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Kernel density estimation on the torus

Marco Di Marzio(1), Agnese Panzera(1) and Charles C. Taylor(2)

(1) Università di Chieti-Pescara; (2) University of Leeds

Abstract: Kernel density estimation for multivariate, circular data has been formulated only

when the sample space is the sphere, but theory for the torus would also be useful. For data

lying on a d-dimensional torus (d ≥ 1), we discuss kernel estimation of a density, its mixed

partial derivatives, and their squared functionals. We introduce a specific class of product

kernels whose order is suitably defined in such a way to obtain L2-risk formulas whose structure

can be compared to their euclidean counterparts. Our kernels are based on circular densities,

however we also discuss smaller bias estimation involving negative kernels which are functions of

circular densities. Practical rules for selecting the smoothing degree, based on cross-validation,

bootstrap and plug-in ideas are derived. Moreover, we provide specific results on the use of

kernels based on the von Mises density. Finally, real-data examples and simulation studies

illustrate the findings.

Key words and phrases: Circular symmetric unimodal families, conformation angles, density

functionals, efficiency, minimax bounds, mixed derivatives, sin-order, toroidal kernels, twicing,

von Mises density

1. Introduction

A circular observation can be seen as a point on the unit circle, and represented by an

angle θ ∈ [0, 2π). Typical examples include flight direction of birds from a point of release,

wind, and ocean current direction. A circular observation is periodic, i.e. θ = θ + 2mπ

for m ∈ Z, which sets apart circular statistical analysis from standard real-line methods.

Recent accounts are given by Jammalamadaka and SenGupta (2001) and Mardia & Jupp

(1999). Concerning nonparametric density estimation, there exist only a few contributions

focused on data lying on the circle or on the sphere (Bai et al. (1988); Beran (1979); Hall

et al. (1987); Klemelä (2000); Taylor (2008)), but nothing specific for the d-dimensional

torus Td := [−π, π]d. This seems strange if we note that toroidal data occur frequently

and we will naturally want to know the joint distribution of two or more circular random

variables. A few examples follow.

In the study of wind directions over a time period it naturally arises the need of

modeling bivariate circular data. In fact, temporal variables are converted into circular
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variables with simple transformations such as taking the day of the year and multiplying

by 2π/365, or taking month of the year and multiplying by 2π/12. Again in metereology,

parametric families of multivariate circular densities arise in a more specific and interesting

fashion in a paper by Coles (1998). In zoology countless examples arise. Fisher (1986)

considers the orientations of the nests of 50 noisy scrub birds (θ) along the bank of a

creek bed, toghether with the corresponding directions (φ) of creek flow at the nearest

point to the nest. Here the joint behavior of the random variable (θ, φ) is of interest. In

evolution biology it is of interest to study paired circular genomes. Each genome contains a

population of orthologs, and a way to characterize a genome consists in observing how they

are located within the genome. Such locations are usually expressed as angles, so in the

study of paired genomes it arises the necessity of modeling bivariate circular populations.

This has been recently accomplished in a parametric fashion by Shieh et al. (2006).

An interesting discrimination problem for data on T2 is presented by Sengupta and

Ugwuowo (2011). They have measurements on the skull of two groups of people represented

by a front angle and a side angle. Surely density estimation on the torus seems a very simple

tool for their discriminant aims, but here also density estimation per se could be useful.

A bioinformatics example is described briefly here, and it will be taken further in

Section 8. Data on the (two-dimensional) torus are commonly found in descriptions of

protein structure. Here, the protein backbone is given by a set of atom co-ordinates in

R3 which can then be converted to a sequence of conformation angles. The sequence of

angles can be used to assign (Kabsch and Sander, 1983) the structure of that part of the

backbone (for example α-helix, β-sheet) which can then give insights into the functionality

of the protein. A potential higher-dimensional example is provided by NMR data which

will give replicate measurements, revealing a dynamic structure of the protein. For shorter

peptides the modes of variability could be studied by an analysis of the replicates, requiring

density estimation on a high-dimensional torus.

With regard to methodology, orthogonal series (see, for example, Efromovich (1999))

appear to be reasonable tools for densities estimation based on toroidal data, although

they do not generally give densities as the output. On the other hand, splines are not

straightforward to implement in more than one dimension. The kernel density estimator,

which has been widely studied for its intuitive and simple formulation, is not immediately

applicable to toroidal data. This is not simply due to their periodic nature, but also because

circular densities are generally not defined as scale families, thus the usual structure of the
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kernel estimator as the average of re-scaled densities does not directly hold in this context.

In this paper we explore the possibility of formulating a toroidal density kernel estima-

tor whose weight functions are based on some well-known circular densities. Specifically,

based on a random sample from a population with density f — supported on the multidi-

mensional torus, and having an absolutely continuous distribution function — we address

the problem of kernel estimation of any mixed partial derivative of f . We have chosen the

partial derivative framework to be as general as possible, however it has also been of prac-

tical interest both in the past and more recently; see Singh (1976), Prakasa Rao (2000) and

the references therein, or Duong et al. (2008). Markedly, see the very detailed discussion

on the importance of multivariate kernel density derivative estimation made by Chacón et

al. (2010).

In Section 2, as the starting point, we define a class of suitable kernels whose order is

defined in close analogy to the linear case. In Section 3 we introduce the estimators, then

derive exact mean integrated squared error for the proposed density derivatives estimator

and, finally, we discuss its minimax admissibility. Here from the Fourier series expansion of

the mean integrated squared error, a new smoothing concept arises, according to which the

usual two-stage choice, i.e. the selection of kernel and bandwidth, is replaced by the single

step of selecting the Fourier coefficients of the optimal kernel. Section 4 is devoted to the

asymptotic properties, and some usual accuracy measures are quantified for the proposed

estimators. Interestingly, even though our definition of kernel order allows for a description

of L2 risks which is reminiscent of the linear case, increased values of the order does not

necessarily give smaller bias. However, Section 5 illustrates a simple and general strategy

to obtain small bias estimates. In Section 6 cross-validation and plug-in ideas are employed

to construct various approaches to bandwidth (degree of smoothing) selection. The von

Mises density could be considered in many respects the circular counterpart of the normal,

therefore it represents a natural choice for the kernel. With this motivation, in Section 7

we give specific theory for the optimal smoothing when von Mises kernels are employed.

Section 8 uses some real data on conformation angles in protein backbones to illustrate

the potential of kernel density estimation in a bivariate context. Section 9 contains various

simulation studies such as: a comparison on the basis of efficiency of our estimators with

trigonometric series estimators, a study on accuracy of our asymptotic approximations, a

comparison among cross validation bandwidth selection rules, and finally the construction

of pointwise confidence intervals.
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2. Toroidal kernels

Definition 1. A d-dimensional toroidal kernel with concentration (smoothing) parameters

C := (κs ∈ R+, s = 1, · · · , d), is the d-fold product KC :=
∏d
s=1Kκs, where Kκ : T→ R is

such that

i) it admits an uniformly convergent Fourier series {1 + 2
∑∞

j=1 γj(κ) cos(jθ)}/(2π),

θ ∈ T, where γj(κ) is a strictly monotonic function of κ;

ii)
∫

TKκ = 1, and, if Kκ takes negative values, there exists 0 < M < ∞ such that, for

all κ > 0 ∫
T
|Kκ(θ)| dθ ≤M ;

iii) for all 0 < δ < π,

lim
κ→∞

∫
δ≤|θ|≤π

|Kκ(θ)| dθ = 0.

These kernels are continuous and symmetric about the origin, so the d-fold products of

von Mises, wrapped normal and wrapped Cauchy distributions are included. As more gen-

eral examples, we now list families of circular densities whose d-fold products are candidates

as toroidal kernels.

1. Wrapped symmetric stable family of Mardia (1972, p. 72).

2. Extensions of the von Mises distribution (Batschelet, 1981, p. 288, equation (15.7.3)).

3. Unimodal symmetric distributions in the family of Kato and Jones (2009).

4. The family of unimodal symmetric distributions of Jones and Pewsey (2005).

5. The wrapped t family of Pewsey et al. (2007).

Note that the cardioid density (2π)−1{1 + 2κ cos(·)} with |κ| < 1/2, θ ∈ T, is not included

in our class since it does not satisfy condition iii). As another relevant example, observe

that orthogonal series density estimates are not included since they do not satisfy condition

i). Additionally, the Dirichlet kernel does not match also ii).

