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 7 

Abstract 8 

This paper reports an investigation of microbially mediated Cr(VI) reduction in a hyper 9 

alkaline, chromium contaminated soil-water system representative of the conditions at a 10 

chromite ore processing residue (COPR) site. Soil from the former surface layer that has been 11 

buried beneath a COPR tip for over 100 years was shown to have an active microbial 12 

population despite a pH value of 10.5. This microbial population was able to reduce nitrate 13 

using an electron donor(s) that was probably derived from the soil organic matter. With the 14 

addition of acetate, nitrate reduction was followed in turn by removal of aqueous Cr(VI) from 15 

solution, and then iron reduction. Removal of ~300μM aqueous Cr(VI) from solution was 16 

microbially mediated, probably by reductive precipitation, and occured over a few months. 17 

Thus, in soil that has had time to acclimatize to the prevailing pH value and Cr(VI) 18 

concentration, microbially mediated Cr(VI) reduction can be stimulated at a pH of 10.5 on a 19 

time scale compatible with engineering intervention at COPR contaminated sites.  20 

 21 

Keywords:  anaerobe, alkaliphile, bacteria, chromate, contaminated land, COPR, iron-22 

reduction, microbial-reduction 23 

 24 

INTRODUCTION 25 

Chromium is among the most extensively used transition metals in the chemical and metal 26 

alloy industries, including leather tanning, wood preservation, chrome metal finishing, and 27 

manufacture of dyes, paints, pigments, and stainless steel (Wang 2000; Morales-Barrera and 28 

Cristiani-Urbina 2008). In order to obtain chromium from chromite (FeCr2O4), the ore is 29 

roasted with an alkali-carbonate at 1150ºC, to oxidise the relatively insoluble Cr(III) to 30 

soluble chromate (Cr(VI)), which is then extracted with water as sodium chromate upon 31 

cooling. Lime (CaO) was traditionally added as a diluent to increase air penetration and 32 

provide sufficient O2 for chromite oxidation in a practice known as the “high-lime” process 33 

(Farmer et al. 1999). Lime was replaced by cheaper alternatives of limestone (CaCO3) and 34 
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dolomite (CaMg(CO3)2) around the turn of the 20th century, and this variant of the high-lime 1 

process remained the dominant method of chromium extraction until the early 1960’s when it 2 

was superseded by lime free processes (Darrie 2001). 3 

Economically developed nations no longer use the high-lime process to extract chromium, 4 

but until recently it still accounted for 40% of chromium production worldwide (Darrie 2001). 5 

Due to its inefficient use of raw materials the high-lime process produces up to 4 tonnes of 6 

waste per ton of product (Walawska and Kowalski 2000). Thus it is still responsible for 7 

producing large quantities of chromium containing waste (600,000 t.yr-1 in 2001; Darrie 8 

2001). This waste, known as chromite ore processing residue (COPR), is highly alkaline due 9 

to the calcium hydroxide (CaOH) produced from the limestone, and typically contains 10 

between 2-8% chromium (w/w) (Walawska and Kowalski 2000; Sreeram and Ramasami 11 

2001; Geelhoed et al. 2003; Tinjum et al. 2008). Of this, up to 35% can be in the form of the 12 

toxic, carcinogenic and environmentally mobile chromate anion (CrO4
2-) (James 1994; 13 

Farmer et al. 2006; Tinjum et al. 2008). As a result, water in contact with COPR has a 14 

characteristically high pH of 9-12 (Geelhoed et al. 2003; Stewart et al. 2007), and can contain 15 

up to 1.6 mM Cr(VI) as chromate (Farmer et al. 2002).  16 

Remediation of legacy sites contaminated with COPR is challenging, particularly because 17 

these site are often in urban areas and date from times when COPR disposal was quite poorly 18 

managed (Stewart et al. 2007). Traditional “dig and dump” remediation strategies are not only 19 

financially costly due to the large volumes of waste involved, but also inadvisable due to the 20 

risk of forming Cr(VI) bearing dusts during large scale manipulation. Such an approach 21 

would create a pathway to human exposure, as Cr(VI) bearing dust is a confirmed human 22 

carcinogen through inhalation (USEPA 1998).  23 

In contrast to the harmful properties of Cr(VI), the reduced form Cr(III) is an essential 24 

trace nutrient in plants and animals, required for fat and glucose metabolism, amino and 25 

nucleic acid synthesis, and correct insulin function (Richard and Bourg 1991; Pechova and 26 

Pavlata 2007). Also the Cr(III) cation is much less mobile in the subsurface environment than 27 

the CrO4
2- anion as it readily sorbs to soil minerals, and (co)-precipitates as insoluble Cr(III) 28 

hydroxides in neutral and alkaline environments (Rai et al. 1987; Richard and Bourg 1991; 29 

Lee et al. 2003; Han et al. 2006; Fonseca 2009). Thus the reduction of Cr(VI) to Cr(III) in-situ 30 

would significantly reduce the hazard posed by chromium contaminated groundwater.  31 

