
promoting access to White Rose research papers 

   

White Rose Research Online 
eprints@whiterose.ac.uk 

 

 
 

Universities of Leeds, Sheffield and York 
http://eprints.whiterose.ac.uk/ 

 

 
 
This is an author produced version of a paper accepted for publication in Journal 
of Nonparametric Statistics.  
 
White Rose Research Online URL for this paper: 
 
http://eprints.whiterose.ac.uk/42950/ 
 

 
 
Paper 
Di Marzio, M and Taylor, CC (2009) Using small bias nonparametric density 
estimators for confidence interval estimation. Journal of Nonparametric Statistics, 
21 (2). 229 - 240. 
 
http://dx.doi.org/10.1080/10485250802562607 

 

http://dx.doi.org/10.1080/10485250802562607


October 21, 2008 8:42 Journal of Nonparametric Statistics jnsrev3

Journal of Nonparametric Statistics
Vol. 00, No. 00, January 2008, 1–12

RESEARCH ARTICLE

Using small bias nonparametric density estimators for confidence

interval estimation

Marco Di Marzioa and Charles C. Taylorb∗
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Confidence intervals for densities built on the basis of standard nonparametric theory are
doomed to have poor coverage rates due to bias. Studies on coverage improvement exist,
but reasonably behaved interval estimators are needed. We explore the use of small bias
kernel-based methods to construct confidence intervals, in particular using a geometric density
estimator that seems better suited for this purpose.

Keywords: Bootstrap; Coverage rate; Geometric density estimators; Higher-order bias
estimators; U-statistic.
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1. Introduction

Nonparametric density estimation is plagued by a bias problem, and much effort
has been devoted to obtain modified estimators with a smaller bias. [11] perform
an extensive, MISE based simulation study where many of these small bias, kernel-
based estimators are compared. Their final advice favours the use of the standard
kernel method in many situations.

Confidence intervals for nonparametric density estimates typically have poor cov-
erage rates as a result of the bias problem. Bootstrap methods do not provide a
remedy because the bootstrap expectation of a linear nonparametric estimator is
the estimate itself. Hall [5] accurately treats bootstrap confidence intervals for ker-
nel density estimation, and concludes that undersmoothing is preferable to explicit
bias estimation. After observing that Hall’s undersmoothing deteriorates the vari-
ance estimate, and consequently is unable to guarantee the promised coverage, [2]
uses empirical likelihood to avoid this reported flaw. To date, it seems that off-
the-shelf methods for confidence interval estimation of densities are still needed.
In addition, the above studies do not give rules for practical bandwidth selection,
and little account is taken of the expected width.

In this paper we explore the feasibility of confidence intervals on the basis of
small bias density estimators. Apart from [5], who studies how undersmoothing of
higher-order kernel estimators influences the coverage, this strategy has not been
fully explored. A reason could be that often many small bias estimators neither
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have small theoretical minimum MISEs (as pointed out by [11]), nor possess effi-
cient data-driven bandwidth selection. Another reason could be that these methods
produce estimates that are not densities. But notice that here the coverage is our
main target, therefore the performance of an estimator relies primarily on inte-
grated squared bias; much less on MISE. In addition, since our final goal is a confi-
dence interval, the fact that the estimate does not integrate to one is of secondary
importance. However, the non-negativity constraint – violated by higher-order ker-
nel estimators – remains relevant when estimating in the tails.

We focus on a couple of density estimators which implement the same bias re-
duction idea, one via a multiplicative structure, and the other one via an addictive
structure. Our simulation study compares other known reduced bias estimators for
which it is straightforward to obtain a bandwidth selector. Having said that there
is an edge for our methods, it seems that all the bias-reduction estimators tried give
reasonable performance for confidence interval estimation, even for small samples.

In Section 2 we present the estimators. A number of different interpretations
are available for them. Unifying views suggest that they rely on the same twic-
ing principle or that they have a bootstrap nature. Other different interpretations
are possible for the multiplicative version. In Section 3 we obtain asymptotic (inte-
grated) mean squared errors. We also formulate normal-based bandwidth selectors,
also for a number of estimators included in the paper of [11]. In Section 4 we provide
theory to motivate confidence interval estimation, such as asymptotic normality,
variance estimation and a Chi-square method to approximate bootstrap distribu-
tions. Section 5 contains a simulation study. Finally, some concluding remarks are
given in Section 6. A few preliminaries follow.