Definition 2. (Sin-order) Given the univariate toroidal kernel Kκ, let ηj(Kκ) :=
∫

T sinj(θ)Kκ(θ)dθ.

We say that Kκ has sin-order q if and only if ηj(Kκ) = 0, for 0 < j < q, and ηq(Kκ) 6= 0.

The following Lemma will be useful throughout the paper.
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Lemma 1. If Kκ has sin-order q, then ηq(Kκ) = O{(1− γq(κ))21−q}.

Proof. See Appendix.

Note that KC :=
∏d
s=1Kκs has sin-order q if and only if Kκs has sin-order q. Higher

sin-order toroidal kernels can be constructed from second sin-order ones as a direct conse-

quence of the formulation of ηj(Kκ) in (10.1) and of the result in Lemma 1, which leads to

this qth sin-order kernel defined at θ = (θ1, . . . , θd) ∈ Td

d∏
s=1

Kκs(θs)−
q/2−1∑
j=1

cos(2jθs)
π

[γ2j(κs)− 1]

 . (2.1)

An adaptation of the bias reduction technique of Lejeune and Sarda (1992) to the

circular setting constitutes a different strategy to increase the sin-order, as in the following

Lemma 2. Assume that Kκ has sin-order 2, let W` be a matrix of order `+1 with (i, j)-th

entry given by wij := ηi+j−2(Kκ), and U` be a matrix of order ` + 1 with (i, j)-th entry

given by uij := sini+j−2(θ) if j = 1, and uij = wij otherwise. Then, given

Kκ,`(θ) :=
det [U`]
det [W`]

Kκ(θ),

we have that
∏d
s=1Kκs,`(θs) is a toroidal kernel of sin-order ` + 1 if ` is odd, and ` + 2

otherwise.

Proof. See Appendix.

Notice that kernels whose sin-order is greater than 2 need to be negative in some

regions of Td, just like euclidean higher order kernels.

3. The estimators

For a d-variate function g and a multi-index r = (r1, · · · , rd) ∈ Zd+, we denote the

mixed partial derivative of (total) order |r| =
∑d

s=1 rs at θ = (θ1, · · · , θd) by

g(r)(θ) :=
∂|r|

∂θr11 · · · ∂θ
rd
d

g(θ),

and indicate the quadratic functional
∫

Td{g
(r)(θ)}2dθ as R(g(r)). Finally, as toroidal den-

sity we mean a probability density function whose support is Td. Our aim is to study the

estimation of f (r)(θ) and R(f (r)).
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Definition 3. (Kernel estimator of toroidal density mixed derivatives) Let {Θ`, ` =

1, · · · , n} with Θ` = (Θ`1, · · · ,Θ`d), be a random sample from a toroidal density f . The

kernel estimator of f (r) at θ is defined as

f̂ (r)(θ;C) :=
1
n

n∑
`=1

K
(r)
C (θ −Θ`). (3.1)

Letting ĝ be a nonparametric estimator of a square-integrable curve g, the mean

squared error (MSE) for ĝ at θ ∈ supp[g] is defined by MSE[ĝ(θ)] := E[{ĝ(θ) − g(θ)}2] =

{E[ĝ(θ)]−g(θ)}2+Var[ĝ(θ)], whereas the mean integrated squared error (MISE) is MISE[ĝ] :=∫
MSE[ĝ(θ)]dθ. In what follows we will derive a Fourier expansion of the exact MISE for

the estimator (3.1). Before stating the main result, we need to introduce a little formalism

through the following two propositions.

Proposition 1. Given j = (j1, · · · , jd) ∈ Zd, for a function f defined on Td we have

f (r)(θ) =
i|r|

(2π)d
∑
j∈Zd

jrcje
ij·θ,

where i2 = −1, cj :=
∫

Td f(θ)e−ij·θdθ, j ·θ is the inner product of j and θ, jr =
∏d
s=1 j

rs
s ,

and, by convention, jrss = 1 for js = rs = 0.

Proposition 2. Given the d-dimensional toroidal kernel KC(θ) =
∏d
s=1Kκs(θs), let

γj(C) :=
∫

Td KC(θ)e−ij·θdθ =
∏d
s=1 γjs(κs). Hence, the estimator in (3.1), being the

convolution between the empirical version of f and K(r)
C , can be expressed as

f̂ (r)(θ;C) =
i|r|

(2π)d
∑
j∈Zd

jr c̃jγj(C)eij·θ, (3.2)

where c̃j := n−1
∑n

`=1 e
−ij·Θ`.

To obtain the properties of f̂ (r), we will need to assume a certain smoothness degree

of f and KC . To this end, we require that f and KC are elements of the periodic Sobolev

class of order |r| on Td

S |r|L (Td) :=
{
g ∈ L2

(
Td
)

:
∫

Td
{g(p)}2 ≤ L2 , for 0 ≤ |p| ≤ |r|

}
where g is a toroidal density, p = (p1, · · · , pd) ∈ Zd+, |p| =

∑d
s=1 ps and L ∈ (0,∞).
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Theorem 1. Suppose that both f and KC belong to S |r|L (Td), then

MISE
[
f̂ (r)(·;C)

]
=

i2|r|

n(2π)d
∑
j∈Zd

1−

2d−1∑
m=1

αj,m

2

−

2d−1∑
m=1

βj,m

2 γ2
j (C)j2r

+
i2|r|

(2π)d
∑
j∈Zd
{1− γj(C)}2


2d−1∑
m=1

αj,m

2

+

2d−1∑
m=1

βj,m

2 j2r,

with {αj,m, βj,m,m = 1, · · · , 2d−1} being the set of the coefficients in the trigonometric

Fourier series expansion of f .

Proof. See Appendix.

It is easily seen that the first summand is the integrated variance. To ensure consis-

tency, we need to select C such that, when n increases, n−1(2π)−d
∑
j∈Zd γ

2
j (C)j2r tends

to zero, and γj(C) tends to 1 for any j. On the basis of Theorem 1 we get

Result 1. For any fixed j ∈ Zd, the kernel Fourier coefficient minimizing MISE is(∑2d−1

m=1 αj,m

)2
+
(∑2d−1

m=1 βj,m

)2

n−1

{
1−

(∑2d−1

m=1 αj,m

)2
−
(∑2d−1

m=1 βj,m

)2
}

+
(∑2d−1

m=1 αj,m

)2
+
(∑2d−1

m=1 βj,m

)2
.

which closely corresponds the the MISE-optimal Fourier coefficient of trigonometric

series estimators, this latter being usually expressed for zero-derivative density estimation

in R.

The above optimal Fourier coefficient suggests to estimate Fourier coefficients of the

unknown density as a novel kernel estimation approach, where the tasks of smoothing

selection and kernel choice are no longer separated, in contrast to standard kernel density

estimation. The practical implementation amounts to an estimation made of two steps,

firstly by the use of orthogonal series, after which the kernel method. Because the Fourier

coefficient estimates will not necessarily lead to a non-negative density estimate, the second

step could be viewed as a non-negative re-normalization of the first estimate.

A bound for the MISE of the estimator (3.1) is derived in the following

Theorem 2. Let KC :=
∏d
j=1Kκ ∈ S |r|L (Td) be a toroidal kernel of sin-order q. If

i) ηq(Kκ) <∞;
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ii) O (ηq(Kκ)) < O (ηq+2s(Kκ)) for any s ≥ 1;

iii) f (r) ∈ S(|q1|)
L (Td);

then for any n ≥ 1

MISE[f̂ (r)(·;C)] ≤
{
ηq(Kκ)
q!

Ld

}2

+
1
n
R(K(r)

C ). (3.3)

Proof. See Appendix.

Now, assuming that ηq(Kκ)(q!)−1 = c1k
−β and R(K(r)

C ) = c2k
α, with ci ∈ R, i = 1, 2,

and (α, β) ∈ R+ × R+, we find that the value of κ which minimizes the RHS of (3.3) is

κmin =
(

2βc21L
2d2n

αc2

)1/(2β+α)

which leads to

MISE[f̂ (r)(·;κmin)] = O
(
n−2β/(2β+α)

)
. (3.4)

By formula (3.4) it follows that, when d = 1 and |r| = 0, the estimators equipped

with second sin-order kernels in the list after Definition 1 and corresponding higher sin-

order kernels in Lemma 2, for which α = 1/2 and β = q/2, attain the minimax bound for

nonparametric density estimators, say f̃n, formulated by Efromovich and Pinsker (1982).