The ability of indigenous soil microorganisms to couple organic matter oxidation to the 32 

reduction of transition metals, such as iron and manganese, during dissimilatory metabolism 33 

is well documented (Lovley 1993a). Where sufficient organic matter is available for 34 
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oxidation, progressively more anoxic conditions develop and a cascade of terminal-electron-1 

accepting processes (TEAPs) occur in sequence (Froelich et al. 1979). Microbial processes 2 

releasing most energy are favoured, so the sequence in which electron acceptors are used 3 

typically follows the decreasing order of redox potentials shown in Table 1 (calculated from 4 

standard thermodynamic data using the Nernst equation).  5 

Iron is by far the most abundant redox-active metal in the soils, and cycling between Fe(II) 6 

and Fe(III) is a prominent factor affecting other chemical processes in soils (Stucki et al. 7 

2007). Fe(III) is relatively insoluble except in acidic solutions and precipitation usually 8 

proceeds via intermediates, Fe2(OH)2
4+ and ferrihydrite, which are metastable with regard to 9 

goethite (α-FeO(OH) and hematite (α-Fe2O3); goethite being favoured in alkaline conditions 10 

(Schwertmann et al. 1999; Cudennec and Lecerf 2006). Aqueous Fe(II) is stable in acidic and 11 

neutral conditions, but can precipitate as siderite (FeCO3) if carbonate is present and will 12 

precipitate as Fe(OH)2 at high pH values (Langmuir 1997). Fe(II)/Fe(III) cycling occurs 13 

naturally in soils particularly where there are periodic changes in water content (Stucki et al. 14 

2007), and iron cycling can be important where there is a redox active contaminant flux 15 

(Lovley 1993a). For example Cr(VI) is readily reduced to Cr(III) by Fe(II) oxidation to 16 

Fe(III) (Richard and Bourg 1991). As Cr(III) can substitute for Fe(III) in many iron minerals, 17 

any Cr(VI) that is reduced by Fe(II) is likely to be incorporated into iron(III) oxyhydroxides 18 

(Fendorf 1995). Such metastable iron oxyhydroxides exhibit high bioavailability (Hansel et 19 

al. 2005) and thus Fe(II)/Fe(III) cycling continues. 20 

A broad range of microbial taxa can grow optimally and robustly in high pH environments 21 

like those found at COPR disposal sites (Roadcap et al. 2006). These microbes, called 22 

alkaliphiles, have adapted to this challenging environment with mechanisms for regulating 23 

cytoplasmic pH and by producing surface layer enzymes that function at high pH. For 24 

example many alkaliphiles use a Na+ electrochemical gradient to maintain pH homeostasis 25 

and to energize solute uptake and motility (Krulwich et al. 2001; Detkova and Pusheva 2006). 26 

Similarly many microorganisms have demonstrated tolerance to Cr(VI) including 27 

Pannonibacter phragmitetus, which showed no evidence of cell degradation at 500 mg l-1 28 

Cr(VI) (Chen and Hao 1998; Rehman et al. 2008; Zhu et al. 2008; Chai et al. 2009). As 29 

Cr(VI) is readily able to cross cell membranes by utilising the sulphate transport system 30 

(Cervantes et al. 2001), tolerance to Cr(VI) may indicate an evolutionary response to Cr(VI) 31 

toxicity. 32 

Microbial reduction of Cr(VI) was first observed with Pseudomonas dechromaticans 33 

(Romanenko and Koren'kov 1977), and has since been reported in a number of Gram negative 34 
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genera including Pseudomonas, Desulfovibro and Shewanella, and members of the Gram 1 

positive Bacillus and Cellulomonas (Lovley 1993b; Francis et al. 2000; Sani et al. 2002; Sau 2 

et al. 2008). Direct microbial Cr(VI) reduction has been observed during aerobic (Bopp and 3 

Ehrlich 1988; Ishibashi et al. 1990) and anaerobic respiration (Suzuki et al. 1992; Neal et al. 4 

2002; Daulton et al. 2007), but only a few studies have clearly demonstrated anaerobic growth 5 

dependent solely on the use of Cr(VI) as an electron acceptor (e.g. Pantoea agglomerans, 6 

Francis et al. 2000). Even fewer studies have demonstrated direct microbial Cr(VI) reduction 7 

at high pH (although notable examples are reported by VanEngelen et al. 2008; Zhu et al. 8 

