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Abstract. We present a novel approach to modelling the evolution of
spatial entities over time by using bigraphs. We use the links in a bi-
graph to represent the sharing of a common ancestor and the places in
a bigraph to represent spatial nesting as usual. We provide bigraphical
reaction rules that are able to model situations such as two crowds of
people merging together while still keeping track of the resulting crowd’s
historical links.

Keywords: spatio-temporal change, bigraphs, filiation

1 Introduction

The combined modelling of space and time is a well-established aspect of the
theory of spatial information [8, 12, 18, 9, 3, 2]. It also provides particular chal-
lenges when dealing with granularity and vagueness [14, 4]. Objects can move,
cities and countries can retain their identities while changing their boundaries,
new entities can be formed from old ones as in the redistribution of parcels of
parcels of land or the more rapid change seen as crowds of demonstrators are
divided by police and then re-form and take on new activity. Such examples
are recorded in systems having purposes as diverse as tracking the delivery of
consumer goods in a postal system, the legal record of land ownership, or the
surveillance of crowds of people in public demonstrations.

Despite all these, and many more examples that could be mentioned, the
formal description of spatio-temporal change in a way that suits the needs of
information systems is still at an early stage. In the purely spatial case, certain
basic systems of spatial relationships have been found useful; the 9-intersection
model [5] has acquired the status of a standard and systems for qualitative spa-
tial reasoning [1], including the Region-Connection Calculus, have been very
widely studied and applied. The spatial relations modelled in such systems in-
clude widely accepted notions such as ‘overlapping’, ‘inside but not touching the
boundary’, and ‘disjoint’.

In contrast models of spatio-temporal change, while numerous and containing
much valuable work, have not reached any consensus about the atomic concepts
they need to provide. We can imagine spatio-temporal scenarios between regions,
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such as one moving to encircle another, or two regions moving further apart to
allow a third to pass between them. The most basic scenarios of single regions
splitting and merging have been rigorously analysed in [9, 15], but it is not clear
whether more complex behaviours can be treated in a similar way. In order to
study such behaviour it is necessary to have a formal framework that is capable
of modelling spatio-temporal change without pre-judging the kinds of higher
level events and process that will be significant. This means that we should base
our study on primitive concepts that appear to be essential and which can be
combined to exhibit a variety of different behaviours. In this paper we propose
that structures known as bigraphs provide what is needed. In addition to drawing
the attention of the spatial information theory community to this area, we also
introduce a novel way of using bigraphs to model relationships between entities
in terms of shared ancestry.

Bigraphs were introduced by Milner [11] and are so called as they provide a
single set of nodes having two distinct kinds of edges between them. The nodes
with one kind of edge form a set of trees which allow the nodes to represent
spatial nesting. This can model situations such as a person being in a room
which is inside a building. The nodes taken together with the other kind of edge
constitute a hypergraph where one edge may be incident with a set of nodes
(not just one or two). The original motivation for bigraphs uses this hypergraph
(called the link graph) as a way of modelling communication between the things
represented by the nodes. For example, two nodes representing people might
be joined by a link representing their participation in a phone call. In another
scenario one of the hyperedges could represent a local area network, and the
nodes computers connected by means of it.

The applicability of bigraphs to spatial information theory has already been
noted in [16] and [7]. In [16] Walton and Worboys make extensive use of bigraphs
to model image schemas. Their work proposes bigraph reaction rules to model
dynamic schemas and uses bigraph composition to model change in level of
detail.

The spatial relationships modelled in bigraphs are clearly restricted, as even
simple overlapping of spatial entities is excluded. However, the interaction of
spatial structure and communication even in this simplified case presents chal-
lenges to a fully rigorous analysis, and it is appropriate to ensure the simpler
setting is fully understood before proceeding to more elaborate models. There
has been some work [13] on bigraphs in which a node may be shared between
two distinct containing nodes, but we do not make use of this in the present
paper.

There are a number of reasons why bigraphs deserve to be studied in the
context of spatio-temporal change. One is that they have a sound theoretical
basis with a catalogue of results that can be used in any situation to which they
are applied. Another is that besides the presence of an explicit spatial component
they also come with mechanisms to specify change, that is to specify when and
how one bigraph may be modified to another. This is achieved by means of
rewrite rules allowing one part of a bigraph to be replaced by another. The
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process of rewriting is essentially familiar from simplifications such as replacing
an instance of x + 0 by x in an algebraic expression such as (2 + 0)y to end
up with 2y. The fact that a bigraph can be written as an algebraic expression
means that sequences of spatial changes have algebraic counterparts allowing
these changes to be analysed in a rigorous way.

