full
definition and derivation are presented in Section 3.

The final objective of this paper is to provide a brief,
but useful demonstration, of the new Ω measure. To
this end, the six different output filtering options pro-
vided by SaTScanTM are evaluated in terms of their ef-
fect on spatial accuracy. This is done using the Bernoulli
version of the spatial scan statistic, applied to synthetic
point data sets containing one (or several) spatial clus-
ters. This is presented in Section 4.

A conclusion, and discussion of future work, is pro-
vided in Section 5. Note that although this paper only
concerns spatial accuracy, it may well be feasible to ex-
tend the work to spatio-temporal studies.

2. A framework for measures of spatial accuracy

Consideration for the spatial accuracy of the SSS
dates back to its inception. However, in subsequent as-
sessments of its performance, the ability to determine
where a cluster is (termed spatial accuracy) has not
been studied as widely as the ability to detect whether a
cluster is actually present (loosely termed power). This
is exacerbated by the lack of a universally accepted def-
inition or measure of spatial accuracy. The aim of this
section is to present a framework which, with reference
to example studies from the literature, allows existing
definitions to be compared on similar terms. Note that
this framework only covers spatial accuracy at present;
the temporal dimension is somewhat more complicated,
especially in real-time surveillance where the present
has special importance. That said, the framework can
be used for spatio-temporal studies in which time is ef-
fectively just an additional spatial dimension.

The framework considers the measurement of spatial
accuracy as a metafunction, a term used (loosely) here
to describe a collection of processes acting together as a
single measuring tool. The input of this metafunction is
the study region itself, the data contained in each bench-
mark data set, and information about that data set (e.g.
details of any injected clusters, and the process by which
the data were generated, if synthetic). The output of the
metafunction is one or more scalar values, each indi-
cating how successful the detection system has been, in
some regard, in identifying the locations of any injected
clusters, either within a single data set or across a batch
of data sets. Here, we use the term batch to refer to a
collection of hundreds or thousands of benchmark data
sets, all generated using a similar underlying model, and
usually based on the same study region. For example,

it is common to have a batch representing the null hy-
pothesis (no cluster present) and one or more batches
containing data sets into which one or more clusters of
some kind have been injected. By aggregating perfor-
mance measures over all the data sets in a batch, one can
detect even relatively small differences in performance
between detection methods.

The framework present in this section has five levels,
listed below. Levels 1 to 4 concern individual data sets,
and Level 5 concerns the aggregation of results at batch
level. Each level is discussed, with reference to the lit-
erature, in Sections 2.1 to 2.5 respectively.

Level 1: Spatial support

Level 2: Data function

Level 3: Sub-regions

Level 4: Performance measures

Level 5: Aggregation

2.1. Level 1: spatial support

Consider any location s within a study region R. This
could be a point, a ZIP code, a census area, or any spa-
tial reference one can conceive of. By specifying s at
Level 1, we are free to use it generically in Levels 2 to
5, where it can represent any type of location.

To discern whether any given s is part of the true
cluster, a detected cluster, or some combination thereof,
is to implicitly invoke some function whose domain is
the study region itself. The support of this function is
those parts of the study region where this function is de-
fined.This may be a very limited set of points, e.g. Read
et al. (2009) and Savory et al. (2010), where one is only
concerned with the exact centre of the true and detected
clusters. It may be a more extensive set of points, e.g.
home addresses as used by Huang et al. (2007), or a
set of area centroids, e.g. the county centroids used by
Jacquez (2009). Potentially it may even represent a set
of continuous geospatial areas.

Spatial support need not cover the entire study region,
i.e.

⋃
si = R is not required. However, if one wishes

to use clearly delineated sub-regions (see Section 2.3)
there should be no overlap (i.e. si ∩ s j = � ∀ i , j).

2.2. Level 2: Data function

When calculating spatial accuracy, sometimes one is
only interested in counting the number of locations cor-
rectly (or incorrectly) detected; examples are Jacquez
(2009), Neill (2009), Que et al. (2008), and Waller et
al. (2006). However, some measures of spatial accuracy
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take into account data associated with each location, e.g.
the use of the counts of affected individuals in each areal
unit by Jung et al. (2007) and Olson et al. (2006). In ei-
ther case, it is helpful to express these counts as a (non-
parametric) function of s, which we call here the data
function, or f (s) for brevity. For instance, if one is mea-
suring spatial accuracy by counting the number of in-
dividuals correctly (or incorrectly) identified, then one
should define f (s) as the number of affected individu-
als at location s. If one is only interested in counting
locations, it is convenient to set f (s) equal to the indi-
cator function1 I(s ∈ S ), where S is some subset of the
study region that interests us (this is discussed further in
Section 2.3). These examples require only simple data
functions, and there may be considerable scope here for
novel developments in the measurement of spatial accu-
racy.