2008; Chai et al. 2009). Thus it has been suggested that microbially mediated Cr(VI) 9 

reduction in alkaline, chromium contaminated environments usually occurs by an indirect 10 

pathway involving extracellular reaction with reduced species, e.g. Fe(II) produced by 11 

respiration (Lloyd et al. 1998). 12 

This paper reports an investigation of microbially mediated Cr(VI) reduction in hyper 13 

alkaline soils (pH >10) from a COPR contaminated site in the north of England. It uses a 14 

multidisciplinary approach to gain an understanding into microbially induced anoxia at high 15 

pH, the microbial communities that develop, and their influence on Cr(VI) geochemistry in 16 

closed systems. 17 

 18 

MATERIALS AND METHODS 19 

Site Description.  The study site is in a glacial valley in-filled with alluvial deposits, which 20 

is located in the north of England (see Figure 1). COPR waste has been tipped against the 21 

valley side between a canal and a river (the canal follows the valley side and locally is ~7 22 

metres above the level of the river). The waste tip is approximately 2.2 hectares in area with a 23 

relatively flat top surface ~1.5m above the canal bank and steep side-slopes down to the 24 

valley floor (Whittleston et al. 2007; Stewart et al. 2009). This landform first appeared on 25 

historical maps in the late 19th century. Currently there is thin soil cover on the waste with 26 

vegetation dominated by grasses and occasional small trees; however erosion has left the 27 

waste exposed on steeper slopes. A drainage ditch along the southern waste boundary 28 

frequently contains water that is alkaline, visibly yellow in colour, and has elevated Cr(VI) 29 

concentrations.  30 

Site Sampling.  Several exploratory boreholes were advanced in March 2007 using cable 31 

percussion drilling. The soil sample used in this study was taken from ~1m below the waste, 32 

at a depth 7 metres below ground level (the borehole location is shown in Figure 1). It 33 

consisted of grey silty clay that is representative of the alluvial soils that would have been the 34 
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surface layer prior to waste tipping. A water sample was collected from the leachate drainage 1 

ditch in February 2008 from a location close to where it enters the river. Samples were placed 2 

in sealed polythene containers at time of sampling and were stored at 4ºC in the dark within 4 3 

hours of collection. Sample manipulations were kept to a minimum until they were required 4 

for experiments in March 2008. The soil sample was homogenised prior to use. 5 

Sample Characterisation.  X-ray powder diffraction (XRD) analysis of the alluvial soil 6 

(ground to < 75 µm) was performed on a Philips PW1050 Goniometer, and X-ray 7 

fluorescence (XRF) analysis was undertaken using a fused sample on a Philips PW2404 8 

wavelength dispersive sequential X-ray spectrometer (data were corrected for loss on 9 

ignition). Approximately 25g of homogenised soil was oven dried at 105°C and disaggregated 10 

with a mortar and pestle for carbon content determination. A portion of each sample was pre-11 

treated with 10% HCl to remove any carbonates present (Schumacher 2002). The total 12 

organic and inorganic carbon content of oven dried and HCl treated subsamples was 13 

measured using Carlo-Erba 1106 elemental analyser. 14 

Reduction Microcosm Experiments.  Microcosms were prepared using 10g of homogenised 15 

soil and 100 ml of ditch water in 120 ml glass serum bottles and sealed with butyl rubber 16 

stoppers and aluminium crimps. After sealing, the headspace was purged with nitrogen to 17 

displace oxygen present. Two different experimental conditions were established in triplicate 18 

microcosms. Unamended microcosms contained only the soil and ditch water. Acetate 19 

amended microcosms also contained sodium acetate to a final concentration of 20 mM. A 20 

control was prepared for each experiment in which the soil, sealed in the bottle with a 21 

nitrogen purged headspace, was heat sterilised at 120ºC for 20 minutes in an autoclave before 22 

filter sterilized ditch water and, in one case, sodium acetate were added. 23 

The microcosms and controls were periodically sub-sampled for geochemical and 24 

microbiological analysis to produce a progressive time series. At each sample point, 25 

microcosms were shaken and 3 ml soil slurry extracted using aseptic technique with sterile 26 

syringes and needles (Burke et al. 2006). Samples were centrifuged (5 min, 16,000g) and soil 27 

and water were analysed for a range of redox indicators, Cr(VI) and microbiology. 28 

Geochemical Methods. The pH was measured using an Orion bench top meter and 29 

calibrated electrodes (the pH electrode was calibrated between 4 and 10 using standard buffer 30 

solutions). The soil pH was measured using a 1:1 suspension in deionised water (ASTM 31 

2006). Sulfate, nitrate and chloride concentrations were determined by ion chromatography 32 

on a Dionex DX-600 with AS50 autosampler using a 2mm AS16 analytical column, with 33 

suppressed conductivity detection and gradient elution to 15 mM potassium hydroxide over 34 
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10 minutes. Samples were loaded in a random order to avoid systematic errors. Standards 1 

covering the anticipated range of analyte concentrations were prepared with the addition of 25 2 

µM Cr(VI) as potassium chromate. Between loading samples, the column was flushed with 3 

deionised water for 1.5 minutes.  4 

Standard UV/VIS spectroscopy methods based on reactions with diphenycarbazide and 5 

ferrozine were used to determine aqueous Cr(VI) and Fe concentrations, respectively, using a 6 