The main novelty to which we draw attention in the present work is the way
in we are able to use the links in a bigraph (the edges in the hypergraph) to
model shared ancestry. The idea behind this is explained in terms of relations and
hypergraphs in Section 2. Bigraphs are introduced in Section 3 where, as these
structures are not widely known in spatial information theory, we provide an
expository account of the basic ideas and refer the reader to [11] for more details.
In Section 4 we present a scenario of one kind of situation where spatio-temporal
modelling is important. Our case study involves crowds of people moving in a
city. The ability of bigraphs to model the essential dynamic features of this case
study is demonstrated in Section 5 where we give reaction rules for changes in the
location and compostion of the crowds. Finally, Section 6 provides conclusions
and outlines directions for further work.

2 Relations and Summaries

2.1 Filiation

Many formal models proposed for spatio-temporal evolution involve the mathe-
matical concept of a relation between two sets. If the sets are X and Y then a
relation from X to Y can be visualized as a set of arrows leading from elements
of X to elements of Y . These arrows are subject only to the restriction that
given x ∈ X and y ∈ Y there is at most one arrow from x to y. The suitability
of this for modelling the most basic features of change is evident if we take X

and Y to be sets of entities at two times, the second coming after the first.
Considering more times than just two we can use a sequence of sets. In

Figure 1 there are four sets of entities and three relations between them. Each
set represents a snapshot of the entities at a paticular time, and the relations
model links between these entities and the ones present at the previous or next
time in the sequence. The nature of the links will depend on the particular
scenario being modelled.

To give some examples of the possible meaning of such a link we can consider
Figure 1 where in relation Q we see that a1 is linked, or related, to both b1 and
b2. This situation of one entity at the earlier time being related to two at the later
allows many interpretations. These include a parcel of land divided into two, a
mother having a child with her own existence continuing, an island being split
into two by rising sea levels, a group of animals separating into two groups, a
plant producing an offshoot which develops into a separate individual plant, and
so on. The example of the mother and child shows that we need not use exactly
the same interpretation for every link. The link between a1 (the mother at the
earlier time) and b1 (the mother at the later time) can denote the continuing
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Fig. 1. Three relations between four times

existence of an entity, while the link from a1 to b2 can denote the earlier entity
giving rise to a separate entity (the child b2) at the later stage. We use the term
filiation for a link of any kind connecting entities in this way, and this topic has
been studied further in [3].

The way in which identity continues in objects that change is a long-standing
issue in philosophy [6, 17]. However, the existence of a filiation link does not nec-
essarily indicate a continuation of identity. A filiation link from a parent to a
child could be regarded as the continuing identity of the family, or with equal
validity as the creation of a separate personal identity. The choice between these
two would depend on the application domain but would be some additional
structure beyond the existence of a filiation link. We do annotate the filiations
to show different kinds of behaviour with respect to identity in the case study in
Section 4, but in the present work this annotation is not modelled by the opera-
tions on bigraphs that we describe. The continuation of identity is important in
information systems [8, 10]. In [8] Hornsby and Egenhofer study operations for
the construction of composite objects based on features of identity which include
the creation, continuation and elimination of identity. The incorporation of this
type of approach in our use of bigraphs would be an interesting direction for
further work.

2.2 Summarizing Evolution

The representation of every known timepoint in the sequence and the filiation
links between every successive pair of times is the highest level of detail in the
model. For many purposes this level of detail can be unnecessarily complex and
a less detailed, or more coarse grained, view is more approriate. In the example
involving just four times with sets of entities A, B, C and D illustrated in
Figure 1 we might need to summarize the change from the time of A to that of
C. The usual way to summarize this change would be to compose the relations
Q and R as in Figure 2.

In the summary by relation composition we see that c1 has both a1 and a2 as
ancestors. The summary however has lost two pieces of information: that c1 and
c2 have a common ancestor, and that a1 was linked to two entities between the
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Fig. 2. Composite relations

two times evident in the summary. It is in the nature of a useful summarization
technique for information to be lost, but there are practical cases where the fact
that two entities shared a common ancestor would be something that it would
be useful for a summary to maintain.