Given a random sample sample X1, . . . ,Xn from an unknown density f of a
continuous r.v. X, the usual kernel density estimate of f at x is

f̂(x;h) :=
1

nh

n∑

i=1

K

(
x − Xi

h

)
, (1)

the function K, measurable and integrating to 1, is the kernel, the positive real
number h is the bandwidth. If f has at least p > 1 derivatives in a neighbourhood
of x, a Taylor series expansion gives

E[f̂(x;h)] − f(x) =

p−1∑

k=1

hk (−1)k

k!
f (k)(x)µk(K) + O(hp) ,

where µk(K) :=
∫

ukK(u) du. If K is a density such that µ1(K) = 0 – as in the
standard case – then the bias is O(h2). If an estimator has bias of order O(hp) with
p > 2, we refer to it as a small (or higher-order) bias estimator. K is said to have
order p if µk(K) = 0, 0 < k < p, and 0 < µp(K) < +∞.

2. The estimators

A multiplicative estimator of f at x is

f̂M(x;h) :=
f̂2(x;h)

f̂(x; 21/2h)
;
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it was originally motivated by the observation that the expectation of the smoothed
bootstrap normal-kernel estimator is simply f̂(x; 21/2h). Hence, a standard boot-
strap bias correction approach (see [3], pg. 103) leads to the additive estimator

f̂A(x;h) := 2f̂(x;h) − f̂(x; 21/2h)

or the multiplicative estimator f̂M. f̂A amounts to (1) equipped with the fourth
order kernel 2K−K∗K, i.e. the “twicing” kernel proposed in fixed design regression
by [14]. Although f̂A is simpler to analyze, we prefer f̂M because it cannot take
negative values.

The estimator f̂M is already known, in the sense that [9] cite it as an example
within a family of special cases of a more general technique. This family has been
referred to by them as “generalized jackknifing on the log scale”, and f̂M is thus
an example of a multiplicative form, akin to that of [15]. Although this is a multi-
plicative estimator, we note that it is distinct from that of [10]. As it will be seen

below, f̂M has a smaller bias than f̂ , but at the price that it does not integrate
to one. To make the estimator well defined, we require the various denominators
to be strictly positive everywhere in the support. This appears a good reason for
using Gaussian kernels.

3. Bandwidth selection

The natural L2 risk measure for a generic estimator f̂(x) is MSE[f̂(x)] := E[{f(x)−

f̂(x)}2]. But, in view of a more general usage, we consider the following global
version of it

MISE[f̂ ] := E

[∫
(f − f̂)2

]
.

In particular, for a kernel-type estimator f̂(·;h), h is selected in order to minimize

an estimate of an asymptotic version of MISE[f̂ ]. Selectors of this kind are usually
indicated as hAMISE. We now give the asymptotic MSEs for our estimators.

Theorem 3.1 : Let X1, ...,Xn be a random sample from a density f of a contin-
uous univariate r.v. X. Given the estimators f̂M (x;h) and f̂A(x;h), both equipped
with kernel K, assume that

(1) f is bounded and continuous at x; moreover f iv(x) exists and is finite;
(2) the bandwidth h depends on n; in particular limn→∞ nh = ∞, and
limn→∞ h = 0;
(3) K is a Gaussian density;

Then, at a point x in the support of f we have

E[f̂M(x;h)] =f(x) +
h4

4

{
f ′′2(x)

f(x)
− f iv(x)

}
+ O

{
(nh)−1 + h6

}
,

VAR[f̂M(x;h)] =0.72
f(x)

nhπ1/2
+ O{(nh)−2},

MSE[f̂M(x;h)] =
h8

16

{
f ′′2(x)

f(x)
− f iv(x)

}2

+ 0.72
f(x)

nhπ1/2
+ O

{
(nh)−2 + h10

}
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Table 1. Coefficients of hAMISE = cσ̂n−1/9 for various small bias estimators: f̂M and

f̂A are given in Section 2; f̂FO is the fourth-order kernel estimator; f̂JF is an estimator

(explicitly given by (4) in [11]) of [9]; f̂JLN is that of [10]; f̂HR is an estimator from

[7], and f̂TS indicates the variable bandwidth estimator of [16].