Cecil CE3021 UV/VIS Spectrophotometer (USEPA 1992; Viollier et al. 2000). Fe(II) in 7 

solids was determined after extraction by 0.5 N HCl and reaction with ferrozine (Lovley and 8 

Phillips 1986). Standards for each analyte were used regularly. Calibration graphs exhibited 9 

good linearity (typically r2>0.99). 10 

DNA Extraction.  Soil samples from the triplicate microcosms at a single time point (day 11 

68) were combined (typically ~0.25 g of soil) and microbial DNA was extracted using a 12 

FastDNA spin kit (Qbiogene, Inc.) and FastPREP instrument (unless explicitly stated, the 13 

manufacturer’s protocols supplied with all kits employed were followed precisely). DNA 14 

fragments in the size range 3 kb ~20 kb were isolated on a 1% “1x” Tris-borate-EDTA (TBE) 15 

gel stained with ethidium bromide to enable viewing under UV light (10x TBE solution from 16 

Invitrogen Ltd., UK). The DNA was extracted from the gel using a QIAquick gel extraction 17 

kit (QIAGEN Ltd., UK.). This purified DNA was used for subsequent analysis. 18 

16S rRNA Gene Sequencing.  A fragment of the 16S rRNA gene of approximately ~500 bp 19 

was PCR amplified using broad-specificity bacterial primers 8f (5´-20 

AGAGTTTGATCCTGGCTCAG-3´) (Eden et al. 1991) and 519r (5´-21 

GWATTACCGCGGCKGCTG-3´) where K = G or T, W = A or T (Lane et al. 1985). Each 22 

PCR reaction mixture contained 20 μl of purified DNA solution, GoTaq DNA polymerase (5 23 

units), 1× PCR reaction buffer, MgCl2 (1.5mM), PCR nucleotide mix (0.2 mM), T4 Gene 32 24 

Protein (100 ng/µl) and 8f and 519r primers (0.6 μM each) in a final volume of 50 μl. The 25 

reaction mixtures were incubated at 95ºC for 2 min, and then cycled 30 times through three 26 

steps: denaturing (95ºC, 30 s), annealing (50ºC, 30s), primer extension (72ºC, 45 s). This was 27 

followed by a final extension step at 72ºC for 7min. The PCR products were purified using a 28 

QIAquick PCR Purification Kit. Amplification product sizes were verified by electrophoresis 29 

of 10 μl samples in a 1.0% agarose TBE gel with ethidium bromide straining. 30 

The PCR product was ligated into the standard cloning vector pGEM-T Easy (Promega 31 

Corp., USA), and transformed into E. coli XL1-Blue supercompetent (Stratagene). 32 

Transformed cells were grown on LB-agar plates containing ampicillin (100 µg.ml-1) at 37ºC 33 

for 17 hours. The plates were surfaced dressed with IPTG and X-gal (as per Stratagene 34 
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protocol) for blue-white colour screening. For each sample, 48 colonies containing an insert 1 

were restreaked on LB-ampicillin agar plates and incubated at 37ºC. Single colonies from 2 

these plates were incubated overnight in liquid LB-ampicillin. Plasmid DNA was extracted 3 

using a QIAprep Spin miniprep kit (QIAGEN Ltd., UK) or PureYield Plasmid Miniprep 4 

System (Promega, UK) and sent for automated DNA sequencing on an ABI 3100xl Capillary 5 

Sequencer using the T7P primer. Sequences were analysed against the EMBL release 6 

nucleotide database in April 2009 using the NCBI-BLAST2 program (version 2.2.19 7 

November 2009) and matched to known 16S rRNA gene sequences. Default BLAST 8 

parameters were used (match/mismatch scores 2, -3, open gap penalty 5, gap extension 9 

penalty 2). The nucleotide sequences described in this study were deposited in the GenBank 10 

database (accession numbers FN706451 - FN706510). 11 

Phylogenetic Tree Building.  The EMBOSS needle pairwise alignment program was used 12 

to assign similar gene sequences into clades based on sequence homology, using default 13 

parameters (open gap penalty 10, gap extension penalty 0.5). Selected sequences were then 14 

aligned with known bacterial 16S rRNA gene sequences from the EMBL database using the 15 

ClustalX software package (version 2.0.11), and a phylogenetic trees were constructed from 16 

the distance matrix by neighbour joining. Bootstrap analysis was performed with 1000 17 

replicates, and resulting phylograms drawn using the TreeView (version 1.6.6) software 18 

package.  19 

 20 

RESULTS 21 

Soil Characterisation.   22 

XRD and XRF analysis of the alluvial soil showed that the major mineral was quartz with 23 

small amounts of kaolinite and muscovite. The XRF analysis indicated a concentration of 24 

chromium of 3020 mg.kg-1 in the solid phase (see Table 2). The soil had a pH of 10.5. The 25 

total organic carbon (TOC) and total inorganic carbon (TIC) of the soil were found to be 3.6 26 

and 0.2%, respectively. Water from the ditch along the southern edge of the waste had a pH of 27 