It is possible to define a way of summarizing a composable pair of relations
that is different to their composition. The idea is that given relations Q : A → B

and R : B → C we can enlarge A to include any entities in B which are not linked
to anything in A. In the next definition Q(A) means {b ∈ B | ∃a ∈ A (a Q b)}.

Definition 1 (Cumulative Product) Let Q : A → B and R : B → C be
relations, where A and B −Q(A) are disjoint. The cumulative product of Q and
R is the relation Q ⋆ R : A ∪ (B − Q(A)) → C where

x Q ⋆ R c iff

{

x ∈ B − Q(A) and x R c, or

x ∈ A and x Q ; R c.

Examples of this construction are shown in Figure 3. The assumption that A

and B −Q(A) are disjoint in the definition may appear restrictive. However the
elements of the sets are not the individuals being modelled in the world, rather
they are tokens which can be mapped to the world. This permits distinct tokens
to take the same identity, and the issue here can be understood more fully by
using an analysis analogous to the idea of support for bigraphs used in [11].
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Fig. 3. Examples of the Cumulative Product
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Conceptually the cumulative product is quite distinct from composition. The
composition of relations describes a process of entities changing from past to
present. The cumulative product models the state in the present, looking back.
This suggests the idea of a map which shows the present state of the world but
also contains evidence of past history indicating how the present state arose
through accumulating changes. For this reason we sometimes refer to accumula-
tion instead of the cumulative product.

Note that if relations Q, R, S are composable so that Q ;R ;S is defined then
we may form the accumulation (Q⋆R)⋆S but not, in general, the accumulation
Q ⋆ (R ⋆ S). This is because the enlarged domain of R ⋆ S by the addition of
elements not present in R means that the co-domain of Q may not match the
domain of R ⋆ S. This behaviour is as one would expect given the way that
accumulation is inherently directional, building on the past.
We can visualize a sequence of relations as follows with relations between times.

X0

R1
- X1

R2
- X2 . . . Xn−1

Rn
- Xn

t0 t1 t2 . . . tn−1 tn

For accumulation, the picture naturally places the relations above the times. The
relation Ai describes the entities at time ti and (some of) their past history.

A1 = R1

A2 = A1 ⋆ R2

. . .An−1 = An−2 ⋆ Rn−1

. . . An = An−1 ⋆ Rn

t0 t1 t2 . . . tn−1 tn

2.3 Hypergraphs

A hypergraph can represent a view in which the entities in the present are nodes
bearing additional structure (edges) which represent the past state and the way
the past has become the present. We explain hypergraphs below, and then show
how accumulation is seen as an operation describing the change from one time
to the next.

A hypergraph is essentially a generalization of the notion of graph in which
an edge may be incident with an arbitrary number of nodes and not just one or
two. A relation R ⊆ X × Y is really just a hypergraph in disguise: the elements
of X being the edges, the elements of Y being the nodes, and x R y holding iff
node y is incident with edge x.
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Definition 2 A Hypergraph H consists of sets VH of vertices and EH of edges
(where VH ∩ EH = ∅), and an incidence relation iH : EH → P(VH).

A hypergraph differs from an undirected graph in that an edge may be incident
with an arbitrary set of nodes and not just one or two. Note that we do allow
edges incident with the empty set of nodes, ∅. A hypergraph with edges E and
vertices V is the same as a relation from E to V ; an edge is related to the set of
vertices with which it is incident. This is illustrated in Figure 4 for the relations
Q and R from Figure 1. In the figure the hyperedges appear as loops enclosing
their incident nodes.

a1 a2

Q R
b1

b2 b3

b1 b2 b3 c2c1a2

a1

b1

b2

b3

c1

c2

Q R

Fig. 4. Relations Q and R from Figure 1 as hypergraphs

The accumulation of two relations can be described in terms of hypergraphs.

Definition 3 Let G and H be hypergraphs where VG = EH . We define the
hypergraph G ⋆ H to have vertices VH , and edges EG ∪ {v ∈ VG | i−1

G (v) = ∅}.
The incidence relation j is given by

j(x) =

{⋃

{iH(v) ⊆ VH | v ∈ iG(x)} if x ∈ EG

iH(x) if x ∈ {v ∈ VG | i−1

G (v) = ∅}

3 Bigraphs: Static Aspects

In the previous section we considered entities subject to change, but without
modelling any spatial relationships between these entities. If we introduce spatial
structure in addition to the links representing shared ancestry between nodes
then we have essentially the bigraphs introduced by Milner [11].