Estimator f̂M f̂A f̂FO f̂JF f̂JLN f̂HR f̂TS

c 0.8928 0.9126 1.0834 0.9055 0.9642 0.8617 0.8124

and

E[f̂A(x;h)] =f(x) +
h4

4
f iv(x) + O

{
h6

}
,

VAR[f̂A(x;h)] =0.72
f(x)

nhπ1/2
+ O{(nh)−2},

MSE[f̂A(x;h)] =
h8

16
f iv(x)2 + 0.72

f(x)

nhπ1/2
+ O

{
(nh)−2 + h10

}

Both MSE[f̂M(x;h)] and MSE[f̂A(x;h)] fit into the general form of MSE expres-
sions for small bias estimators in [11].

3.1. Normal Reference Bandwidth Selection

A very simple bandwidth selector for the usual f̂ is the normal scale rule. It results
from a normal population assumption. This gives hNS = 1.06σ̂n−1/5. We now give
similar rules for many small bias estimators. [11] give the approximated AMSE of
many O(h4)-bias estimators. All of these, together with the corresponding results

for f̂M and f̂A, can be integrated under the normal assumption, then optimized
over h. This leads to bandwidth selectors of the form hAMISE = cσ̂n−1/9. The
coefficients c are summarized in Table 1.

4. Confidence Interval Estimation

Denote as G an element of {A,M}. To construct a 100(1−α)% confidence interval,
we consider normal (IN) and bootstrap percentile (IB) methods:

IN :=
(
f̂G − zα/2

ˆVAR[f̂G]1/2 , f̂G + zα/2
ˆVAR[f̂G]1/2

)
,

IB := (F ∗−1
G (α/2), F ∗−1

G (1 − α/2)) ,

where F ∗−1
G (u) := inf{x : F ∗

G(x) ≥ u}, with F ∗
G(x) the bootstrap distribution of

f̂G(x), and ˆVAR[f̂G] derived below.
The theoretical motivation for using a normal based confidence interval lies in

the following

Theorem 4.1 : Given a random sample X1, ...,Xn, taken from a density f of a
continuous univariate r.v. X, then at x in the support of f we have

(nh)1/2{f̂G(x;h) − E[f̂G(x;h)]}
L

−→ N

(
0,

0.72f(x)

π1/2

)

if,

• in the case G = A, the assumptions of Theorem 3.1 hold;
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• in the case G = M, the assumptions of Theorem 3.1 hold, and, in addition
E[|K(Xi,Xj)|

2] < ∞ 1 ≤ i, j ≤ n, where

K(Xi,Xj) :=
1

2
{Kh(x − Xi)Kh(x − Xj) − K21/2h(x − Xi)

+ Kh(x − Xj)Kh(x − Xi) − K21/2h(x − Xj)}.

Finally, if nh5 → 0, the convergence holds true also with f(x) in place of

E[f̂G(x;h)].

Proof : See Appendix D. �

An alternative to the Normal-based confidence interval, which also avoids the
resampling process, follows. By analogy with the estimation of a spectral density
[17], approximate F ∗

G(x) by a scaled χ2 distribution:

∫ x

0
a(u)χ2

b(u)(u) du

with a(u), b(u) chosen to match the mean and variance of f∗
G(u):

a(x) :=
VAR∗[f∗

G(x)]

2E∗[f∗
G(x)]

, b(x) :=
2 {E∗[f∗

G(x)]}2

VAR∗[f∗
G(x)]

.

where E∗ and VAR∗ are taken with respect to the bootstrap distribution. This leads
to a third method denoted as Iχ2 .