For reasons that will become apparent in Section 3, it
is very useful to define the data function as being pro-
portional to the probability density function of s, when
s is the output of a spatial Poisson process, equivalent
to the uniformly random selection of an element of the
data set. For example, consider a spatial accuracy mea-
sure of the type used by Jung et al. (2007): if one selects
an affected individual in the study uniformly at random
and notes the associated location s, then f (s) is propor-
tional the to probability that any given s will be selected.
This constraint is entirely compatible with most of the
spatial accuracy studies cited in this paper, thus is a very
mild condition.

2.3. Level 3: sub-regions

It is useful to have shorthand for referring to different
parts of the study region, independent of the data func-
tion or the spatial support. An excellent example is the
a, b, c, d notation used by Jacquez (2009), where areal
units into one of four types (illustrated in Figure 1):

a) Inside both true and detected cluster(s)
b) Inside true but outside detected cluster(s)
c) Inside detected but outside true cluster(s)
d) Outside both true and detected cluster(s)

A different, and slightly more succinct, subdivision
method is used in papers introducing new versions of
the SSS: Huang et al. (2007), Jung et al. (2007) and
Jung et al. (2010). This is shown below, the relation-
ship to the notation above given in brackets:

1The indicator function I evaluates to 1 when the expression fol-
lowing in brackets evaluates true, 0 otherwise.

Figure 1: Example sub-regions

• The intersection of the true and detected cluster(s)
(≡ a)

• The true cluster(s) (≡ a ∪ b)

• The detected cluster(s) (≡ a ∪ c)

To use this kind of shorthand in the measures discussed
in Section 2.4, one must first define scalar values to be
associated with each sub-region2. This is simply the nu-
merical integration of the data function f (s) across each
s within the sub-region concerned. For any subregion
S , one express the its associated scalar value as:∫

S
f (s ∈ S ) ds

For example, consider Que et al. (2008). Here s are
postal code area centroids and (amongst other things)
the authors measure the count of areal units included in
both true and detected clusters. Using Levels 1 to 3 of
this framework, one would define the area of overlap be-
tween true and detected clusters as a subregion (say a,
for compatibility with Figure 1), and with this associate
a value equal to the sum of I(s ∈ a) for all postal code
centroids s within a. It is important to note that these
sub-regions, and their associated scalar values, are de-
pendant not only on the size and shape of the detected
clusters, but on the significance threshold used to screen
out unlikely clusters. For example, if one uses a typical
significance threshold of 0.05, then ‘detected clusters’
means only those scan windows produced that have a
p-value of ≤ 0.05. This means that spatial accuracy, as
it is measured in the studies cited here, is dependent on
the exact choice of significance threshold. Section 3 ex-
plores this issue in more depth.

2Within this paper, sub-region notation such as a, b, c, d refers to
both subsets of the study region (when used in set expressions), and
the values associated with them (when used in scalar arithmetic). The
usage should be clear from the context.
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The next section explains how the scalar values as-
sociated with each sub-region are used to produce mea-
sures of spatial accuracy.

2.4. Level 4: Performance measures
The first three levels of the framework give a modular

way of considering location and data within each data
set. The fourth level brings these together to produce
actual values representing the spatial accuracy of a par-
ticular detection method applied to a particular data set.
This is where the difference between studies is greatest.

Read et al. (2009) and Savory et al. (2010) conducted
benchmark studies where both the true and detected
clusters have a clearly defined centre. Here the Eu-
clidean distance between these centres provides a sin-
gle, easily understandable measure of spatial accuracy.
The advantage of a single measure is that it is straight-
forward to rank different detection algorithms in terms
of their spatial accuracy. Unfortunately, the presence of
multiple true and detected clusters within one data set
complicates this approach, except when the correspon-
dence of each true and detected cluster is very obvious,
as in Savory et al. (2010). Also, the distance measure
approach does not take account of the size and shape of
the true and detected clusters.