This is given by

inf
f̃n

sup
f∈SqL

MISE[f̃n] = P(q, L)(1 + o(1)), (3.5)

where

P(q, L) = (2q + 1)
[
π(2q + 1)(q + 1)

q

]−2q/(2q+1)

L2/(2q+1)

is Pinsker’s constant.

Now, since functionals of the form R(f (p)), p = (p1, · · · , pd), occur in many bandwidth

selection strategies, we need to define an estimator also for them. However, as in the linear

setting, an easy application of integration by parts shows that it will be sufficient to focus

on the functionals ψr :=
∫
f (r)(θ)f(θ)dθ where |r| is even.

Definition 4. (Kernel estimator of multivariate toroidal density functionals)

Given a random sample {Θ`, ` = 1, · · · , n} from a toroidal density f , the kernel estimator

of the functional ψr is defined as

ψ̂r(C) := n−1
n∑
`=1

f̂ (r)(Θ`;C). (3.6)
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4. Asymptotic properties

Based on properties i)–iii) of Definition 1, we easily prove the following

Theorem 3. If limn→∞ κs =∞ for s = 1, ..., d, these three statements are equivalent:

1. f (r) is uniformly continuous;

2. lim
n→∞

sup
θ∈Td

∣∣∣E [f̂ (r)(θ;C)
]
− f (r)(θ)

∣∣∣ = 0;

3. lim
n→∞

sup
θ∈Td

MSE
[
f̂ (r)(θ;C)

]
= 0.

Notice, in particular, that for |r| = 0 we have consistency with f being merely continuous.

To derive the asymptotic distribution of f̂ (r) we need the following result, which follows

from Parseval’s identity.

Lemma 3. If KC ∈ S
|r|
L (Td), then R(K(r)

C ) =
∏d
s=1Qκs(rs), where, for each non-negative

integer u,

Qκ(u) :=


(2π)−1

{
1 + 2

∑∞
j=1 γ

2
j (κ)

}
, if u = 0 ;

π−1
∑∞

j=1 j
2uγ2

j (κ), otherwise.

(4.1)

Theorem 4. Let KC :=
∏d
s=1Kκs ∈ S

|r|
L (Td), with Kκs being an univariate toroidal kernel

of sin-order q, and f (r) ∈ S |q1|L (Td). Assume that limn→∞ γq(κs) = 1, where γq(κs) is the

qth Fourier coefficient of Kκs; then

√
n
{
f̂ (r)(θ;C)− E

[
f̂ (r)(θ;C)

]}
d→ N

(
0,
f(θ)
n

d∏
s=1

Qκs(rs)

)
.

Proof. See Appendix.

Corollary 1. Under the assumptions of Theorem 4, we have

MISE
[
f̂ (r)(·;C)

]
∼ 1

(q!)2

∫
Td

tr2

{
Ωq

dqf (r)(θ)
dθq

}
dθ +

1
n

d∏
s=1

Qκs(rs), (4.2)

where ∼ indicates that the ratio is bounded as κ→∞, Ωq := diag{ηq(Kκ1), · · · , ηq(Kκd)},
and dqf (r)(θ)/dθq indicates the matrix derivative of order q of f (r) at θ.
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It is not straightforward to obtain the asymptotic mean integrated squared error

(AMISE) of f̂ (r)(·;C) using the RHS in (4.2) since the ratio of the two sides will not,

in general tend to unity. This is because the rate at which ηj(Kκ) decreases may not de-

pend on j. However, if the kernel is such that O(ηj(Kκ)) is a strictly decreasing function

of j then, together with Lemma 1, we can further establish

Theorem 5. If the Fourier coefficients of a second sin-order kernel satisfy

lim
κ→∞

1− γj(κ)
1− γ2(κ)

=
j2

4
(4.3)

then the terms on the RHS of equation (4.2) (with q = 2, |r| = 0, and κs = κ) will define

AMISE, which has a minimization given by

γ2(κ) = 1− 253d+1d

[
253d(4d− 1) + 9n2πd

∫
Td

tr2
{

d2f(θ)
dθ2

}
dθ

]−1

.

As expected, the optimal coefficient approaches 1 as n increases, but slower for larger d.

The above condition can be extended to higher sin-order kernels, by noting that γj(κ) = 1

for 1 ≤ j < q and recursively solving equation (10.1) to ensure that ηj(Kκ), j > q has the

appropriate order.

Remark 1. Condition (4.3) is satisfied by many symmetric, unimodal densities, though

not by the wrapped Cauchy. Important cases are given by the wrapped normal and von

Mises. Also the class introduced by Batschelet (1981) matches the condition, along with

the unimodal symmetric densities in the family introduced by Kato and Jones (2009).

Concerning the squared risk of the functional estimator (3.6), we have the following

Theorem 6. Consider the estimator ψ̂r(C) equipped with the kernel KC :=
∏d
s=1Kκs ∈

S |r|L (Td), with Kκs being a univariate toroidal kernel of sin-order q, and recall conditions

i) and ii) of Theorem 4. Then, if f (r) ∈ S |q1|L (Td),

MSE
[
ψ̂r(C)

]
∼
[

1
n
K

(r)
C (0) +

1
q!

∫
Td

tr

{
Ωq

dqf(θ)
dθq

}
f (r)(θ)dθ

]2

+
2
n2
ψ0

d∏
s=1

Qκs(rs) +
4
n

[∫
Td
{f (r)(θ)}2f(θ)dθ − ψ2

r

]
. (4.4)

Moreover, letting E1(θ1) := E[K(r)
C (θ1 −Θ2)] and ξ1 := Var[E1(Θ1)], where θ1 ∈ Td and

Θ1 and Θ2 are independent random variables both distributed according to the population
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density f , if E
[
K

(r)
C (Θ1 −Θ2)

]
<∞, we have

√
n
{
ψ̂r(C)− E

[
ψ̂r(C)

]}
d→ N (0, 4ξ1).

Proof. See Appendix.

5. Small bias estimates

The bias of an euclidean kernel estimator is said to have order q if the infimum of

AMISE has magnitude O
(
n−2q/(2q+2|r|+d)) and so, in this case q is also the kernel order.

Now, it is interesting to note that higher sin-order kernels are not necessarily associated

with smaller bias, as indeed we would expect by analogy with the linear setting. For

example, the use of kernels defined as in (2.1) do not yield necessarily smaller bias.

Conversely, a simple and general bias reduction technique which does not affect the

sin-order follows. If the toroidal kernel
∏
Kκ gives bias with magnitude O

(
κ−h

)
, then

Kt
κ = 2Kκ −K2−1/hκ (5.1)

produces bias of orderO
(
κ−h−1

)
. Observe that

∏
2Kt

κ−Kt
2−1/hκ

yields bias orderO
(
κ−h−2

)
,

so, iteratively, any bias order is obtainable, provided that the population density is suffi-

ciently smooth. Notice that above kernel amounts to twicing of Stuetzle and Mittal (1979)

if the kernel belongs to a family closed under the convolution operation, which is true for

the wrapped stable family, for example. However, the von Mises density does not have

this closure property, which makes successive iterations of standard twicing difficult to

implement.

Concerning minimax admissibility, it is easily seen that the estimators equipped with

kernels of sin-order q obtained by (5.1), whose bias order is β = (q+2)/2, attain the bound

in (3.5) with q replaced by q + 2.

Finally, notice that Lemma 2 contains a different strategy to reduce bias, if toroidal

kernels such as the d-fold products of densities listed after Definition 1 are employed.

6. Selection of the smoothing degree

To select the optimal values of the smoothing parameters κs, s = 1, · · · , d, different

strategies are available. Here we consider the case of density estimation (|r| = 0), and

adapt some selectors which have been widely investigated in the euclidean setting.

An intuitive selection strategy, proposed in the euclidean setting by Habbema et al.