To obtain an estimator of the variance of f̂M(x;h), we express it by the expansion
in Lemma A of the Appendix – this approximation includes all of the terms of order
O{(nh)−2}, having a residual of order O{(nh)−3} – then we replace f(x) by f̂(x;h).
We obtain

ˆVAR[f̂M(x;h)] ≃

[
E[f̂2(x;h)]

E[f̂(x;21/2h)]

]2[
VAR[f̂2(x;h)]

E[f̂2(x;h)]2
+ VAR[f̂(x;21/2h)]

E[f̂(x;21/2h)]2

−2cov[f̂2(x;h),f̂(x;21/2h)]

E[f̂2(x;h)]E[f̂(x;21/2h)]

]
+ O{(nh)−3}, (2)

The estimator ˆVAR[f̂A(x;h)] is obtainable by similar calculations. In Lemma E the
explicit expressions for the estimators involved in the above formula are reported.
We notice that ˆVAR[f̂M(x;h)] is made of ratios with the same bias order both in

the numerator and in the denominator. So the bias of ˆVAR[f̂M(x;h)] is strongly

reduced just like the bias of f̂M(x;h). We note that, in our simulations with small
sample sizes, this estimate of the variance is occasionally negative far in the tails
of the distributions. In this case bootstrap intervals can be used.

5. Simulations

We illustrate the above using the results of a simulation study where the smoothing
degree is data-driven, and therefore we hope that our results are of some practical
relevance. Of course, we use normal-based selectors, which are well suited only in
the the presence of unimodal populations. Nevertheless, also a couple of bimodal
populations – for which only local bandwidths seem adequate – are included in
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Table 2. Coverages and average widths for various 95% confidence interval estimators at x = 0, 0.75, 1.5 of a standard

normal, and a bimodal density. Methods are: bootstrap percentile; normal approximation; Chi-square approximation.

Averages over 100 000 simulations.

observed coverage rates (average width)

N(0, 1) 0.5N(0, 1) + 0.5N(3, 1)

x 0 0.75 1.5 0 0.75 1.5

IB 93.3 (0.222) 94.3 (0.204) 94.1 (0.151) 81.9 (0.122) 94.4 (0.109) 65.6 (0.093)
n = 50 IN 91.6 (0.202) 94.0 (0.193) 93.9 (0.152) 74.1 (0.107) 95.2 (0.107) 81.6 (0.107)

I
χ2 92.4 (0.202) 94.4 (0.192) 93.2 (0.150) 78.0 (0.106) 94.8 (0.107) 76.0 (0.107)

IB 93.6 (0.163) 94.7 (0.151) 94.2 (0.112) 77.7 (0.090) 94.6 (0.081) 52.3 (0.070)
n = 100 IN 92.3 (0.153) 94.3 (0.145) 94.7 (0.114) 69.8 (0.081) 95.0 (0.081) 71.0 (0.080)

I
χ2 92.9 (0.153) 94.5 (0.145) 93.8 (0.114) 73.0 (0.081) 94.6 (0.081) 66.0 (0.080)

our study. This is in order to check how the performance deteriorates in such
scenarios. Curiously, to the best of our knowledge, data driven smoothing is new
both for higher order kernels and kernel-based confidence intervals. In particular,
higher order estimators have been compared on the basis of their best possible
MISEs, while in the only two empirical studies existing on confidence intervals
based on kernel density estimators (see [5] and [2]) the coverage rates are reported
at predetermined smoothing levels.

In what follows kernels are Gaussian; the bandwidths are given by the normal-
based plug-in rules specified in Table 1; the confidence levels are 1−α = 0.95, and,
finally, the number of bootstrap samples is 1000.

5.1. Interval estimation

As a first case study, we use the setup of [5]: estimate the standard normal, and a
symmetric, bimodal, normal mixture at x = 0, 0.75, 1.5; use n = 50 and n = 100.
Also [2] estimates the standard normal density at 0 with n = 50.

Our results – contained in Table 2 – are averages over 100 000 simulations. It can
seen that our coverage favorably compares with those of [5] and [2]. In particular,
IN works also for these small sized samples, yet its theoretical motivation has an
asymptotic nature. It is noticeable that Iχ2 also performs well. For the bimodal
density, the coverage at x = 1.5, which is a local minimum, is, as expected, poor.
But it is still superior to most of the performances seen in [5].