3.1 Bare Bigraphs

To illustrate the basic features of bigraphs we continue with the relations Q :
{a1, a2} → {b1, b2, b3} and R : {b1, b2, b3} → {c1, c2} used in the earlier examples.
These provide us with bare bigraphs which are a simple case of the general notion
of a bigraph which has interfaces so that it can be combined with other bigraphs
as described in section 3.2 below.
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If we assume that all the entities involved (a1, a2, . . .) are spatially disjoint
we arrive at Figure 5. This figure shows the usual means of depicting bigraphs
with the spatial entities shown as discs in the plane and the links connecting
them drawn as lines attached to the discs. This differs from the more usual
way of drawing an edge in a hypergraph as a boundary containing those nodes
with which it is incident. We used this edge-as-container vizualization in earlier
figures with hypergraphs, but this only works when the nodes do not have a
spatial extent.

Bare bigraph for Q bare bigraph for Q ⋆ R Bare bigraph with nesting
(assuming {b1, b2, b3, c1, c2} spatially disjoint)

Fig. 5. Examples of bare bigraphs

The examples in Figure 5 of the bigraphs for the relations Q and Q ⋆ R are
particularly simple in that the nodes are spatially disjoint. In general nodes may
be nested with each other, as indicated in the example at the right of Figure 5.
The place structure (that is the nesting of nodes) is independent of the link
structure (that is the edges of the hypergraph part of the bigraph). This means
that although it is significant when nodes are drawn inside other nodes, there is
no significance attached to where the links cross the boundaries of nodes

The bare bigraph for Q shown in Figure 5 has one edge (a2) that is incident
with just one node. This has been drawn in the diagram as a link which has been
terminated, not linking the node to anything. This follows Milner’s diagrams [11]
but in other contexts such edges are often drawn as loops with both ends attached
to the incident node.

3.2 Substitution

Bare bigraphs display the key features of linking and placing, but an important
aspect of the theory of bigraphs is the way that they can be combined with each
other. By means of these combinations, complex bigraphs can be constructed
out of simpler components, and there are two kinds of composition which enable
this. To define these compositions a bigraph needs to contain not only nodes con-
nected by links and by place connections (nestings) but also to have additional
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machinery to allow substitution. This means that a bigraph can be inserted into
a larger context and it can also act as a context into which more detail is inserted.

It may be helpful to give an analogy with simple algebra in which letters
stand for numbers. A complicated expression such as (3x+2y)2 +2(3x+2y)+1
can be built out of the simpler expression z2 +2z+1 by replacing z by (3x+2y).
Informally, the z in z2 + 2z + 1 acts as a ‘hole’ which can be ‘filled in’ by the
expression (3x + 2y).

General bigraphs may contain ‘holes’ of two types called sites and inner
names into which ‘fillers’ called respectively roots and outer names may be
placed. These additional features are illustrated in Figure 6. The ability to com-
pose bigraphs makes them morphisms in a category where the objects (known
as interfaces) are pairs 〈m, X〉 where m is essentially the number of place holes
and X is a finite set of names. The number m is treated as a finite ordinal, that
is a natural number viewed as a set of smaller ordinals m = {0, 1, . . . ,m − 1}.

0

0

0

0

x1 x3x2

1

y1

y1

y2

y2

outer name

outer name

inner name

root

site

root

0

0

x1 x3x2

1

site

G

H

Fig. 6. Bigraphs G : 〈1, {y1, y2}〉 → 〈1, {x1, x2, x3}〉 and H : 〈2, ∅〉 → 〈1, {y1, y2}〉 and
the composite G ◦ H

Although the operations ◦ on bigraphs and ; on relations are both called
‘composition’ they are unrelated. Relations between spatially nested entities can
be modelled by bigraphs and the composition of relations can thus be modelled
by an operation on bigraphs. However this operation would only be defined
under conditions that would be very different from the conditions under which
◦ is defined and the two operations are quite separate.