11.4, and a Cr(VI), nitrate and sulphate concentrations of 293 µM (15.2 mg.l-1), 163 µM (10.1 28 

mg.l-1), and 3.29 mM (316 mg.l-1), respectively.  29 

 30 

Reduction Microcosm Experiments 31 

The initial pH values of the unamended and acetate-amended microcosms were both 10.9, 32 

whereas the pH values of sterile controls were both 10.8. The active microcosm experiments 33 

had an initial aqueous Cr(VI), nitrate and sulphate concentration of  279 ± 2 µM, 96.5 ± 4.87 34 



8 
 

µM, and 3.01 ± 0.10 mM, respectively (see Figure 2). The sterile controls had slightly higher 1 

initial aqueous Cr(VI) and sulphate concentrations of 287 ± 4 µM and 3.26 ± 0.06 mM, 2 

respectively. The acetate-amended sterile control had an initial nitrate concentration of 89.7 ± 3 

9 µM. The nitrate concentration of the unamended sterile control was not measured due to 4 

technical difficulties (there was insufficient sample to repeat measurement). Initially the 5 

percentage of the total 0.5 N HCl extractable iron present as Fe(II) was 13.7 ± 1.1% in the 6 

active experiments whereas it was 10.0 ± 0.6% the heat treated controls.  7 

In the microbially active unamended microcosms the pH of the active microcosms 8 

decreased from 10.9 to 9.9 over 175 days of incubation, whereas the pH of the sterile control 9 

decreased from 10.8 to 10.4 in the same time period (see Figure 2). Nitrate removal from 10 

aqueous solution commenced shortly after the start of the test, with the concentration 11 

dropping by two-thirds by day 5, and was not detected on day 15. Over the test period, we 12 

noted very little change in aqueous Cr(VI) concentration in either the active unamended or the 13 

control microcosms. Similarly we noted little change in the amount of total Fe(II) extractable 14 

by 0.5 N HCl and no discernable change in aqueous sulphate concentration in either the active 15 

or the control microcosms (see Figure 2). 16 

In the active acetate-amended microcosms the pH decreased from an initial value of 10.9 17 

to a value of 10.1 on day 175, whereas the pH value of the sterile control decreased from 10.8 18 

to 10.5. The trend in nitrate data was similar to that in the unamended microcosms, with 19 

nitrate removal commencing shortly after the start of the test and becoming undetectable by 20 

day 5. No nitrate removal was observed in the corresponding sterile control. The aqueous 21 

Cr(VI) concentration decreased in all three replicates once nitrate was below detection limits, 22 

but at different rates. In replicate II in which the aqueous chromate concentration decreased 23 

most rapidly, Cr(VI) was not detected on day 118. In replicate III where aqueous chromate 24 

concentration decreased least rapidly the concentration on day 175 was two-thirds of the 25 

initial value. No change in Cr(VI) concentration occurred in the corresponding controls.  The 26 

trends in the proportion of the acid extractable iron present as Fe(II) also differed between the 27 

three replicates.  In the early stages of all three acetate-amended microcosms about 20% of 28 

the 0.5 N HCl extractable iron was in the Fe(II) oxidation state, and this did not change 29 

significantly with time in replicates I and III.  However in replicate II there was a significant 30 

increase in the proportion of the acid extractable iron present as Fe(II) shortly after Cr(VI) 31 

was completely removed from solution.  In the acetate-amended sterile control (like the 32 

unamended sterile control), roughly 10% of the 0.5 N HCl extractable iron was present as 33 

Fe(II), which did not change with time. There was no discernable change in the aqueous 34 
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sulphate concentration in either the active acetate-amended microcosms or corresponding 1 

control.  2 

 3 

Microbiological Community Analysis. 4 

Geochemical analysis indicated aqueous chromate removal was underway by day 68 in the 5 

acetate amended microcosms, but the behaviour of the three replicate microcosms had not 6 

diverged significantly. Therefore, on day 68, we pooled soil from each of the three 7 

unamended microcosms into one combined sample and from each of the three acetate-8 

amended microcosms into a second combined sample. These two combined samples were 9 

then used to compare the microbial communities in each with respect to chromate removal 10 

from the liquid phase. Thirty 16S rRNA gene sequences recovered from each of the two 11 

samples were analyzed.  12 

Initially sequences were assigned to a phylum (or class in the case of proteobacteria) using 13 

the NCBI-BLAST2 program, based on >95% identity over a sequence length of >400 bp to a 14 

known sequence in the EMBL release database. However, less than a third of sequences could 15 

be assigned in this way, although many sequences were more than >95% homologous to 16 

sequences from unidentified bacteria recovered from alkaline environments. Sequences that 17 

were >95% homologous to the same sequence in the database were further analysed using 18 