The use of two of more scalar measures provides
more flexibility, especially where there may be multiple
(possibly overlapping) true and detected clusters, any of
which could be highly irregular in shape and varying
in size. Rather than considering distance, these studies
consider the amount of overlap between true and de-
tected clusters, and the amount of overlap between the
detected clusters and those parts of the study region out-
side the true clusters. Examples of this approach can
be found in Huang et al. (2007), Jacquez (2009), Jung
et al. (2007), Jung et al. (2010), Neill (2009), Olson
et al. (2006), and Que et al. (2008). All of the mea-
sures used in these studies are, implicitly or explicitly,
based upon scalar values calculated for each of the sub-
regions shown in Figure 1. For example, consider the
definitions of spatial sensitivity and spatial positive pre-
dictive value (PPV) used in Huang et al. (2007), Jung
et al. (2007) and Jung et al. (2010). In an individual
data set level, these can be expressed as = a/(a + b) and
= a/(a+c), respectively. To understand spatial accuracy
measures calculated from the scalar values associated
with a, b, c and d, it is perhaps easiest to present them in
the familiar 2×2 table used for calculating non-spatial
measures (see Table 1).
The variety of measures used in various studies is shown
in Table 2. Note that nomenclature varies from study
to study, even when referring to what is essentially the

Inside true Outside true
Inside detected a c

Outside detected b d

Table 1: Adaption of standard 2×2 table for classifying the sub-
regions used in calculating spatial accuracy, after Jacquez (2009)

same thing. A particularly interesting measure is high-
lighted by Neill (2009), who uses the terminology of
information retrieval: recall = a/(a + b) and precision
= a/(a + c). Recognising the value of having a single
scalar measure of spatial accuracy when ranking differ-
ent methods, Neill uses an established method of com-
bining these: the F-measure (van Rijsbergen, 1979),
which is the harmonic mean of recall and precision.
The only drawback is that the F-measure requires an as-
sumption (implicit or explicit) about the relative weight-
ing of recall and precision (Rennie, 2004). This issue is
discussed further in Section 3.

2.5. Level 5: Aggregation

Each measure in Level 4 has a scalar variable as its
output. This means that within each data set, spatial
accuracy is represented by one or more (typically two)
scalar values. However, benchmark testing involves
manifold data sets, and one needs measures that rep-
resent spatial accuracy at batch level, rather than indi-
vidual data set level. The obvious choice is to take the
arithmetic mean for each measure across all data sets
in the batch. This is the approach taken by Huang et
al. (2007), Jung et al. (2007), Jung et al. (2010), Neill
(2009), Olson et al. (2006) and Que et al. (2008).

An alternative approach is taken by Waller et al.
(2006), who take the mean across only those data sets
where at least one cluster is detected with a p-value at
or below the chosen significance threshold. This is a
crucial choice which can make a significant difference
to value of the aggregated measures, in difficult bench-
marks tests where the power of the SSS is low, or if a
very strict significance threshold is applied. Here only a
small proportion of data sets may have detected clusters,
and taking the mean across these data sets alone could
give a volatile result. However, calculating the mean
spatial accuracy across all data sets in a batch could
be paradoxical: as one would then be including results
from data sets where, statistically speaking, nothing has
been detected (in which case the measures in Level 4
usually default to a certain value, e.g. zero).

This raises a fundamental question about the ap-
proach to measuring the performance of the SSS in a
benchmark test: is the intended end user of the SSS ask-
ing this question:
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• “Does this data set contain any true clusters, if so
where are they?”

or two separate questions:

• “How certain am I this data set contains any true
clusters?”

• “Where are any true clusters in this data set most
likely to be?”

If one is certain it is the first, then clearly one only need
consider data sets where a statically significant cluster is
detected. Otherwise, one might consider all (or some)
of the other data sets. Ironically, this is not a major is-
sue in many existing studies as they generate data sets
using models that result in true clusters that are not too
difficult to detect.

Table 2 summarises all the studies mentioned in this
section, outlined in terms of this framework. It can be
seen that, due to the modular nature of the framework,
a hybrid approach can be used to select aspects of spa-
tial accuracy measurement from existing studies that are
most suitable to the application concerned.

3. A unified measure of spatial accuracy

As discussed in Section 2.4, except in limited cases
one needs at least two measures of spatial accuracy: one
quantifying the amount of the true cluster that has been
correctly detected, and one quantifying the amount of
the study region outside the true cluster that has been
incorrectly detected. However, if one wishes to rank
different implementations of the SSS in terms of spa-
tial accuracy, one needs to combine these functions into
one scalar value. For the purposes of this discussion let
us call this dimension reduction. Neill (2009) achieved
dimension reduction using the F-measure; however this
implicitly requires an assumption about the weighting
of the two dimensions being combined (in this case spa-
tial precision and spatial recall). It would be advanta-
geous to have a single measure of spatial accuracy that
obviates the need to weight the dimensions concerned.

Furthermore, most of the measures of spatial accu-
racy discussed in Section 2 are dependent on an arbi-
trary choice of significance threshold. This is because
each cluster detected by the SSS has an associated p-
value, and when comparing detected and true clusters
(e.g. when delineating a and c in Figure 1) one would
normally exclude detected clusters with unconvincingly
high p-values. Thus, one must specify a significance
threshold. One may then have a situation where one
detection algorithm produces better spatial accuracy at

one threshold, and another algorithm performs better at
another threshold. It would be advantageous to have a
measure of spatial accuracy that covers all significance
threshold levels simultaneously.