(1974) and Duin (1976), consists in choosing the values of κs, s = 1, 2, · · · , d, which max-

imize the likelihood cross-validation (LCV) function LCV[C] = n−1
∑n

`=1 log f̂−`(θ`;C),
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where f̂−`(θ`;C) denotes the leave-one-out estimate of f . Concerning the efficiency of

such a selector, we have the remarkable fact that, differently from the euclidean setting, in

our setting both the population density and the kernel are always bounded and compactly

supported for being toroidal densities, and consequently, in our scenario, the conditions for

the L1 consistency of the density estimator, as stated in Theorem 2 of Chow et al. (1983),

always hold.

A different criterion for choosing the smoothing parameter is the unbiased cross-

validation (UCV) introduced by Rudemo (1982) and Bowman (1984). This selector, which

targets the integrated squared error (ISE) of the estimator in (3.1) with |r| = 0 (given

by ISE[f̂(·;C)] :=
∫

Td{f̂(θ;C) − f(θ)}2dθ), leads to the minimization of the unbiased

cross-validation objective function UCV[C] = R(f̂)− 2n−1
∑n

`=1 f̂−`(θ`;C).

Further selection strategies are those based on the minimization of an estimate of the

AMISE. Here we adapt both the biased cross-validation (BCV) (Scott and Terrell, 1987)

and a direct plug-in selector. However, to enable the use of AMISE estimates, we have

to assume that the condition of Theorem 5 (or equivalent conditions for q > 2) hold.

Moreover, to make our notation easier, we suppose that κs = κ for each s = 1, · · · , d, and

consequently

AMISE
[
f̂(·;C)

]
=
{
ηq(Kκ)
q!

}2 ∫
Td

tr2
{

dqf(θ)
dθq

}
dθ +

1
n

d∏
s=1

Qκ(0)

where tr{dqf(θ)/dθq} =
∑d

s=1 f
(qes)(θ), whit es being a d-dimensional vector having 1 as

s-th entry and 0 elsewhere. Now, for s = 1, · · · , d and t > s, the s-th squared summand and

the product between the s-th and t-th summands of
∫

Td tr{dqf(θ)/dθq}2dθ, are respectively∫
Td

{
f (qes)(θ)

}2
dθ = ψ2qes and

∫
Td
f (qes)(θ)f (qet)(θ)dθ = ψqest , (6.1)

whose leave-one-out estimates, defined by ψ̂∗r(κ) := n1
∑n

`=1 f̂
(r)
−` (θ`;κ), lead to the biased

cross-validation objective function

BCV[κ] =
{
ηq(Kκ)
q!

}2
{

d∑
s=1

ψ̂∗2qes(κ) + 2
d∑
s=1

∑
t>s

ψ̂∗qest(κ)

}
+

1
n

d∏
s=1

Qκ(0).

Finally, by considering the estimators in Definition 4 for the quantities in (6.1) lead to the

direct plug-in objective function

DPI[κ] =
{
ηq(Kκ)
q!

}2
{

d∑
s=1

ψ̂2qes(λs) + 2
d∑
s=1

∑
t>s

ψ̂qest(δs)

}
+

1
n

d∏
s=1

Qκ(0),
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where both the λss and the δss are pilot bandwidths.

More selectors of smoothing degree are provided in Section 3 for the case when the

von Mises kernel is employed. In particular, we discuss both the reference of a von Mises

distribution, which could be considered the rule of thumb in our circular setting, and the

more sophisticated bootstrap method for the choice of the optimal smoothing degree.

7. Von Mises kernel theory

Now we derive the AMISE-optimal smoothing parameter for the estimator in (3.1)

when the kernel is VC(θ) :=
∏d
s=1 Vκ(θs) ∈ S |r|L (Td), where Vκ(·) := exp{κ cos(·)}/{2πI0(κ)}

is the von Mises kernel with Ij(κ) being the modified Bessel function of the first kind and

order j. Here, we have assumed that κs = κ, s = 1, · · · , d, to simplify notation, and we

have chosen a specific kernel because, in general, the smoothing parameter is not separable

from the toroidal kernel function, and, therefore, rules which hold for the whole class of

toroidal kernels are very hard to obtain.

Theorem 7. Assume that f (r) ∈ S |21|
L (Td), and

i) limn→∞ κ =∞;

ii) limn→∞ n
−1R

(
V

(r)
C

)
= 0;

then, the AMISE optimal smoothing parameter for f̂ (r)(·;C) equipped with the kernel VC ,

is

κAMISE =

2|r|+dπd/2n
∫

Td tr2
{

d2f (r)(θ)
dθ2

}
dθ

(2|r|+ d)
∏d
s=1 OF(2rs)

2/{4+2|r|+d}

, (7.1)

where, for integer u, OF(u) is the product of all odd integers less or equal to u.

Proof. See Appendix.

Result (7.1) yields minκ>0 AMISE[κ] = O
(
n−4/(4+d+2|r|)). This convergence rate can

be improved by employing higher sin-order kernels defined in Lemma 2. In particular,

letting Vκ,`(θ) := det[U`]/det[W`]Vκ(θ), for the case |r| = 0, we have

Theorem 8. Let VC,` :=
∏
Vκ,`. Assume that conditions i) and ii) of Theorem 7 hold,

and f ∈ S |q1|L (Td), where q = ` + 1 if ` is odd, and q = ` + 2 otherwise. Then for the

estimator f̂(·;C) equipped with VC,`

κAMISE =

2q{OF(q)}22dπd/2n
∫

Td tr2
{

dqf(θ)
dθq

}
dθ

d(q!)2(q − 1)d/2

2/{2q+d}

(7.2)
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Proof. See Appendix.

It is also possible to determine the optimal smoothing degree for the small bias esti-

mator of Section 5 building through the von Mises kernel, as in

Theorem 9. Let V t
C :=

∏
V t
κ . Suppose that conditions i) and ii) of Theorem 7 hold, and

f ∈ S |41|(Td). Then for the estimator f̂(·;C) equipped with the kernel V t
C

κAMISE =

2d/2−1πd/2n
∫

Td
(
tr
{

d4f(θ)
dθ4

}
− 2tr

{
d2f(θ)

dθ2

})2
dθ

d


2/(8+d)

. (7.3)

Proof. See Appendix.

Observe that, by (7.3), the second sin-order tordoidal kernel V t
C gives minκ>0 AMISE[κ] =

O
(
n−8/(8+d)

)
, which is equal to the minimum AMISE rate result ing from Theorem 8 for

q = 4. Clearly, this rate can be improved by iterating the bias reduction procedure in (5.1)

starting from V t
κ .

Now letting AMSE[ψ̂r(C)] denote the leading terms of RHS of (4.4), for the estimator

(3.6) equipped with the kernel VC , we obtain

Theorem 10. Suppose that the estimator ψ̂r(C) is equipped with the kernel VC ∈ S
|r|
L (Td).

Assume that conditions i) and ii) of Theorem 7 hold, and f (r) ∈ S |21|
L (Td). Then the

AMSE-optimal smoothing parameter for ψ̂r(C) is

κAMSE =



[
−
i|r|2d/2−1πd/2n

∑d
s=1 ψr+2es∏d

s=1 OF(rs)

]2/(2+|r|+d)

, if all rs are even;

2|r|+dπd/2n2
(∑d

s=1 ψr+2es

)2

2ψ0(2|r|+ d)
∏d
s=1 OF(2rs)


2/(4+2|r|+d)

, otherwise.

(7.4)

Proof. See Appendix.

Concerning the smoothing degree selection, assuming that f is a d-fold product of

von Mises densities having concentration parameters νs > 0, s = 1, · · · , d, we can get a

von Mises reference rule to select κ. In particular, for the case |r| = 0, formula (7.1)

becomes a smoothing degree selector when the integrated squared trace of the Hessian

matrix d2f(θ)/dθ2 is replaced by an estimate of it such as
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∏
I0(2ν̂s){3

∑
ν̂2
s +

∑∑
s 6=t ν̂sν̂tA1(2ν̂s)A1(2ν̂t)−

∑
A1(2ν̂s)}

2d+2
∏
I2

0 (ν̂s)
,

where Aj(·) := Ij(·)/I0(·) for each j ∈ N, and ν̂s denotes an estimate of νs. Clearly, this

selection strategy applies also for the case |r| 6= 0. In particular, for the case r = 1, with

1 denoting the d-dimensional unit vector, the above argument can be adapted by using, as

an estimate of
∫

Td tr2
{
d2f (1)(θ)/dθ2

}
dθ,

∏
ν̂sI1(2ν̂s){15

∑
ν̂2
sB3(2ν̂s) + 9

∑∑
s 6=t ν̂sν̂tB2(2ν̂s)B2(2ν̂t) + 6(2d+ 3)

∑
ν̂sB2(2ν̂s) + 4d2}

22d+2
∏
I2

0 (ν̂s)
,

(7.5)

where Bj(·) := Ij(·)/I1(·), j ∈ Z.