EMBOSS and grouped based on >98% mutual homology. ClustalX analysis and neighbour 19 

joining tree construction of these groups indicated there were four distinct clades amongst the 20 

initially unidentified sequences, subsequently called clades A, B, C and E. Further ClustalX 21 

analysis and NJ tree construction using characteristic members of each clade was used to 22 

assign clade members to a phylum. Members of clade A have been thus assigned to the 23 

Comamonadaceae family of β-proteobacteria that appear to be most closely related to the 24 

genera Rhodoferax, Hydrogenophaga and Malikia (Figure 3). Clade B were members of the 25 

Flexibacteraceae family of Bacteroidetes that appeared to be most closely related to the 26 

genera Aquiflexum (Figure 4). Clade C were members of the Xanthomonadaceae family of γ-27 

proteobacteria that appeared to be most closely related to the genera Lysobacter (Figure 5). 28 

Clade E were members of the Sphingomonadaceae family of α-proteobacteria that appeared 29 

to be most closely related to the genera Sphingomonas (Figure 6).   30 

Of the thirty clones isolated from the unamended microcosms on day 68, 14 sequences 31 

(46%) were β-proteobacteria including 11 (36%) from clade A, 5 (17%) were α-32 

proteobacteria including 4 (13%) from clade E, 5 (17%) were bacteroidetes including 3 (10%) 33 
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from clade B, 4 (13%) were γ-proteobacteria all from clade C (see Figure 7a).  Thus β-1 

proteobacteria are an important component of the bacterial population of the unamended 2 

microcosms on day 68 and, overall, two-thirds of sequences isolated were from one of four 3 

bacterial clades.  4 

Of the thirty clones isolated from the acetate-amended microcosms on day 68, 28 (93%) 5 

were β-proteobacteria including 23 sequences (77%) from clade A, the remaining 2 sequences 6 

(7%) being unidentified (see Figure 7b). Thus β-proteobacteria, particularly those from clade 7 

A, dominated the bacterial population of the acetate-amended microcosms on day 68. 8 

 9 

DISCUSSION 10 

Currently there is a perched water table in the waste pile and downward seepage through 11 

the clayey former surface layer into the underlying alluvium where the water table is 12 

controlled by the river. Observation of the site over a period of four years suggests these 13 

conditions are typical of the site (Studds pers. comm.). Thus, alkaline, highly oxidising and 14 

oxygenated Cr(VI) containing leachate from the tip has been percolating through, and 15 

interacting with the former surface soil for over 100 years. Therefore any microorganisms in 16 

this soil have had a long time to adapt to the local geochemical environment.  17 

As the leachate from the waste pile seeps downwards it will undergo geochemical changes 18 

as it interacts with both the soil and its microbial population. Flow through natural soils can 19 

vary greatly spatially and tends to follow preferential paths. These temporal and spatial 20 

variations in the flow, and the development of increasingly more reducing conditions down 21 

the flow-path, have resulted in the highly variable redox conditions in the clayey former 22 

surface soil beneath the waste. For example the percentage of 0.5 N HCl extractable Fe(II) in 23 

soils found beneath the waste ranges from less than 5% Fe(II) to more than 90% Fe(II) on a 24 

centimetre scale (Tilt 2009). This distribution probably reflects the balance between the rate 25 

of ingress of initially highly oxidising oxygenated Cr(VI)-containing groundwater, and the 26 

rate of in situ bioreduction at particular locations.  27 

The initial solution composition in the microcosm experiments reflects the composition of 28 

the ditch water, which is a reasonable proxy for the waste leachate (leachate emerging from 29 

the waste pile is the main flux into the ditch). The percentage of 0.5 N HCl extractable solid 30 

phase iron as Fe(II) determined when microcosms were established was between 10-20 % 31 

Fe(II). Thus the initial conditions in the microcosms are representative of the more oxidised 32 

end of the range of conditions observed in-situ. Such starting material is likely to have low 33 
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numbers of obligate anaerobes, whose presence would be anticipated in the more reducing 1 

soils on site. 2 

The initial behaviour of the two microcosm systems (unamended and acetate-amended) 3 

was similar. Nitrate was removed rapidly from solution (this occurred slightly more quickly in 4 

the acetate-amended system but the difference was small). There was no noticeable change in 5 

the nitrate concentration in acetate-amended sterile control. Thus it is inferred that nitrate 6 

removal from the active microcosms is likely to have been microbially mediated, and 7 

probably due to the action of nitrate reducing bacteria. It used to be a widely held belief that 8 

microbial nitrate reduction is optimal at pH 7 – 8 (Knowles 1982; Wang et al. 1995).  9 

However there is now ample evidence that microbial nitrate reduction can occur at high pH 10 

when the microbial community has adapted to the ambient pH (Glass and Silverstein 1998; 11 