This section derives such a measure. The start-
ing point is a two-alternative-forced-choice (hereafter
2AFC) test, similar to that used in the derivation of the
area under curve (AUC) measure3. AUC combines sen-
sitivity and specificity to produce a single scalar value,
which happens to equal the area under the correspond-
ing receiver operating characteristic (ROC) curve. The
AUC is equivalent to the probability that, when faced
with one ‘true’ sample and one ‘false’ sample, the de-
tection method under consideration can correctly iden-
tify which is which. The use of this 2AFC obviates the
need to make a decision about the weighting of sensi-
tivity and specificity, or the significance threshold of the
test.

The 2AFC test used in this section is a forced choice
between two randomly selected locations, s1 and s2,
both within the study region. Let s1 lie somewhere in-
side the true cluster, and s2 somewhere outside4. Let
s1 be generated by a spatial Poisson process, such that
any location inside the true clusters may be chosen with
a probability density function proportional to the data
function f (s) (see Section 2.2). Similar for s2. Let us
define a measure called Ω representing the probability
that when one is presented blindly with these two loca-
tions, and using only information provided by the SSS
algorithm, one can correctly determine which is s1, and
which is s2. It is important to note that one will never
actually need to generate the locations s1 and s2, it is
only the probability density functions of their potential
locations that is of interest in calculating Ω.

The definition of Ω given above is necessarily tech-
nical for the purposes of the following proof. However,
the idea of the probability of correctly choosing between
two randomly selected locations, one inside the cluster
and one outside, is straightforwardly intuitive. This is
useful for non-technical readers of benchmark testing
literature, who simply wish to know how well a detec-
tion method is likely to perform when faced with real
data.

To calculate Ω, it is necessary to define some addi-
tional terms:

3Green and Swets (1966), revisited by Hanley and McNeil (1982)
4This necessitates that there is a least one true cluster present in

the data set. This is acceptable as one cannot measure spatial accuracy
when no true cluster is present, except perhaps to measure the amount
of the study region incorrectly identified in any detected clusters. In
this case a simple one-dimensional measure, specificity (= d/(c + d)),
already exists.
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Study
Framework level (see text)

spatial data sub- performance aggregation
support function regions measures

Huang et al. (2007) s = address f (s) = S = a, b or c sensitivity Arith. mean
Jung et al. (2007) s = census tract no. affected See

= a/(a + b)
over all

individuals Figure1 data sets
Jung et al. (2010) s = postal code at s generated

area PPV under same

= a/(a + c) model

Read et al. (2009) st = loci(centre) n/a n/a |st − sd |

of the true cluster
sd = loci of most
likely detected

cluster
Savory et al. (2010) st = loci(centre) n/a n/a Arith. mean of Arith. mean

of each true cluster 1/|st − sd | and coeff. of
sd = loci of each variance over all

matching detected data set gen. under
cluster same model

Waller et al. (2006) s = census tract I(s ∈ S ) S = a, b or c Measure 1 = Measure 1:
where: I(a ∩ b , �) Sum over all

a = centre of Measure 2 = data sets
true cluster I(a ∩ c , �) where a , �

b = centres of where I is Measure 2:
all sig. detected the indicator Sum over all

clusters function data sets
c = all detected

clusters
Neill (2009) s = grid I(s ∈ S ) S = a, b or c recall Arith. mean

square See
= a/(a + b) over all

Figure1 data sets
precision generated

= a/(a + c) under same
model

F-measure

= 2a/(2a + b + c)

Jacquez (2009) s = county I(s ∈ S ) S = a, b, c or d power n/a
centroids See

= a/(a + b)Figure1
false neg.

= b/(a + b)

false pos.

= c/(c + d)

specificity

= d/(c + d)

detection acc.

= a/(a + c)

Que et al. (2008) s = postal I(s ∈ S ) S = a, b or c sensitivity Arith. mean
code area See

= a/(a + b)
over all

Figure1 data sets
generated

PPV under same

= a/(a + c)
model

Olson et al. (2006) s = address f (s) = S = a, b or c Measure 1:
or postal code no. affected See

= I(a ≥ b)area individuals Figure1
or census at s

tract Measure 2:

= c

Notes: I(∗) is the indicator function, where I(∗) = 1 if * true, I(∗) = 0 otherwise
PPV is positive predictive value
|st − sd | is the distance between points st and sd

Table 2: Table showing the framework proposed in Section 2 as applied to various studies
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• Let A(⊂ R) be the locus of all true clusters in R

• Let AC = R − A, i.e. the locus of all R outside A

• Let {Z, α} represent a detected cluster, where Z ⊆
R is the locus of the detected cluster and the α is
the p-value, i.e. probability5 that Z is a random
artefact.