3.3 Ports

Bigraphs also provide a set K of types for nodes, called a signature. Each k ∈ K
has an arity, which gives the number of ports through which attachments to a
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link (hyperedge) may be made for nodes of type k. These ports are shown as
black discs in the diagrams. For example, in the examples we provide later we
use different types of node for buildings, suburbs and crowds. In this setting the
arity of a particular type of crowd is the number of instances of ‘original crowds’
whose members are present in it. It should be noted that the formal definition of
bigraphs [11, p15] allows a link to be connected to the same node by a number of
different ports. This means that the link structure is actually more general than
a hypergraph as defined above since each edge may be incident with a multiset
(or bag) of nodes and not just a set.

3.4 Tensor product and derived operations

Besides the operation of composition, ◦, bigraphs also support an operation ⊗
known as the tensor product. This is easy to visualize and corresponds to placing
bigraphs with disjoint names alongside each other aligned horizontally.

Further operations that we use in formulating the rules later in the paper can
be expressed in terms of composition and tensor product. These are the parallel
product, (‖), nesting (.), and the merge product (|). A full account of these
operations would occupy more space than we have available, and [11] should be
consulted for details. Briefly, however, G ‖ H is similar to the tensor product
except that common outer names are shared. The nesting G . H places H inside
G and allows the outer names of H to be visible. The merge product G | H

merges roots in addition to sharing links as in the parallel product.

3.5 Modelling Parents and Children

We introduced hypergraphs by showing how edges might represent the sharing
of common ancestors between entities. When in addition entities have spatial
structure limited to nesting a bigraph can represent both the filiation links and
the nesting relationships. The original motivation for bigraphs uses the links to
model communication of various types.

An individual person can be represented by a node with three ports where we
can attach links to (1) their mother, (2) their father, (3) their children. From this
example it is clear that the link structure is independent of the spatial structure:
who a person is related to has no bearing on their location. It should also be
noted that although the links have no specified direction, we can make use of
the signature to use particular ports in particular ways. By this means we can
tell for example that a link from port 3 of node a to port 1 of node b means that
a is a child of b.

The simple notion of links to represent ancestry can be used also in other
situations where there has been some transmission of material, such as one might
want to observe in a communication between suspected terrorists in a surveil-
lance operation.
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Fig. 7. Two suburbs Q1 and Q2 and their areas and specific buildings. The dashed line
shows the boundary between suburbs.
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4 Case study

We now present a case study that involves crowds of people that move in and
between suburbs of a city and where the crowds can split and merge over time.
Figure 7 shows a portion of the city where the action takes place. This example
reflects the evolution of groups of people in a city during a demonstration. We
assume that the entities to be modelled are groups of people, and that the
identity and filiations of an entity are determined by the people that compose
this group.

4.1 Overall Scenario

We consider the following four types of group which vary according to their
behaviour and the distinction between these types would be significant in a
surveillance operation. Different instances of these types arise for different values
of i.

• Ci: Demonstrators
• Wi: Pedestrians not involved in the demonstration
• Oi: Observers
• Gi: Unidentified people

We can record the filiation using the technique presented in [3] which distin-
guishes between derivation and continuation. The case of continuation models
the preservation of identity (such as an individual persisting throughout their
life), and derivation models a new entity which depends in some manner on an
earlier but distinct entity (for example a child could be modelled as a derived en-
tity from each of their parents). We assume that filiation in the present scenario
is determined as follows:

(1) If one or more people leave a group X and join another group Z, and/or if
person(s) from another group Y join a group X, then there are filiation links
of type derivation δ between X and Y , and X and Z. (Figure 8(a) and 8(b))

(2) Between two times, if a group X remains the same without any addition/deletion
of people, it is considered in continuation relation γ. (Figure 8(c))

X

Z

Yδ

δ

(a)

X

Z

Y

T

δ

δ

δ

(b)

X Xγ

(c)

Fig. 8. Filiations: (a) Derivation: persons from Z and X join and create Y , (b) Deriva-
tion: some persons from Z and all persons from X create Y , the rest of the people from
Z create T (c) Continuation: X remains the same
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In the course of the demonstration, the different groups move around in the
city. We suppose that the largest spatial unit we consider in the city is a suburb,
and that there are two of these: Q1 and Q2 (Figure 7). Within suburbs there are
areas determined by the street pattern and within some of these areas particular
buildings have been identified as significant.