Dhamole et al. 2008). Indeed the rate of nitrate reduction to nitrite can increase with 12 

increasing pH, although the time taken for complete denitrification at high pH tends to be 13 

unaffected as nitrite reduction to N2 tends to lag behind nitrate reduction to nitrite in alkaline 14 

systems (Glass and Silverstein 1998). Also, as Fe(II) is present in these soils it is possible that 15 

nitrate dependant Fe(II) oxidation (Straub et al. 1996) processes may have contributed to 16 

nitrate reduction in these experiments, however, we did not observe a reduction in % Fe(II) 17 

concurrent with nitrate reduction, therefore, is not possible to report whether such reduction 18 

processes occurred in these experiments. 19 

Once the nitrate was removed from solution the unamended system exhibited little further 20 

geochemical change. It is unclear from these experiments whether these microcosms had 21 

reached a long-term steady-state, or whether further microbially mediated reactions were 22 

merely slow in the absence of a readily metabolizable electron donor.  23 

It is likely that bacterial reduction of nitrate in the unamended system was coupled to 24 

oxidation of soil organic matter (the soil contained 3.6% organic carbon and no exogenic 25 

carbon source was added). The complete oxidation of organic matter requires the cooperative 26 

activity of a community of microorganisms collectively exhibiting several different metabolic 27 

pathways (e.g. hydrolysis of complex organic matter, fermentation of sugars, and oxidation of 28 

fatty acids, lactate, acetate and H2; (Lovley 1993a). The soil used in the microcosm 29 

experiments was covered with COPR waste for over 100 years, and thus it is likely that the 30 

labile organic components present prior to burial was already consumed by microorganisms, 31 

leaving behind the less labile components such as lignin and cellulose. Anaerobic respiration 32 

cannot be supported directly by these polymeric substrates (Kim and Gadd 2008), so nitrate 33 

reduction in the microcosm experiments suggests that the microbial diversity reported in 34 
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Figure 7a represents a community capable of the complete oxidation of complex organic 1 

matter. Thus it is likely that further microbially mediated geochemical reactions would have 2 

eventually followed in time, as they did in the acetate-amended microcosms.  3 

In acetate-amended system Cr(VI) removal followed nitrate removal, however the three 4 

replicates responded at different rates and Cr(VI) removal only reached completion in one 5 

microcosm (replicate II). In this replicate there was a significant increase in the proportion of 6 

the acid extractable iron present as Fe(II) once Cr(VI) had been removed from solution. In the 7 

other two replicates the proportion of the acid extractable iron present as Fe(II) was generally 8 

higher than in the unamended microcosms or the sterile control, but there was no noticeable 9 

increasing trend with time. Comparison with the sterile control, which showed no major 10 

change in Cr(VI) concentration with time, suggests that Cr(VI) removal from solution is 11 

microbially mediated. Because iron reduction began after Cr(VI) removal ceased, the overall 12 

response of the acetate-amended system was indicative of a cascade of terminal respiratory 13 

processes, which occurred in the normal sequence expected during the progression of 14 

microbially induced anoxia (NABIR 2003). 15 

Because Cr(VI) removal in the acetate-amended microcosms occurred as part of a redox 16 

cascade, it is likely that it occurred by reduction and precipitation since Cr(III) has very low 17 

solubility at high pH (Fendorf and Zasoski 1992; Fendorf 1995). However, it is not possible 18 

to determine whether Cr(VI) reduction was a direct enzymatic process, or indirect microbially 19 

mediated process involving other redox active species (e.g. Fe(III)/Fe(II) cycling). The 20 

slightly higher proportion of acid extractable iron in the form of Fe(II) during Cr(VI) 21 

reduction may be indicative of iron cycling and thus indicative of the latter mechanism. It is 22 

therefore speculated that Cr(VI) reduction in acetate-amended microcosms was mediated by 23 

reaction with Fe(II) from microbial Fe(III)-reduction. Accumulation of Fe(II) in solids, 24 

however, would not be expected in these microcosms until all Cr(VI) was removed from 25 

solution. The different response rates of the three replicates may indicate this was a rather 26 

marginal environment for bacteria and, as a result, the rate of response was sensitive to subtle 27 

differences in microbiology and geochemistry (e.g. micro-environments). 28 

Addition of acetate to this soil-water system will have preferentially supported the growth 29 

of alkaliphilic Cr(VI) tolerant bacteria within the soil that can respire anaerobically on acetate 30 

(acetate cannot support fermentative growth). On day 68 these appear to have been 31 

predominantly β-proteobacteria, with a single group of closely related bacteria within the 32 

family Comamonadaceae dominating (clade A). At this time point Cr(VI) was being removed 33 

from all three replicates, probably by reductive precipitation associated with Fe(III)/Fe(II) 34 
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cycling. Thus it appears likely that members of clade A were able to couple acetate oxidation 1 

to iron reduction. At a pH value of 10.5 the coupling of acetate oxidation to the reduction of 2 

Fe(III) to Fe(II) is thermodynamically favourable (see Table 1), and thus can support energy 3 

metabolism by microorganisms. It has been observed that closely related members of the 4 