• Let {α1, α2 . . . αX} be the set of all unique p-values
associated with the detected clusters.

• Define α0 = 0 and αX+1 = 1

• Let Zx be the union of all Z with associated p-
value ≤ αx, where 1 ≤ x ≤ X.

• DefineZ0 = �, andZX+1 = R

• Let a1 = Z1 ∩ A

• Let ax = [Zx ∩ A −
⋃x−1

i=1 ai] for 2 ≤ x ≤ X

• Define a0 = � and aX+1 = A −
⋃X

i=1 ai

• Let c1 = Z1 ∪ AC

• Let cx = [Zx ∪ AC −
⋃x−1

i=1 ci ] for 2 ≤ x ≤ X

• Define c0 = � and cX+1 = AC −
⋃X

i=1 ci

Put more intuitively: Zx represents an amalgamation of
the SSS output for each unique p-value, where all de-
tected clusters with a p-value equal to or less than αx

are merged. Also a1 ∪ c1 represents the locus of the
most likely detected clusters, whilst ax ∪ cx represents
the locus of the xth most likely detected cluster, exclud-
ing locations included in the loci of more likely clusters.
Note that aX+1 is equivalent to b in Figure 1, with cX+1
equivalent to d (this simplifies the expression for Ω). An
example of this new spatial set notation is shown in Fig-
ure 2; note that a3, a4 and c1 all happen to be null in the
example illustrated.

As described in Section 2, one can numerically
integrate the data function across each sub-region
a1 . . . aX+1 and c1 . . . cX+1, to obtain scalar values rep-
resenting the probability of s1 and s2 being located in
each, respectively. Using these values, one can calcu-
late Ω using the following formula:

Ω =

∑X+1
y=1

[∑y−1
k=0 ak + 1

2 ay

]
· cy∑X+1

k=0 ak ·
∑X+1

k=0 ck
(1)

5For all but the most likely cluster, this probability is known to be
slightly conservative (Kulldorff, 1997).

Figure 2: Example of subdivisions used in defining Ω

This gives a value from 0 to 1, with Ω = 1 representing
perfect spatial accuracy, where all detected clusters lie
within the true clusters, and all true clusters lie within
the detected clusters. As with the AUC measure, if one
obtains Ω = 0, i.e. perfect spatial inaccuracy, one could
simply invert the detected clusters to achieve Ω = 1.
Hence for practical purposes, Ω = 0.5 is the worst case.
This means the detection system has provided no useful
information in distinguishing which location is s1 and
which s2, and the probability of guessing correctly is
the same as if one were tossing a coin. The proof of the
formula is as follows.

Proof. First, let i and j be the indices of the most signif-
icantZ to contain s1 and s2 (respectively), with 1 being
the most significant and X being the least. If either s1 or
s2 fall outside of ZX , let i or j (respectively) = X + 1.
Therefore:

i =

{
i : s1 ∈ Zi, s1 < Zi+1 if 1 ≤ i ≤ X
i = X + 1 otherwise

j =

{
j : s2 ∈ Z j, s2 < Z j+1 if 1 ≤ j ≤ X
j = X + 1 otherwise

With regard to the 2AFC, if one is presented blindly
with locations s1 and s2, and one’s decision is only in-
formed by the SSS output, then there are just three pos-
sibilities:

• P1: if i < j, one will answer correctly with proba-
bility 1

• P2: if i > j, one will answer incorrectly with prob-
ability 1

• P3: if i = j, one will have no useful information
and be forced to guess, with probability 0.5 of be-
ing correct.
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Using ρ to denote the probability, then Ω by definition
equals:

Ω = ρ(P1) + 0.5 ρ(P3)
= ρ(i < j) + 0.5 ρ(i = j)
= ρ(i < y | j = y) + 0.5 ρ(i = y | j = y)

Where y is some integer. Taking marginal probabilities
over possible values of y gives us:

Ω =

X+1∑
y=1

ρ(i < y) · ρ( j = y)

+ 0.5
X+1∑
y=1

ρ(i = y) · ρ( j = y)

=

X+1∑
y=1

[
ρ(i < y) + 0.5 ρ(i = y)

]
· ρ( j = y)

Each probability can be expressed as follows:

ρ(i < y) =

∑y−1
k=0 ρ(s1 ∈ ak)∑X+1
k=0 ρ(s1 ∈ ak)

(2)

ρ(i = y) =
ρ(s1 ∈ ay)∑X+1

k=0 ρ(s1 ∈ ak)
(3)