The second case study is more general: we estimate models #1 (Gaussian), #2
(Skewed Unimodal) and #6 (Bimodal) of [12] in [−3, 3]; moreover a Student t with
five degrees of freedom in [−4, 4]. Sample sizes are 50 and 500. As a motivation for
this choice consider that we have included the main three unimodal models, i.e.
symmetric, skewed and heavy tailed, to obtain a more general conclusion on the
matter. We compute bootstrap percentile confidence intervals based on various es-
timators. Concerning our choice of estimators, consider what follows. It is possible
to divide small bias methods into two categories, depending on their output: “pos-
itive” estimators and “negative” ones. Now, from the extensive comparative study
provided by [11], it results that excellent candidates to represent these categories

are, respectively, the proposal of [10] (f̂JLN), and the fourth-order kernel estimator

in Section 2.1 of [11] (f̂FO). As a benchmark, also f̂ is included.
We adopt the following performance indices:

P :=

∫
p(x)f(x)dx,
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Table 3. Integrated performance measures P̄ , W̄ , Ō (10 000 simulations) for a variety of bootstrap 95%

percentile confidence intervals (indicated by the corresponding point estimator symbol).

Performance Measures: 100P̄ , W̄ , 100Ō

#1 #2 #6 t(5)

f̂ 89.4, 0.167, 0.94 86.7, 0.214, 1.90 81.0, 0.140, 2.00 84.0, 0.140, 1.56

n = 50 f̂M 93.3, 0.191, 0.28 92.4, 0.243, 0.55 87.0, 0.162, 1.26 91.2, 0.159, 0.41

f̂JLN 90.3, 0.167, 0.71 87.2, 0.215, 1.69 74.8, 0.138, 2.86 85.7, 0.141, 1.26

f̂FO 92.8, 0.183, 0.36 91.5, 0.233, 0.78 84.3, 0.153, 1.63 89.6, 0.152, 0.71

f̂ 90.3, 0.0722, 0.35 85.5, 0.0904, 0.93 73.6, 0.0610, 1.30 81.3, 0.0578, 0.83

n = 500 f̂M 94.0, 0.0713, 0.06 91.4, 0.0891, 0.31 72.6, 0.0607, 1.30 90.1, 0.0579, 0.26

f̂JLN 92.5, 0.0643, 0.15 86.1, 0.0801, 0.79 54.3, 0.0536, 2.26 82.6, 0.0516, 0.70

f̂FO 93.5, 0.0684, 0.09 89.5, 0.0853, 0.50 66.9, 0.0579, 1.62 85.6, 0.0547, 0.52

W :=

∫
w(x)f(x)dx,

the expectations of the coverage (p) and width (w). Strictly, narrower intervals are
of importance only when the desired coverage is attained, so the trade-off we have
used is

O :=

∫
|1 − α − p(x)|w(x)f(x)dx .

Table 3 gives the results for each of the measures P,W,O calculated on 10 000
samples. It can be seen from Table 3 that small bias methods give much better
coverage than f̂ , recalling that the bandwidth is always automatically selected.
The results for f̂A (not shown) were quite similar to those of f̂M, but not quite as

good. Overall, it seems that f̂M is well behaved for the unimodal case. In order to
investigate why f̂M seems to outperform f̂JLN and f̂FO, we now consider a more
typical analysis of performance in point estimation.

5.2. Point estimation

For the same models and estimators as before, we have calculated the usual L2

integrated discrepancies. For each model 10 000 samples were drawn. Each column
of Table 4 gives the ratio of MISE, integrated variance and integrated bias-squared
between an element of {f̂M, f̂JLN, f̂FO} and those of f̂ . As can be seen from Table

4, f̂M is the best in bias reduction, even though it is not so good at minimizing
MISE. Now, note that in presence of bias (small bias estimators are still biased)
we will need the variance to have a bigger magnitude than bias, in order to get the
right coverage. But this is exactly the case of f̂M, on the basis of Table 4, where we
can observe comparatively small biases and big variances. In conclusion, the point
estimation results, if read from a confidence interval perspective, explain a certain
superiority of f̂M.