• Q1 contains three areas (e1, e2 and e3) and a building A located in e3.
• Q2 contains two areas (e4 and e5) and a building B located at e4.

4.2 Filiation Relations

Groups of people can may combine with each other, and they may divide into
pieces. For example, the filiation relations shown in Figure 9 shows that a part
of group C2 of demonstrators joins the group C1 to become G1. Groups are
renamed when we consider that there is a change of their identity.

C1

C2

W1

W2

O1

O2

G1

G2

G3

W2

G4

O2

G1

G5

G3

G6

G9

G7

G8

G6

G9

t1 t2 t3 t4H1 H2 H3

δ

δ

δ

δ

γ

δ

γ

γ

δ

γ

δ

δ

δ

δ

δ

δ

δ

δ

γ

γ

Fig. 9. Filiation relations H1 – H3 between times t1 – t4

Between the four times t1 – t4 there are three relations H1 – H3. Using
the cumulative product as described in section 2 we can compute H1 ⋆ H2, and
this is illustrated in Figure 10. As the group G4 appears only at time t2 and
is not present at t1 the cumulative product is able to record the fact that G5

and G9 have a common ancestor group. If we use the conventional composition
H1 ; H2 then this information, which could well be significant in a surveillance
application, would not be available.

4.3 Bigraph modelling

Figure 11 represents the state of the region of study for t1 and t4 with groups
defined in Figure 9. This spatial information, togther with the filiations, is trans-
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W2

O1

O2

G4
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G5
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G6

G9

Fig. 10. Cumulative product H1 ⋆ H2 showing that common ancestry of G9 and G5 is
recorded whereas in H1 ; H2 it is forgotten
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O1
W1

W2 C1
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e3 A

e2

e5

G9

G8G7 G6

Fig. 11. Location of entities at t1 (left) and t4 (right)
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lated into the bigraph setting in Figures 12 and 13. In the first of these figures
we provide the bigraph for the whole spatial area by presenting it as composite
S ◦K1. This demonstrates another valuable feature of bigraphs as a spatial mod-
elling tool: their ability to deal with spatial granularity. The bigraph S represents
a low level of detail in which the two suburbs are distinguished but nothing is
said about what may be found within them. The action of adding this detail
and passing to the fully detailed description S ◦K1 corresponds precisely to the
operation of composition for bigraphs.

As the change only affects a level of detail more specific than that modelled
by S, we are able to show the changes at times t2 – t4 by just showing the bigraph
which is composed with S. The three bigraphs we need are given in Figure 13.
In these a link between two groups appears if there is a filiation between their
ancestors. For example, at time t3, there is a filiation link between G9 and G5

because each contains some part of G4. Similarly, the link between G1 and G2 at
t2 leads to a link between G1 and G5 at t3. Here G1 remains the same between
these two times, and G2 is only changed by the addition of people.

We have derived the bigraphs in Figures 12 and 13 by using the filiation
data from Figure 9 and adding hypothetical spatial information. This approach
means that we have treated each bigraph as a static snapshot of the situation at
a given time, albeit a snapshot that contains some additional information about
the ancestry of the groups present. This is certainly useful, but the full power of
bigraphs only becomes apparent once we include rules as part of our modelling
that specify how a bigraph at one stage may evolve into one at a subsequent
stage. The introduction of rules is also significant in that by permitting only
changes that are possible by given rules we can enforce integrity constraints in
the model and ensure that semantically invalid changes are prohibited, such as
moving one suburb inside another. In the next section we show how such rules
can be introduced.

5 Bigraphs: Dynamic Aspects

5.1 Rewriting and Composition

We have seen that bigraphs represent spatial nesting and links. These links may
be given several different interpretations, including channels of communication
and records of communication having ocurred in the past. Both the place graph
and the link graph can be subject to change, and in general these two features
can change independently. To understand the mechanism of reaction rules, as
they are called in the bigraph context, it may be helpful to consider the basic
algebraic idea of rewrite rules.