ρ( j = y) =
ρ(s2 ∈ cy)∑X+1

k=0 ρ(s2 ∈ ck)
(4)

Because Ω is being defined in conjunction with the
framework described in Section 2, we can draw upon
the assumption made in Level 2 (see Section 2.2). This
states that the data function f (s) must be proportional to
the probability density function of s, when s is the out-
put of a spatial Poisson process. As s1 and s2 are ran-
domly generated under such a process, one can write:

ρ(s1 ∈ ak) ∝
∫

ak

f (s) ds

ρ(s2 ∈ ck) ∝
∫

ck

f (s) ds

When we are discussing a1 . . . aX+1 and c1 . . . cX+1 in
terms of their scalar values, we can write the above ex-
pressions simply as:

ρ(s1 ∈ ak) ∝ ak

ρ(s2 ∈ ck) ∝ ck

Now to obtain exact values for these probabilities, one
would divide ak by (a1 + a2 + · · · + aX) and ck by (c1 +

c2 + · · · + cX). However, as these denominators are the
same for all ak and ck respectively, we can discard them
when inserting the above values into Expressions 2, 3
and 4, which then become:

ρ(i < y) =

∑y−1
k=0 ak∑X+1
k=0 ak

ρ(i = y) =
ay∑X+1

k=0 ak

ρ( j = y) =
cy∑X+1

k=0 ck

Now inserting these into our previous expression for Ω

gives Expression 1:

Ω =

∑X+1
y=1

[∑y−1
k=0 ak + 1

2 ay

]
· cy∑X+1

k=0 ak ·
∑X+1

k=0 ck

4. Example application

This section provides an example application of the
framework presented in Section 2 and the Ω measure
presented in Section 3. The number of candidate de-
tected clusters produced by implementations of the SSS
can be considerable. To aid users, SaTScanTM provides
six choices of filter option (here called F1 to F6, listed
below). These filters have no effect in power studies, as
true and false positive rate depend only on the p-value of
the most likely cluster, which is never filtered out. How-
ever, they almost certainly affect spatial accuracy. To the
best of our knowledge, these filters have not been exam-
ined in the literature, save a basic overview in Kulldorff
(2009), and there has been no published study to date
concerning the pros and cons of each option.
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F1: No geographical overlap

F2: No cluster centres in other clusters

F3: No cluster centres in more likely clusters

F4: No cluster centres in less likely clusters

F5: No pairs of centres both in each others clusters

F6: No restrictions, i.e. most likely cluster for each s

Here we briefly present the results of a benchmark
study of filtering options, measuring spatial sensitivity
and PPV (as defined in the sub-regions and performance
measure columns of table 2), and Ω as defined in Sec-
tion 3. The benchmark data sets used are similar to those
in Read et al. (2009), where full details of the generation
procedure is given. Each data set is a randomised distri-
bution of 100 cases of a hypothetical disease, and 200
controls. Four batches were used; two generated using
an homogeneous background density (CSR for short6);
two using an inhomogeneous background density pro-
portional to the 2001 population of the Trent region of
the UK (TRENT for short). The background density is
(effectively) the underlying spatial distribution of con-
trols, i.e. the probability of a control occurring at a par-
ticular point is proportional to the background density
at that point. E.g. in CSR data sets a control is equally
likely to occur at any point with the study space.

The underlying distribution of cases follows that of
controls, aside from the injection of one (×1TC) or three
(×3TC) true clusters, i.e. one or three localised multi-
plicative increases in risk. These injections are Gaussian
in shape (i.e. the increase is highest at the centre then
tails off smoothly), isotropic, and uniformly randomly
located7. The risk multiplier at the centre of each in-
jection is termed the maximum relative risk (hereafter
MRR). All MRR values were set to 15; which gave >
50% power in all batches for a standard 5% false alarm
rate. Although a potential limitation of the study, this
use of consistent sizes and shape of anomaly consider-
ably reduces the number of different batches required,
making this preliminary study feasible. The reference
codes used in this study are given in Table 3.

For each data set in each batch, SaTScanTM was run
six times on each data set, once for each choice of out-
put filter (F1 - F6). Four batches of 1000 data sets, and

6CSR stands for “complete spatial randomness”, referring to the
spatial distribution of controls in these data sets.

7With the exception of an exclusion area close to the border to
avoid the need to consider edge effects.