In addiition, the bootstrap method of Taylor (1989) has closed expressions if a von

Mises kernel is used. In what follows we briefly describe this. A bootstrap criteria is

to select C to minimize
∫

Td EB{f̂∗(θ;C) − f̂(θ;C)}2dθ where EB denotes the bootstrap

expectation with respect to random samples {Θ∗` , ` = 1, · · · , n} generated from f̂(θ;C).

When d = 1 and the kernel is Vκ(θ) we can compute

EB[f̂∗(θ;κ)− f̂(θ;κ)]2 = {2πnI0(κ)}−2

[
I0(κ)−1

n∑
`=1

I0
(
κ{5 + 4 cos(θ − θ`)}1/2

)]

+
{

EB[f̂∗(θ;κ)]− f̂(θ;κ)
}2
− n−1

{
EB[f̂∗(θ;κ)]

}2

where

EB[f̂∗(θ;κ)] = {2πnI0(κ)}−1
n∑
`=1

I0 (2κ cos((θ − θ`)/2)) /I0(κ).

Although this can be easily extended to d > 1 it seems hard to obtain an analytic form for

its integral, so a numerical solution is required.

8. A real data case study

The backbone of a protein comprises a sequence of atoms, N1−Cα
1−C1 · · · −Nm−Cα

m−Cm,

in which each group Ni−Cα
i −Ci is associated with a pair of dihedral angles and a type of

amino acid. The way in which the distribution of the angles depends on the amino acid

is of interest, and the kernel density estimate is both an exploratory tool to indicate dif-

ferences as well as a means to identify the nature of differences found from a formal test.

To illustrate this, we use a database of proteins which have small sequence similarity and

collect together all the dihedral angles associated with each of the twenty types of amino
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acid. Previous attempts to model such data using a mixture of bivariate von Mises-type

distributions (Mardia et al., 2007) have resulted in some success in identifying clusters

which are associated with secondary structure. However, the number of components in

the mixture model is problematic, and correct convergence of the EM algorithm is not as-

sured. We have computed a kernel density estimate of these data using a von Mises kernel

with the smoothing (concentration) parameter chosen by cross-validation. To illustrate

some of the results, we have chosen 4 of the amino acid datasets (Alanine, Glutemate,

Glycine, and Lysine). In Figure 8.1 we have plotted the contours defined so that, at level
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Figure 8.1: Contour plots showing the tail probabilities of kernel density estmates for four sets
of dihedral angles, each corresponding to an amino acid. The sample sizes are: 8979 (A), 6183
(E), 8334 (G); 5984 (K), and corresponding smoothing parameters, chosen by cross-validation, are:
κ = 132, 114, 142, 121 respectively.

p, (p = 0.1, 0.3, 0.5, 0.7) a total fraction 1− p of the density is inside the contour. It can be

seen that three of these distributions appear quite similar and one (Glycine) very different:

that Glycine is different is well-known and well understood in terms of its chemical prop-

erties. A formal test to compare angular distributions can be obtained by using bootstrap
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resamples, for example using the energy test (Rizzo, 2002) or a similar procedure based

on the difference in kernel density estimates. Such tests confirm that all four densities are

indeed different.

9. Simulations

9.1 A comparison with trigonometric series estimators

The aim of this section is to compare our methods with other available ones. Trigono-

metric series estimators are natural competitors because we are working in periodic spaces.

Since trigonometric series can be expressed as kernels, a comparison in terms of kernel ef-

ficiency is straightforward. We discuss this topic in one dimension because our kernels are

products of univariate functions, and therefore not much should change in higher dimen-

sions. The efficiency theory of euclidean kernels is based on the fact that the bandwidth

and the kernel have separable contributions to the mean integrated squared error. Unfor-

tunately, this is not the case for the MISE of estimator (3.1). In our efficiency analysis we

use the MISE given by Theorem 1 and consider estimating the von Mises and the wrapped

Cauchy densities with (no loss of generality) mean direction 0, specified by their concentra-

tion parameter ρ. In this context, when considering the (relative) efficiency of two circular

kernels, the smoothing parameters do not “cancel” and so their equivalence needs first to

be established as follows. For fixed ρ and n, we can select the bandwidth to minimize MISE

for a given kernel function. The efficiency of one kernel relative to another may then be

measured by taking the ratio of the minimized MISEs.

Coming to the specific summation method involved, Fejér’s kernel (Fκ) — determined

by γj(κ) = (κ + 1− j)/(κ + 1)1{j≤κ} — which is non-negative, is the obvious competitor

and so the efficiency of other methods are compared to this benchmark. We also consider

the Dirichlet method (Dκ) — despite some theoretical drawbacks — which is determined

by γj(κ) = 1{j≤κ}. Amongst the many other summation methods available, we consider

the de la Vallée Poussin’s sum (DVκ) — for which γj(κ) = 1 for j ≤ κ, γj(κ) = 2 − j/κ
for κ + 1 ≤ j ≤ 2κ − 1 and γj(κ) = 0 otherwise — because it has the best theoretical

properties (see Efromovich (1999), p.43). On the other side, among our proposals, we have

chosen von Mises kernel (Vκ), for which γj(κ) = Ij(κ)/I0(κ), and twiced von Mises (V t
κ),

for which γj(κ) = 2Ij(κ)/I0(κ) − Ij(κ/2)/I0(κ/2), for competition. Note that Dκ, DVκ
and V t

κ are not bona fide estimates. Concerning the usual issue whether to prefer bona fide

estimators, our position is the common one, i.e.: negative estimators are of interest only if

they guarantee faster convergence rates of their asymptotic risks, surely their effectiveness
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is doubtful with small sample sizes.

In Figure 9.2 we show the relative efficiency of the above kernels and trigonometric

series for sample sizes n = 5, 25, 125, 625 for the von Mises and wrapped Cauchy distribu-

tions. The von Mises kernel is clearly superior to the Fejér kernel. However, the dominance

of Vκ over Dκ is less than expected and we note that Dκ behaves reasonably for bigger

samples, until nearly dominating Fκ for n = 625. Surprisingly, twicing improves on all

the methods for small to medium sample sizes, and still does well for larger n. Overall, it

could be the best, though DVκ behaves better for n = 625 when the population is highly

concentrated. Unfortunately DVκ behaves always very poorly with low concentrated data.

Finally, we notice that to twice a twicing estimator could be a valid strategy to improve

the performances still further. But we have preferred do not deepen this aspect in our

simulations because simple twicing already hits reasonably the target.
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Figure 9.2: Relative efficiency of Dirichlet (——), de la Vallée Poussin (- - - - -), von Mises (· · · ),
and twiced von Mises (dot-dash) kernels to the Fejér kernel, for various values of n, plotted as a
function of ρ. With respect to the underlying true density, the left group corresponds to the von
Mises distribution with ρ = I1(ν)/I0(ν) and the right group to the wrapped Cauchy distribution.

9.2 Bandwidth selection

In a comparative simulation study we explore the performance of the cross-validation
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Figure 9.3: Bandwidths obtained using various selectors, biased cross-validation, unbiased cross-
validation and likelihood cross-validation. Each row of histograms is based over a datased of 2000
samples with n = 300 drawn from a d-fold product of von Mises densities with null mean direction
and and concentration parameter 1.

selectors discussed in Section 6. We have focused on them, other than for their compu-

tational simplicity — in fact they do not require any specification of pilot bandwidths —

also because they could be considered reasonable for a number of theoretical respects, as

convincingly argued by Loader (1999).

In particular, our target is the estimation of d-fold products of von Mises densities with

null mean direction and unitary concentration parameter. Our kernel is VC , with C being

a multiset of element κ and multiplicity d. In a first simulation study we have drawn 2000

samples with n = 300, and then calculated the corresponding bandwidths.