5.3. On normalizing the estimators

It is well known that small bias methods produce estimates that do not integrate
to 1, and/or take negative values. A large number of techniques that transform
these estimates into densities have been proposed; see [4]. Nevertheless, we have
preferred to not involve estimate corrections. This is simply to avoid linking the
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Table 4. Integrated performance measures for a variety of estimators and models. Ratios of estimators ( ef ∈ {f̂M, f̂JLN, f̂FO}),

for MISE, integrated variance, and integrated bias-squared, relative to those of f̂ , i.e. MISE[ ef ]/MISE[f̂], IVAR[ ef]/IVAR[f̂ ], and

IBIAS[ ef ]/IBIAS[f̂ ]. Quantities are averages over 10 000 simulations.

#1 #2 #6 t(5)

MISE IVAR IBIAS MISE IVAR IBIAS MISE IVAR IBIAS MISE IVAR IBIAS

n = 50

f̂M 1.035 1.270 0.192 0.897 1.245 0.324 1.020 1.318 0.767 0.866 1.223 0.322

f̂JLN 0.853 0.982 0.392 0.829 0.988 0.568 1.069 0.951 1.170 0.816 1.003 0.532

f̂FO 0.980 1.196 0.206 0.890 1.186 0.403 1.027 1.208 0.873 0.882 1.182 0.426

n = 500

f̂M 0.790 0.964 0.205 0.722 0.958 0.418 1.020 0.984 1.039 0.788 0.964 0.209

f̂JLN 0.673 0.784 0.300 0.716 0.783 0.630 1.287 0.765 1.577 0.672 0.786 0.300

f̂FO 0.756 0.913 0.230 0.744 0.911 0.529 1.118 0.915 1.231 0.756 0.914 0.235

performance of an estimator — both absolute and relative — to a subjective choice
of the correction method. It would be a subjective choice exactly because the for-
mal properties of these estimators refer to the uncorrected versions. The only fair
alternative could have been to select the best correction method for each pair
{estimator, model}, but this seems a long way from practical usage. However, we
note that the correction subject seems problematic, for example, [4] show that
the simple dividing by the integral of the estimate – inappropriate for correcting
higher-order kernel methods – could even deteriorate the performance, depending
on the model to estimate, and with no way to know this in advance from the data.

6. Concluding Remarks

Higher-order bias methods have been much studied in kernel density estimation,
but are less used. Given that, in some cases, explicit bias correction of an ordinary
kernel is essentially equivalent to using a small bias estimator [8], there seems to be
justification for using such methods when the goal is confidence interval estimation
rather than point estimation. In this case, it seems that the strength of any method
lies mainly in its ability to reduce bias with the availability of a suitable plug-in
rule for the smoothing parameter. Further work could extend these methods to
nonparametric regression, which could also be incorporated in hypothesis testing,
for example, in tools such as SiZer [1].

Finally, we note that our data-based smoothing parameters are chosen to min-
imize AMISE (under a normal assumption). However (as also pointed out by [5])
there is absolutely no reason that an adequate choice for the bandwith which min-
imizes MISE will be the correct one in terms of coverage accuracy. However, our
simulations suggest that these AMISE-bandwidth selectors may nevertheless pro-
vide a good trade-off between coverage and expected width in many situations.
Moreover, practical selectors which “optimize” the coverage do not yet exist.
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Appendix A. Lemma A

Consider two continuous, real random variables X and Y , If both µX and µY are
non-zero, and VAR[X/Y ] exists finite, then

VAR

[
X

Y

]
≃

(
µX

µY

)2 (
σ2

X

µ2
X

+
σ2

Y

µ2
Y

−
2σXY

µXµY

)
,

provided that all the involved moments are finite.

Proof : This standard result is obtained by calculating the expectation of the
second-order bivariate Taylor expansion of X/Y in a neighborhood of (µX , µY ). �

Appendix B. Lemma B

Consider a random sample X1, ...,Xn, taken from a continuous univariate density
f . Let φ(h) := E[Kh(x − X1)] where x belongs to the support of f . Assume that
the kernel K is a Gaussian density. Then

E[f̂2(x;h)] =
1

n

{
(n − 1)φ(h)2 +

φ(h/21/2)

2π1/2h

}
,

E[f̂(x; 21/2h)] = φ(21/2h) ,
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VAR[f̂(x; 21/2h)] =
1

n

{
φ(h)

81/2π1/2h
− φ(21/2h)2

}
,

n4
VAR[f̂2(x;h)] = n

{
φ(h/2)

321/2π3/2
h3/2 −

φ(h/21/2)2

4πh2

}
+

2n!