Batch code Description

CSR×1TC
1000 data sets, each with:

one true cluster, MRR=15
background density = CSR

CSR×3TC
1000 data sets, each with:

three true clusters, MRR=15
background density = CSR

TRENT×1TC
1000 data sets, each with:

one true cluster, MRR=15
background density ∝ pop. of Trent, UK

TRENT×3TC
1000 data sets, each with:

three true clusters, MRR=15
background density ∝ pop. of Trent, UK

Table 3: Description of the four batches tested

six filters, gives 24,000 sets of results in total. A com-
bination of Linux scripts and a MATLABTM program
was used to extract true and detected cluster information
from each, and calculate spatial sensitivity and PPV, and
Ω.

Following the framework presented in Section 2, in
similar layout to Table 2, the measures are shown in Ta-
ble 4. Note the use a data function (Level 2) based on
λ(s)×rr(s) rather than the count of events or areal units.
λ(s) is the background event rate at s, and rr(s) is the
multiplicative relative risk at s due to any true cluster lo-
cated nearby; if s is unaffected by true clusters rr(s) = 1.
This is more representative than the count of areal units,
as it takes account of background population. It should
also have lower variance than measures based on counts
of events, which are inevitably subject to more random
variation than the underlying risk value. For Level 5,
two types of aggregation method were used. As Ω is
intended to be independent of significance threshold,
it is here averaged across all data sets. As sensitivity
and PPV are linked to a particular significance thresh-
old (here chosen as 0.05), they were averaged across
only those data sets where the most likely cluster had a
p-value of ≤ 0.05.

The results for each measure, for each batch and filter
combination, for both scans, are shown in Table 5. As
Mean Ω can be used for ranking the different filters in
terms of spatial accuracy, a 95% confidence interval is
included (shown as a ± in brackets, based on the stan-
dard error). It can be seen that, in terms of all three
measures, filter performance falls into two loose group-
ings; F1, F2 and F4 tend to have lower Ω, lower sensitiv-
ity, and higher PPV; F3, F5 and F6 tend to have higher
Ω, higher sensitivity, and lower PPV. The inverse re-
lationship between sensitivity and PPV emphasises the
need for a single measure when ranking different mea-
sures. Regarding Mean Ω, it can be seen from the con-
fidence intervals that the overall difference between the
two groups is highly unlikely be due to random chance.
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Framework level (see text)
spatial data sub- performance aggregationsupport function regions measures

s = point

f (s) = λ(s) × rr(s)
{ai}, {ci} Ω

Arith. mean over
where: all data sets

λ(s) = background event
rate at s a, b, c, d sensitivity Arith. mean over all

(at sig. = a/(a + b) data sets with at
rr(s) = relative risk threshold 0.05) PPV least one detected
at s attributable to = a/(a + c) cluster at sig.

true clusters threshold 0.05
(=1 outside clusters)

Notes: For examples of {ai} and {ci} see Figure 2. PPV is positive predictive value.

Table 4: Measures used in Section 4, in context of the framework presented in Section 2.

Figures 3a-d provide some explanation of this. Each
figure represents the results of the six filter choices on a
randomly selected data set from batch CSR×3TC. For
each filter choice, the six charts within contain out-
lined and solid circles, with an Ω value above. The
outlined circles delineate A in three (sometimes over-
lapping) parts, each being the outer limit8 of a Gaus-
sian shaped true cluster. The solid circles represent the
detected clusters passed by the filter, shaded relatively
from dark (low p-values) to light (high p-values); the
shading is relative within each chart because Ω is only
concerned with the relative p-values of different circles.
Hence a shade in one chart may represent a different p-
value to the same shade in a different chart. Note that
more likely detected clusters overlap less likely ones, as
per Figure 2. Note also that as λ(s) is uniform in CSR
datasets, Ω (and sensitivity) rewards correct detection
of the centre of each true cluster much more than the
periphery. Due to varying λ(s), charts for TRENT data
sets are harder to interpret and are not presented here.

It can be seen in Figures3a-d that filters F1, F2 and
F4 generally pass fewer (and smaller) detected clusters
than F3, F5 and F6. This explains the contrast between
spatial sensitivity and PPV in the two groupings. On no
occasion are the true clusters correctly delineated, but
this is hardly surprising given that the SSS has only 300
points locations in total for each data set. As can be
seen in Table 4, F6 performed unquestionably better in
each batch, Ω wise, with the exception of TRENT×3TC
where it is highest, but by a much smaller margin. This
is counter intuitive, as F6 is the null option, i.e. no fil-
tering. However, recall that Ω is the probability that one
can correctly decide which of two randomly generated
points lies inside the true clusters, based only on infor-

8This is the loci of s where rr(s) > 0.00001. This limit is arbi-
trary, but varying this value by several decimal places either way has
negligible effect on any of the measures.

mation provided by the detected clusters. If one views
the unfiltered SSS output as a probability map of where
the true clusters are more likely to be, rather than as
a list of individually detected clusters, then it is hardly
surprising that it provides the best source of information
on spatial accuracy. However, if a more succinct list of
detected clusters is desirable, then one should apply fil-
ters F1, F2 or F4, with filter F2 (no cluster centres in
other clusters) performing best in terms of Ω in all four
batches used in this study.