The output is represented in Figure 9.3 where each histogram corresponds to a pair

(dimension, selector). A main message is that in one dimension the region where the

real minimum lies could well be completely missed, and, indeed, all the selectors behave

similarly. But, as dimensions increase, the estimate of the optimal bandwidth becomes

more stable, markedly for LCV algorithm. In Table 9.1 we consider two more sample sizes,

n = 100 and n = 1000, within the same experiment. Also, the MISE-optimal smoothing

degrees are reported, not also the AMISE ones, which, however, have resulted quite similar.
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On the other hand we recall that LCV does not optimizes L2 discrepancies at all. We

see that for d = 1 the euclidean theory is confirmed, whereas BCV has the tendency to

oversmooth with respect to UCV, having also the smallest variability. Surely the average

values of both of them undersmooth with respect to the MISE-optimal degree, due to

the well known attitude of cross-validation algorithms to produce outliers. On the other

hand, in higher dimensions UCV is seen nearly unbiased, whilst BCV slightly alleviates

oversmoothing as the sample size increases. Finally, concerning LCV, we see that it appears

asymptotically the most stable, producing the biggest smoothing degree for large n.

The boostrap selector was also considered for these datasets. As is the case for data

in R, the target function is zero for κ = 0 and so we would seek a local minimum for

κ > 0. However, some simulated datasets had no local minimum (for example, about

15% of the datasets when n = 100, d = 1) and so the results are not reported here.

However, for those datasets which had a local minimum, there was much less variation in

the optimized smoothing parameter than for cross-validation, with generally biassed values.

For example, for n = 1000, d = 1 the mean was 9.45, with standard deviation 0.81, which

can be compared with the results in Table 9.1.

n = 100 n = 300 n = 1000

d = 1

UCV 5.750 (5.106) 8.899 (7.606) 13.396 (9.253)
BCV 4.614 (2.981) 7.369 (3.804) 12.256 (5.622)
LCV 5.095 (4.066) 7.609 (5.132) 12.211 (7.121)
MISE 4.455 6.896 11.112

d = 2

UCV 3.711 (1.558) 5.084 (1.535) 7.535 (1.582)
BCV 2.770 (1.376) 4.554 (1.775) 7.095 (1.886)
LCV 2.990 (0.653) 4.136 (0.691) 6.066 (0.827)
MISE 3.387 4.904 7.409

d = 3

UCV 2.829 (0.658) 3.844 (0.570) 5.447 (1.101)
BCV 1.912 (0.920) 3.109 (1.001) 4.814 (0.953)
LCV 2.390 (0.325) 3.078 (0.271) 4.160 (0.281)
MISE 2.759 3.814 5.270

Table 9.1: Performance of various smoothing selectors in toroidal density estimation. The means
(standard deviations) are taken over 2000 samples of size n from d-fold products of von Mises
density with mean direction 0 and concentration parameter 1.
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9.3 Twicing

A small simulation to consider the impact of twicing on MISE was considered. As before

we used 2000 samples for sample sizes of n = 100, 300, 1000 in each of d = 1, 2, 3 dimensions.

For each dataset we compute the ISE of the estimator (3.1) with kernel VC (KDE), and its

twicing version (TWKDE) using formula (5.1), assuming that C is a multiset of element

κ and multiplicity d. This is done for a suitable range of smoothing parameters, and then

we compute the average ISE over the 2000 simulations. The results are shown in Table

9.2, and we observe that twicing can reduce the average integrated squared error by more

than 20% in higher dimensions, with correspondingly more smoothing (smaller κ) being

optimal. This is comparable to the case of data in Rd.

n = 100 n = 300 n = 1000
optimal κ ISE optimal κ ISE optimal κ ISE

d = 1
KDE 4.421 0.0050 7.053 0.0023 11.105 0.0010

TWKDE 2.053 0.0043 2.842 0.0019 4.474 0.0008

d = 2
KDE 3.368 0.0034 4.947 0.0017 7.421 0.0008

TWKDE 2.053 0.0028 2.316 0.0013 3.316 0.0006

d = 3
KDE 2.737 0.0015 3.895 0.0009 5.474 0.0005

TWKDE 1.789 0.0012 2.316 0.0006 2.868 0.0003

Table 9.2: Average integrated squared error (ISE) and correponding optimal smoothing parameter
(κ) for the standard kernel estimator and its twicing version, for various sample sizes and dimensions
d, taken over 2000 simulated datasets.

9.4 Confidence intervals

As an application of our results we can construct the following approximate, normal

based, pointwise confidence interval for f (r)(θ) at level 1− α:

f̂ (r)(θ;C)± zα/2
√

V̂ar[f̂ (r)(θ;C)],

where zα/2 indicates the (1− α/2)-quantile of the standard normal distribution.

To test practical performances we employ the same samples generated for Table 9.1.

In particular we have considered confidence intervals for the case |r| = 0 and r = 1, and

tested, for both cases, two choices of estimators: the estimator (3.1) with kernel VC (KDE),

and its twicing version (TWKDE) using formula (5.1), assuming that C is a multiset of

element κ and multiplicity d. For these estimators we have considered an estimate of the

first term in the Taylor expansion of the variance, obtaining, for KDE
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V̂ar[f̂(θ;C)] =
{
I0(2κ̂)

2πI2
0 (κ̂)

}d f̂(θ; κ̂)
n

,

whereas for TWKDE

V̂ar[f̂(θ;C)] =
{
I3

0 (κ̂)− 4I0(κ̂/2)I0(κ̂)I0(3κ̂/2) + 4I2
0 (κ̂/2)I0(2κ̂)

2πI2
0 (κ̂/2)I2

0 (κ̂)

}d
f̂(θ; κ̂)
n

.

For the derivative case we have, respectively,

V̂ar[f̂ (1)(θ;C)] =
{
κ̂I1(2κ̂)
4πI2

0 (κ̂)

}d f̂(θ; κ̂)
n

,

and

V̂ar[f̂ (1)(θ;C)] =
(

κ̂

24π

)d{ 3I1(κ̂)
I2

0 (κ̂/2)
− 16I1(3κ̂/2)
I0(κ̂/2)I0(κ̂)

+
24I1(2κ̂)
I2

0 (κ̂)

}d f̂(θ; κ̂)
n

.

Remark 2. The use of above variance estimators makes confidence intervals very easy to

implement, but notice that if the estimator f̂ (r) is significantly biased at θ, the bias will affect

not only the location, but also the width of the interval, yielding very poor coverage rates.

In addition, when a higher order kernel is employed, we could occasionally have negative

variance estimates, especially with small samples. For our twicing this has happened very

seldom because our smallest sample size is n = 100.

Concerning the selection of the smoothing parameter κ, we have applied the LCV

criterion for the case |r| = 0, and, for the case r = 1, the von Mises reference rule

using (7.5) with the ν̂ss being maximum likelihood estimates of the νss. Our performance

indicators are the average coverage c̄ and the average width w̄, constructed as follows. Let

θi = 2π(i − 1)1/350, i = 1, . . . , 350 be a set of equispaced points in Td. From our 2000

samples we obtain confidence intervals, with ci and wi indicating the observed coverage and

the median width at θi respectively. Now consider the weights Pi = f(θi)/
∑350

j=1 f(θj),

i = 1, . . . , 350, then c̄ =
∑350

i=1 ci×Pi and w̄ =
∑350

i=1wi×Pi . The results of the simulation

study are reported in Tables 9.3 and 9.4. For d = 1 both of the estimators give reasonable

results when estimating the density — see Table 9.3 — but when coming at derivatives, the

larger bias heavily affects the performance of KDE even in one dimension. However, in both

cases, for higher dimensions, when the bias problem becomes more severe due to curse of

dimensionality, the standard estimator gives very poor performance, whereas twicing still

assures reasonable coverages provided that a big enough sample size is employed.
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The good performance of twicing method with LCV criterion are due to the fact that

twicing eliminates the bias due to the oversmoothing involved by LCV, whilst this latter

reduces the variance inflation coming from twicing procedure.