(n − 2)!

{
φ(h/21/2)2

4πh2
− φ(h)4

}

+
4n!

(n − 3)!

[
φ(h)2

{
φ(h/21/2)

2π1/2h
− φ(h)2

}
+

φ(h)

n − 3

{
φ(h/31/2)

121/2πh2
−

φ(h/21/2)

2π1/2h
φ(h)

}]
,

COV[f̂2(x;h), f̂ (x; 21/2h)] =
n!

(n − 2)!

{
(n − 2)φ(h)2φ(21/2h) +

φ(h/21/2)

2π1/2h
φ(21/2h)

+
2φ((2/3)1/2h)

61/2π1/2h
φ(h)

}
+

n

201/2πh2
φ((2/5)1/2h) −

1

n

{
(n − 1)φ(h)2 +

φ(h/21/2)

2π1/2h

}
.

Proof : The first three equations are immediate. Set Yi := x − Xi, now

VAR[f̂2(x;h)] =
1

n4
VAR

[∑∑
Kh(Yi)Kh(Yj)

]
,

then n4VAR[f̂2(x;h)] is equal to

nVAR
[
Kh(Y1)

2
]
+ 2

n!

(n − 2)!
VAR [Kh(Y1)Kh(Y2)] +

n!

(n − 4)!
COV [Kh(Y1)Kh(Y2),Kh(Y3)Kh(Y4)]

+4
n!

(n − 3)!
COV [Kh(Y1)Kh(Y2),Kh(Y1)Kh(Y3)] + 2

n!

(n − 3)!
COV [Kh(Y1)Kh(Y1),Kh(Y2)Kh(Y3)]

+4
n!

(n − 2)!
COV [Kh(Y1)Kh(Y1),Kh(Y1)Kh(Y2)] +

n!

(n − 2)!
COV [Kh(Y1)Kh(Y1),Kh(Y2)Kh(Y2)] .

Assuming that the kernel is Gaussian, a little algebra leads to the result.
Concerning the mixed moment of COV[f̂2(x;h), f̂ (x; 21/2h)], we have

n3
∑ ∑∑

E[Kh(Yi)Kh(Yj)K21/2h(Ys)] =
n!E[Kh(Y1)Kh(Y2)K21/2h(Y3)]

(n − 3)!

+
n!E[Kh(Y1)

2K21/2h(Y2)]

(n − 2)!
+ 2

n!E[Kh(Y1)Kh(Y2)K21/2h(Y1)]

(n − 2)!
+ nE[Kh(Y1)

2K21/2h(Y1)].

Assuming that the kernel is Gaussian, again a little algebra leads to the result.
�

Appendix C. Proof of Theorem 3.1

The proof is based on a “linearization” argument. First of all, we note that

{f̂M (x;h) − f(x)} −

{
f̂h(x;h)2 − f(x)f̂(x; 21/2h)

f(x)

}
∼ op

{
(nh)−1/2

}
,
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and so the bias is approximated by the expectation of the second term, i.e.

E[f̂(x;h)2] − f(x)E[f̂(x; 21/2h)]

f(x)
=

h4

4

{
f ′′(x)2

f(x)
− f iv(x)

}
+ O(h6) + O

{
(nh)−1

}
.

Now let fn(x) := E[f̂(x;h)2]/E[f̂ (x; 21/2h)] and note that

f̂M(x;h) − fn(x) =

[
f̂(x;h)2

f(x)
−

f̂(x; 21/2h)fn(x)

f(x)

]
f(x)

f̂(x; 21/2h)
.

Since

f(x)

f̂(x; 21/2h)

p
−→ 1

the variance of the LHS is equal to the variance of the term in square brack-
ets. Lemma B provides the various elements. For an approximate version of
VAR[f̂M(x)], consider that φ̄(h) = f(x) + h2f ′′(x)µ2(K) + O(h4) and replace φ̄(h)
with f(x). Finally consider that K is a Gaussian density. To get the asymptotic

moments of f̂A(x;h) apply Lemma B, then approximate as above.