Mean Ω Mean over all data sets sig. at 0.05
over all data sets sensitivity PPV

C
SR
×

1T
C

F1 0.7364 (±0.0037) 0.838245 0.596085
F2 0.7659(±0.0040) 0.841861 0.591564
F3 0.8684 (±0.0044) 0.877693 0.46603
F4 0.7612 (±0.0039) 0.850334 0.594105
F5 0.8725 (±0.0044) 0.882901 0.466492
F6 0.8962 (±0.0044) 0.920411 0.380853

C
SR
×

3T
C

F1 0.7402 (±0.0028) 0.537794 0.572392
F2 0.7704 (±0.0031) 0.545679 0.562416
F3 0.8466 (±0.0030) 0.637829 0.388202
F4 0.7654 (±0.0030) 0.548487 0.565982
F5 0.8518 (±0.0029) 0.641853 0.387308
F6 0.8631 (±0.0030) 0.681826 0.31248

T
R

E
N

T
×

1T
C F1 0.7315 (±0.0038 0.858498 0.759631

F2 0.7582 (±0.0041) 0.876176 0.710421
F3 0.8746 (±0.0045) 0.947331 0.345964
F4 0.7519 (±0.0040) 0.878359 0.73161
F5 0.8779 (±0.0044) 0.948619 0.34458
F6 0.8874 (±0.0045) 0.963441 0.264817

T
R

E
N

T
×

3T
C F1 0.7124 (±0.0033) 0.695842 0.786179

F2 0.7455 (±0.0036) 0.719602 0.735298
F3 0.8430 (±0.0031) 0.841569 0.396941
F4 0.7354 (±0.0035) 0.718791 0.76095
F5 0.8477 (±0.0031) 0.84665 0.39312
F6 0.8486 (±0.0032) 0.874754 0.30667

Table 5: Spatial accuracy results for the four batches, with output
filters F1 to F6 applied.

5. Discussion and future directions

It would be useful, especially from the point of view
of those wishing to conduct metastudies, if there were
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Figure 3: Examples of true (outlined) and detected (solid) clusters in four randomly selected data sets of batch CSRx3TC, using filter options F1 to
F6. See text for details.
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a universal definition of spatial accuracy for the SSS.
Given the range of different measures, suited to differ-
ent studies and different kinds of data, this seems un-
likely. However a framework, such as the one presented
here, may at least provide a means of comparing dif-
ferent methods, and help to avoid “reinvention of the
wheel”. The main limiting factor of the framework is
that it is currently only suitable for measures of spatial,
not spatio-temporal, accuracy. In studies where time can
be considered as an extra spatial dimension, e.g. a one-
off retrospective study, then the framework should be
applicable. In contrast, with the detection of emerging
clusters the direction and currency of time makes it dif-
ferent to space9. It may be feasible to extend this frame-
work to cover spatio-temporal accuracy, and this could
be a direction for future research.

The Ω measure presented in Section 3 provides a so-
lution to the problem of arbitrarily specifying a signif-
icance threshold and the relative weighting of existing
measures such as spatial sensitivity and PPV. As it fits
within Levels 3 and 4 of the framework described in
Section 2, Ω can be used with any combination of spa-
tial support and data, not just the case/control data used
in the example study. The chief drawback is that, for
most existing studies, implementing Ω requires writing
additional code and re-examining the SSS output files.
If one is happy to specify a significance threshold, then
easier to calculate (if somewhat cruder) single measures
are available, based upon a similar 2AFC to Ω. Details
available from the corresponding author.

Although limited in scope, the preliminary study of
SaTScanTM filter options presented in Section 4 is, so far
as we are aware, the first of its kind to be published.
Despite being part of a particular software package, in
some form or other these filters would be a natural part
of any SSS implementation. The observation that Ω ap-
pears to be optimised by not applying a filter does not
diminish their usefulness, but it does suggest that an-
other means of presenting SSS output, beyond a simple
list of detected clusters, could be beneficial. Studies in
visualising SSS output already exist (e.g. Boscoe et al.
(2003) Chen et al. (2008)), and one future research di-
rection could be to investigate the spatial accuracy of
different visualisation techniques, however that might
be defined. We hope the material contained in this pa-
per is of interest to those in the research community and
welcome feedback.

9For the interested reader, an approach to measuring spatio-
temporal accuracy (which treats time as something fundamentally dif-
ferent from space) is given in Fricker Jr. (2010)
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