Concerning the use of different selection criteria, we have noted that UCV and BCV

algorithms give similar coverages for TWKDE, while for KDE the coverages are a little

improved especially for d = 3. Unfortunately, these algorithms undersmooth very often,

usually leading to intervals that are much wider than those of LCV.

n = 100 n = 300 n = 1000
KDE TWKDE KDE TWKDE KDE TWKDE

d = 1
c̄ 0.925 0.952 0.926 0.961 0.927 0.961
w̄ 0.109 0.132 0.708 0.855 0.441 0.531

d = 2
c̄ 0.621 0.943 0.636 0.957 0.637 0.957
w̄ 0.027 0.042 0.019 0.029 0.013 0.019

d = 3
c̄ 0.304 0.867 0.291 0.939 0.285 0.951
w̄ 0.006 0.013 0.005 0.010 0.003 0.007

Table 9.3: Confidence intervals at level 1−α = 0.95 for various sample sizes, dimensions and meth-
ods. c̄= average coverage; w̄= average width; KDE=standard kernel method; TWKDE=twicing
kernel method; d=data dimension.

n = 100 n = 300 n = 1000
KDE TWKDE KDE TWKDE KDE TWKDE

d = 1
c̄ 0.843 0.936 0.856 0.948 0.869 0.950
w̄ 0.164 0.252 0.123 0.187 0.0890 0.133

d = 2
c̄ 0.721 0.935 0.731 0.941 0.723 0.950
w̄ 0.040 0.100 0.035 0.085 0.029 0.069

d = 3
c̄ 0.403 0.882 0.393 0.942 0.387 0.949
w̄ 0.011 0.025 0.008 0.019 0.006 0.014

Table 9.4: Confidence intervals for the first derivative along each dimension at level 1 − α =
0.95 for various sample sizes, dimensions and methods. c̄= average coverage; w̄= average width;
KDE=standard kernel method; TWKDE=twicing kernel method; d=data dimension.

9.5 Software

For the real data example we used the optimize function in R (R Development Core

Team, 2010) to locate the minimum of the leave-one-out cross-validation function in the

range κ ∈ (1, 180). We made use of code from the library CircStats (CircStats, 2007).
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For simulations we have used Matlab R2010a. In particular, the random samples

have been drawn by using the command circ vmrnd, while the maximum likelihood esti-

mates of νs in the von Mises reference rules for derivatives estimation have been carried

out by the command circ kappa. These commands are available in the freeware toolbox

Circstat written by Berens (2009). The optimizations were carried out by using the

function fmincon in the Optimization toolbox with 0.1 as the starting value, and with

the non-negativity constraint inserted. Note that fminunc and fminsearch give the same

answers as fmincon, but, as expected, were significantly slower.

Appendix

Proof of Lemma 1 If j is odd, then sinj(θ) is orthogonal in L1(T) to each function in

{1/2, cos(θ), cos(2θ), · · · }, which implies that ηj(Kκ) = 0. If j > 0 is even, sinj(θ) is not

orthogonal in L1(T) to 1/2 and to the set {cos(2s), 0 < s ≤ j/2}, and in particular one

has ∫
T

sinj(θ)
2

dθ =
(
j − 1
j/2

)
π

2j−1
and

∫
T

sinj(θ) cos(2sθ)dθ =
(

j

j/2 + s

)
(−1)j+sπ

2j−1
,

which gives

ηj(Kκ) =
1

2j−1


(
j − 1
j/2

)
+

j/2∑
s=1

(−1)j+s
(

j

j/2 + s

)
γ2s(κ)

 . (10.1)

Now observe that if Kκ has sin-order q, then γj(κ) = 1 for each j < q. Finally, recall that

limκ→∞ γq(κ) = 1. �

Proof of Lemma 2 Conditions i), and iii) of Definition 1 hold for Kκ,` by construction.

To prove condition ii) use the arguments of Lejeune and Sarda (1992). Finally, to verify

condition iv), observe that∫
T
|Kκ,`(θ)|dθ =

∫
T

∣∣∣∣∣
∑

(j1,··· ,j`+1)(−1)ℵ(j1,··· ,j`+1)
∏`+1
i=1 uiji∑

(j1,··· ,j`+1)(−1)ℵ(j1,··· ,j`+1)
∏`+1
i=1 wiji

∣∣∣∣∣Kκ(θ)dθ

≤
∑

(j1,··· ,j`+1)

∣∣∣∏`+1
i=1 wiji

∣∣∣∣∣∣∑(j1,··· ,j`+1)(−1)ℵ(j1,··· ,j`+1)
∏`+1
i=1 wiji

∣∣∣ ,
where summations are taken over all the permutations (j1, · · · , j`+1) of the integers (1, 2, · · · , `+
1), and ℵ(j1, · · · , j`+1) denotes the number of inversions of the permutation. Then, since
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as κ increases, according to Lemma 1, wi,ji tends to 0, each summand in the last line of

the above equation tends to 0 or to a positive number. �

Proof of Theorem 1 First observe that by Parseval’s identity
∫

Td{f(θ)}2dθ = (2π)−d
∑
j∈Zd ||cj ||2,

where ||g|| stands for the L2 norm of g. Then use the results in Proposition 1 and in

Proposition 2, the identities E[c̃j ] = cj , E[||c̃j − cj ||2] = n−1(1−||cj ||2), and some algebraic

manipulations, to get

E

[∫
Td

{
f̂ (r)(θ;C)− f (r)(θ)

}2
dθ

]
= E

 1
(2π)d

∑
j∈Zd

∣∣∣∣∣∣∣∣i|r|c̃jγj(C)jr − i|r|cjjr
∣∣∣∣∣∣∣∣2


=
i2|r|

(2π)d
∑
j∈Zd

(
E
[
‖c̃j − cj‖2

]
γ2
j (C)j2r + {1− γj(C)}2 ‖cj‖2 j2r

)
=

i2|r|

n(2π)d
∑
j∈Zd

(
1− ‖cj‖2

)
γ2
j (C)j2r +

i2|r|

(2π)d
∑
j∈Zd
{1− γj(C)}2 ‖cj‖2 j2r.

Finally, observe that cj =
∑2d−1

m=1 αj,m + i
∑2d−1

m=1 βj,m, where αj,m and βj,m denote the

coefficients in the trigonometric Fourier series expansion of f whose basis contains an even

and an odd number of sin functions, respectively. �

Proof of Theorem 2 For the bias term, first observe that∫
Td

{
E[f̂ (r)(θ;C)]− f (r)(θ)

}2
dθ =

∫
Td

{∫
Td
K

(r)
C (α− θ)f(α)dα− f (r)(θ)

}2

dθ

=
∫

Td

{∫
Td
KC(u)

[
f (r)(θ + u)− f (r)(θ)

]
du

}2

dθ,

then for u = {u1, · · · , ud} ∈ Td, τ ∈ [0, 1], since for small α sinα ≈ α, letting Su :=

{sin(u1), · · · , sin(ud)}T and recalling assumption ii), we use the expansion

f (r)(θ + u) = f (r)(θ) +
q∑
p=1

(ST
u)⊗p

p!
vec

[
dpf (r)(θ + τδp)

dθp

]

where A⊗p denotes the pth Kronecker power of A, dpf (r)(α)/dαp is the matrix derivative

of order p of f (r) at α, and δp = u if p = q, δp = 0 otherwise.

Now recalling that KC has sin-order q, and using the generalized Minkowski inequality

and the assumption iii) we get
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∫
Td

{
E[f̂ (r)(θ;C)]− f (r)(θ)

}2
dθ =

∫
Td

{∫
Td
KC(u)

(ST
u)⊗q

q!
vec

[
dqf (r)(θ + τu)

dθq

]
du

}2

dθ

≤


∫

Td
KC(u)

(ST
u)⊗q

q!

∫
Td

(
vec

[
dqf (r)(θ + τu)

dθq

])2

dθ

1/2

du


2

≤
{
ηq(Kκ)
q!

Ld

}2

.

Concerning the variance term, let Γi(θ) = K
(r)
C (Θi − θ) − E[K(r)

C (Θi − θ)], then the

Γis, i = 1, · · · , d, are i.i.d. random variables whit mean 0 and variance E[Γ2
i (Θi)] ≤

E[{K(r)
C (Θi − θ)}2]. Hence, for all θ ∈ Td

Var[f̂ (r)(θ;C)] =
1
n

E[{Γi(θ)}2] ≤ 1
n

E[{K(r)
C (Θi − θ)}2].