An equation −(−x) = x may be seen as a rewrite rule −(−x) _ x allowing
the left hand side to be replaced by the right hand side. Such a rule can be used
in a context larger than the left hand side, allowing for example 42 + (−(−x))
to be replaced by 42 + x. The rule can also be used when some expression is
substituted for x, for example allowing −(−(y + 3)) to be rewritten to y + 3.
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In expressing spatial dynamics with bigraphs a particular kind of change
will consist of replacing one bigraph by another, just as we can replace −(−x)
by x in the above example. The same kind of change may take place in many
different contexts. In bigraphs this corresponds to the fact that if H _ K then
G ◦ H _ G ◦ K (assuming the composition is defined). Also the same kind of
change may be made more specific in many different ways, just as essentially
the same change is happening in rewriting −(−(y + 3)) to y + 3 as in rewriting
−(−(2y + 2)) to 2y + 2. This situation correponds to the fact that for bigraphs
if H _ K then H ◦ G′

_ K ◦ G′ again assuming the composition is defined.

5.2 Rules for the Case Study

Here we present rules that enable the features of the case study to be modelled.
To extract the most significant features of the case-study, we assume that there
are just crowds of people without distinguishing different types. This restriction
could be lifted by introducing a more elaborate signature, but would not involve
any essentially different features of rules.

0

0

x1 xmx2 . . .

0

x1 xmx2 . . . y1 yny2 . . .

0

m m+n

Fig. 14. The discrete ions mx and (m + n)xy

For each crowd we are interested in what earlier groupings constitute the
crowd. To formulate the rules we need to introduce some additional technicalities
that were not necessary to convey the main ideas of the case study in the previous
section. Milner [11, p30] uses the term discrete ion for a bigraph having a single
node containing the single site of the bigraph, where also there are no inner
names and the outer names are linked bijectively to the ports of the single node.
Our signature has one type of node for each possible arity, where each port is
capable of modelling a particular ancestor crowd. Thus a crowd constituted from
three earlier ones needs three ports. This is illustrated in Figure 14 showing a
discrete ion of arity m and type m. When the inner names are x1, x2, . . . , xm we
denote the ion by mx. To model the merging of two crowds, given for example
by nodes of types mx and ny, we need to refer to a node having arity m+n with
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inner names x1, x2, . . . , xm, y1, y2, . . . , yn. We denote the type of such a node by
(m + n)xy.

In addition to the crowds, we need to model the buildings, areas and suburbs
introduced in the case study. For these we use nodes of arity 0, since we do not
model the historical development of these entities. The signature includes types
A for areas, B for buildings and S for subsurbs.

As a first example, the rules need to permit a crowd to enter, say, a building
and to leave the building. This is straightforward, and is illustrated in Figure 15.
The idea of entering or leaving a building is already well-known and appears
as one of the motivating examples in [11]. However, the rules we present in
Figures 16, and 17 represent a novel use of bigraphs in their use of links to
model shared ancestry.

The two rules shown in Figure 16 allow one crowd to divide into two, and
allow two crowds to merge into one. These can be used in cases such as the
splitting of G4 into G5 and G9 in our case study.

The rules shown in Figure 17 provide additional capabilities. These permit
one crowd to surround another but to remain distinct. This could arise when
a group of police surrounds a small crowd of deomstrators and forces them to
move to another location, keeping them surrounded while moving. Although this
behaviour is not illustrated by the case study, we include these rules as evidence
of the power of bigraph rules to model more elaborate kinds of change.
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Fig. 15. Entering and leaving a building
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6 Conclusions and Further Work

We have given an expository account of the basic features of bigraphs and we
have shown how a novel interpretation of the communication links as shared
ancestry can be incorporated into models of spatio-temporal change. This inter-
pretation is based on a way of combining relations, the cumulative product, that
has advantages over the conventional composition operation. While this product
is unlikely to be mathematically novel, we are not aware that it has been used
before in the context of monitoring change in applications such as our case study.

We have formulated bigraph reaction rules which can be used to model the
splitting and merging of crowds of people and we have given further rules that
model more elaborate behaviour including one group surrounding another so as
to contain it.

Further work is necessary to analyse the theoretical properties of particular
systems of rules. This could establish what kinds of spatio-temporal change are
possible from particular rules. There will be close connections between the be-
haviour of the split and merge rules for bigraphs and the splitting and merging
studied in [9, 15]. There are also many possible application problems for spatio-
temporal analysis described in the literature cited in the introduction. Further
evaluation of the value of bigraphs needs to take place using some of these prob-
lems. However, the evidence we have presented here demonstrates that bigraphs
have several capabilities that are valuable in the modelling of spatio-temporal
change.
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