Appendix D. Proof of Theorem 4.1

We have

f̂A(x;h) =
1

nh

n∑

i=1

H

(
x − Xi

h

)

where H(z) := 2K(z) − 1/21/2K(z/21/2), a higher order kernel. But the Lindberg
condition holds, as for the standard kernel, as follows. For any ǫ > 0,

h−1
E

[
H

(
x − X1

h

)2

I{|H(x−X1

h )−E[H(x−X1

h )]|>
√

nhǫ}

]

=

∫

{|H(y)−E[H( x−X1

h )]|>
√

nhǫ}
H(y)2f(t − hy) dy

which converges to 0 if nh → ∞.
Concerning f̂M , as seen in the proof of Theorem 3.1, f̂M (x;h) − fn(x) and

f̂(x;h)2/f(x) − f̂(x; 21/2h)fn(x)/f(x) have the same asymptotic distribution. So
it is sufficient to prove that

n1/2{Vn − E[Vn]}
L

−→ N(0, 4ζ1)

with Vn := f̂(x;h)2 − f̂(x; 21/2h) and ζ1 := VAR[
∫
K(X1, x2)f(x2) dx2] > 0.

We have

Vn =
1

n2

∑ ∑

1≤i,j≤n

K(X1,X2),
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Now observe that K(Xi,Xj) = K(Xj ,Xi) 1 ≤ i, j ≤ n, therefore Vn is a von Mises
statistic. Now define the U-statistic V ∗

n := {n(n − 1)}−1
∑∑

1≤i6=j≤n K(Xi,Xj).

Provided that E[|K(Xi,Xj)|
2] < ∞ 1 ≤ i, j ≤ n, we have n1/2(Vn −V ∗

n )
p

−→ 0 (see
[13], pg. 206). Now,

n1/2{V ∗
n − E[V ∗

n ]}
L

−→ N(0, 4ζ1)

provided that VAR[K̃(X1)] > 0, where K̃(x1) := E[K(x1,X2)] (see [6]). But observe
that

E[K(x1,X2)] = Kh(x1 −x)E[Kh(X2 −x)]−
1

2
{K21/2h(x1 −x)+ E[K21/2h(X2 −x)]},

which is not degenerate.
Finally, if nh5 → 0,

lim
n→∞

{E[f̂G(x;h)] − f(x)} = lim
n→∞

(nh)1/2O(h4) = 0.

Appendix E. Lemma E

The expressions of the estimators contained in formula (2) are listed below

Ê[f̂2(x;h)] =
(n − 1)f̂2(x; 21/2h) + f̂(x; (3/2)1/2h)/(2π1/2h)

n2
;

Ê[f̂(x; 21/2h)} = f̂(x; 31/2h) ;

ˆVAR[f̂(x; 21/2h)] =
1

n

{
f̂(x; 21/2h)

81/2π1/2h
− f̂2(x; 31/2h)

}
;

n3 ˆVAR[f̂2(x)] = 4(n − 1)(n − 2)f̂2(x; 21/2h)

{
f̂(x; (3/2)1/2h)

2π1/2h
− f̂2(x; 21/2h)

}

+

{
f̂(x; (5/4)1/2h)

321/2π3/2h3
−

f̂2(x; (3/2)1/2h)

4πh2

}
+ 2(n − 1)

{
f̂2(x; (3/2)1/2h)

4πh2
− f̂4(x; 21/2h)

}

+4(n − 1)f̂(x; 21/2h)

{
f̂(x; (4/3)1/2h)

121/2πh2
−

f̂(x; 21/2h)f̂(x; (3/2)1/2h)

2π1/2h

}
;

n2 ˆCOV

[
f̂2(x;h), f̂ (x; 21/2h)

]
=

2(n − 1)

61/2π1/2h
f̂(x; 21/2h)f̂(x; (5/3)1/2h)

−
f̂(x; (3/2)1/2h)f̂(x; 31/2h)

2π1/2h
− 2(n − 1)f̂2(x; 21/2h)f̂(x; 31/2h) +

f̂(x; (7/5)1/2h)

201/2πh2
.