Consequently,∫
Td

Var[f̂ (r)(θ;C)]dθ ≤ 1
n

∫
Td

[∫
Td
{K(r)

C (α− θ)}2f(α)dα
]
dθ

=
1
n

∫
Td
f(α)

[∫
Td
{K(r)

C (α− θ)}2dθ
]
dα

=
1
n

∫
Td
{K(r)

C (u)}2du. �

Proof of Theorem 4 Put Sα := {sin(α1), · · · , sin(αd)}T, Ωp := diag{ηp(κ1), · · · , ηp(κd)}
and X` = K

(r)
C (θ−Θ`), ` = 1, · · · , n. Now, X1, · · · , Xn are i.i.d., and recalling assumptions

i) and Lemma 1, a change of variables leads to

E[X1] = K
(r)
C ∗ f = KC ∗ f (r)

∼
∫

Td
KC(u)

f (r)(θ) +
q∑
p=1

(ST
u)⊗p

p!
vec

[
dpf (r)(θ)

dθp

]
+O

(
(STu )⊗(q+1)

(q + 1)!

) du

= f (r)(θ) +
1
q!

tr

{
Ωq

dqf (r)(θ)
dθq

}
+ o

(
21−q{1− γq(κs)

)
.

We have used the expansion in squared brackets because, due to points i) and iii) of

Definition 3.1, the integrand is non-zero over [−λ, λ]d where limκ→∞ λ = 0, and therefore,
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for each s = 1, · · · , d, us can be considered an element of a sequence approaching zero as

κ increases.

For the variance, recalling Lemma 3, we obtain

Var[X1] =
∫

Td

{
K

(r)
C (β − θ)

}2
f(β)dβ − {E [X1]}2

∼
∫

Td

{
K

(r)
C (u)

}2 [
f(θ) +O

(
STu
)]
du−

{
f (r)(θ) +O

(
21−q{1− γq(κs)}

)}2

= f(θ)
d∏
s=1

Qκs(rs)−
{
f (r)(θ)

}2
+O

(
21−q{1− γq(κs)}

)
.

Now note that, under conditions i) and ii), for any ε > 0

lim
n→∞

E

[
X2

11n
|X1−E[X1]|>ε

√
n

Q
Qκs (rs)

o] = 0,

and by applying Lindeberg’s central limit theorem the result directly follows. �

Proof of Theorem 6 Firstly observe that

ψ̂r(C) = n−1K
(r)
C (0) + n−2

∑∑
`6=µ

K
(r)
C (Θ` −Θµ) ,

and hence

E
[
ψ̂r(C)

]
= n−1K

(r)
C (0) + (1− n−1)E

[
K

(r)
C (Θ1 −Θ2)

]
.

Then, using the expansion in the proof of Theorem 4 with f (r) replaced by f , a change of

variable leads to

E
[
K

(r)
C (Θ1 −Θ2)

]
∼ ψr +

1
q!

∫
Td

tr

{
Ωq

dqf(θ)
dθq

}
f (r)(θ)dθ + o(1),

and hence

E
[
ψ̂r(C)

]
− ψr ∼ n−1K

(r)
C (0) +

1
q!

∫
Td

tr

{
Ωq

dqf(θ)
dθq

}
f (r)(θ)dθ + o(1).

To derive the variance, we firstly observe that

Var
[
ψ̂r(C)

]
=

2(n− 1)
n3

Var
[
K

(r)
C (Θ1 −Θ2)

]
+

4(n− 1)(n− 2)
n3

Cov
[
K

(r)
C (Θ1 −Θ2),K(r)

C (Θ2 −Θ3)
]
.

(10.2)

By considering each component of (10.2) in turn, by a change of variable and recalling

Lemma 3, we first obtain

E

[{
K

(r)
C (Θ1 −Θ2)

}2
]

=
∫

Td

∫
Td

{
K

(r)
C (β − θ)

}2
f(β)f(θ)dβdθ = ψ0

d∏
s=1

Qκs(rs),
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while

E
[
K

(r)
C (Θ1 −Θ2)K(r)

C (Θ2 −Θ3)
]

=
∫

Td

∫
Td

∫
Td
K

(r)
C (β − θ)K(r)

C (θ − λ)f(β)f(θ)f(λ)dβdθdλ

=
∫

Td

∫
Td

∫
Td
KC(u)KC(v)f (r)(θ + u)f(θ)f (r)(θ − v)dudvdθ

∼
∫

Td

{
f (r)(θ)

}2
f(θ)dθ + o(1).

Hence, using E[K(r)
C (Θ1 −Θ2)] = ψr + o(1), we finally get

Var[ψ̂r(C)] ∼ 2
n2
ψ0

d∏
s=1

Qκs(rs) +
4
n

[∫
Td

{
f (r)(θ)

}2
f(θ)dθ − ψ2

r

]
+ o(1).

Concerning the asymptotic distribution, first observe that the estimator in (3.6) is a V-

statistic of order 2, then note that E1(θ1) := E
[
K

(r)
C (θ1 −Θ2)

]
=
∫

Td K
(r)
C (θ1−θ2)f(θ2)dθ2 =

K
(r)
C ∗ f , and hence that E1(Θ1) is not degenerate, then apply the result in Section 5.7.3

of Serling (1980). �

Proof of Theorem 7 Observe that the von Mises kernel is a second sin-order toroidal

kernel with η2(Vκ) = I1(κ)/{κI0(κ)}, and use Corollary 1 to get

AMISE
[
f̂(·;C)

]
=

1
4

{
I1(κ)
κI0(κ)

}2 ∫
Td

tr2

{
d2f (r)(θ)

dθ2

}
dθ +

1
n
R
(
V

(r)
C

)
. (10.3)

Now, replace I1(κ)/I0(κ) by 1 with an error of magnitude O
(
κ−1

)
, and notice that for a

big enough κ

R
(
V

(r)
C

)
≈

d∏
s=1

OF(2rs)κ(2rs+1)/2

2rs+1π1/2
(10.4)

and minimize the RHS of (10.3). �

Proof of Theorem 8 Observe that for a big enough κ ηq(Vκ,`) ≈ −iqηq(Vκ),and

R (VC,`) ≈ (q− 1)d/2R(VC), where ηq(Vκ) ≈ OF(q)

κq/2
and R(VC) ≈ κd/2(4π)−d/2, then reason

as in the proof of Theorem 7. �

Proof of Theorem 9 First of all notice that, sinceO
(
η2(V t

κ)
)

= O
(
η4(V t

κ)
)
> O

(
η2s+2(V t

κ)
)
,

s ≥ 2, the bias term in the AMISE formula can be derived by considering the expansion of

f in the proof of Theorem 3 with matrix derivatives up to order 4, to get

E[f̂(θ;C)]− f(θ) ∼ η2(V t
κ)

2
tr

{
d2f(θ)

dθ2

}
+
η4(V t

κ)
4!

tr

{
d4f(θ)

dθ4

}
+O

(
η2
2(V t

κ)
)
.
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Finally observe that for a big enough κ η2

(
V t
κ

)
≈ k−2, η4

(
V t
κ

)
≈ −6k−2 and R

(
V t
C

)
≈

2d/2R (VC), then reason as in the proof of Theorem 7. �

Proof of Theorem 10 Recall that for the von Mises kernel η2(Vκ) = I1(κ)/{κI0(κ)},
and observe that ∫

Td
tr

{
d2f (r)(θ)

dθ2

}
f (r)(θ)dθ =

d∑
s=1

ψr+2es

then follow the proof of Theorem 6 to get

AMSE
[
ψ̂r(C)

]
=

[
1
n
V

(r)
C (0) +

I1(κ)
2κI0(κ)

d∑
s=1

ψr+2es

]2

+
2
n2
ψ0R

(
V

(r)
C

)
+

4
n

[∫
Td

{
f (r)(θ)

}2
f(θ)dθ − ψ2

r

]
.

Now, to derive the AMSE-optimal smoothing parameter, first replace I1(κ)/I0(κ) by 1 with

an error of magnitude O
(
κ−1

)
then, if all rs are even, use

V
(r)
C (0) ≈ i|r|(2π)−d/2κ(|r|+d)/2

d∏
s=1

OF(rs)

which holds for a big enough κ. Finally, note that V (r)
C (0) and ψr+2es are of opposite sign,

and take as optimal the value of κ which eliminates the first two summands in squared

brackets in the AMSE equation.

If at least one rs is odd, observe that V (r)
C (0) = 0, use the result in (10.4), then

minimize the components of AMSE depending on κ. �
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