Comamonadaceae family can couple acetate oxidation to Fe(III) reduction (e.g. Rhodoferax 5 

ferrireducens; Finneran et al. 2003). However genera in the Comamonadaceae family are 6 

phenotypically highly diverse, even when they are phylogenetically closely related (Spring et 7 

al. 2005) so the apparent similarity to clade A is not evidence that clade A will have similar 8 

metabolism. 9 

Over the period of observation the pH value of both sterile controls decreased slightly with 10 

time, reaching a value around 10.5, the measured pH of the soil sample, suggesting the ditch 11 

water pH value was chemically buffered by contact with the soil. The pH values of both 12 

active microcosms decreased to a value 0.5 pH units below the measured pH of the soil. This 13 

difference is small but was probably due to microbial activity (e.g. the release of metabolic 14 

products such as CO2 by bacteria). 15 

Whilst similarity of the 16S rRNA gene is not evidence that organisms share other genes 16 

(e.g. those associated with adaptation to a particular environment) it may nevertheless be 17 

significant that each of the four bacterial clades identified in this study appeared to be closely 18 

related to genera that are adapted to similar harsh environments. For example the sequences in 19 

clade A have ≥97% identity with sequence AM778004 found in a non-saline alkaline 20 

environment, and ≥96% identity to sequence AM884728 found in an alkaline, chromium 21 

contaminated soil from a COPR disposal site (Stewart et al. 2007). Both these alkali tolerant 22 

species are shown for comparative purposes on the phylogenetic tree constructed for β-23 

proteobacteria (Figure 3). Sequences within clade B appeared to be closely related to 24 

members of the Aquiflexum genus (Figure 4) and had ≥94% identity to Aquiflexum clone 25 

EU283506 isolated from sediment from a brackish alkaline lake. Sequences within clade C 26 

(Figure 5) had ≥98% identity to sequence AM884695 isolated from an alkaline, chromium 27 

contaminated soil from a COPR disposal site (Stewart et al. 2007). Members of clade E 28 

appeared to be members of the Sphingomonas genus (Figure 6), which contains hardy species 29 

capable of uranium reduction in alkaline solutions (Nilgiriwala et al. 2008). More detailed 30 

investigation of these species may provide interesting insights into life in harsh environments. 31 

The findings of this study will have a major impact on the long-term management of the 32 

COPR waste site from which the samples were obtained, and offer a potential solution to the 33 
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downward leaching of chromate at many other COPR legacy sites.  Environmentally sound 1 

management of such sites is very unlikely to involve removal of the waste, as industrial scale 2 

excavation will almost certainly generate chromate bearing dusts that will act as a pathway to 3 

human exposure. Thus remediation of COPR disposal sites will almost always involve three 4 

elements:  5 

• Better separation of the waste from the surface environment 6 

• Measures to reduce water infiltration into the waste 7 

• Measures to treat leachate emerging from the waste 8 

The first two elements will usually involve placement of a capillary barrier and a low 9 

permeability cover layer over the waste.  However such a capping layer is unlikely to reduce 10 

the rainwater influx to zero, and thus there will always be the risk that contaminated water 11 

from the waste will leach downwards and contaminate underlying water resources. 12 

This study has shown that the microbial community in soil, given time, can adapt to life at 13 

high pH. If that community is provided with a suitable electron donor, then progressive 14 

anoxia develops and chromium accumulates in the soil by reduction and precipitation at the 15 

point in the redox cascade just before iron reduction becomes fully established. Creating such 16 

a reductive zone in the soil will act as a barrier to the migration of chromium, which should 17 

reduce the impact of the waste on the wider environment. It is not clear from the current study 18 

whether the residual organic matter still remaining in the former surface layer can support 19 

iron reduction, or if it now needs augmenting with an organic substrate such as acetate, 20 

however the widespread presence of Fe(II) and the amount of chromium that has accumulated 21 

in that soil layer is evidence that it has done so the past. 22 

 23 

CONCLUSIONS 24 

A former surface soil that has been buried beneath COPR tip for over 100 years has an 25 

active microbial population despite it having a pH value of 10.5. Without the addition of an 26 

exogenic electron donor this microbial population is able to reduce nitrate using an electron 27 

donor(s) that is probably derived from the soil organic matter.  With the addition of acetate as 28 

a more readily available electron donor, Cr(VI) removal occurred after nitrate reduction, to be 29 

followed by iron reduction. It is proposed that Cr(VI) removal from solution was by 30 

microbially mediated reductive precipitation. This was either a direct enzymatic process with 31 

Cr(VI) being used as an electron acceptor, or more likely an indirect process involving an 32 

abiotic reaction with Fe(II) produced by microbial Fe(III) reduction. 33 

 34 
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Table 1:  Microbially significant half-reaction reduction potentials: Standard 
Reduction Potential, E0, and redox potential, Eh, at pH 7 and 10.5 (at 25°C and 
atmospheric pressure). 

 
            

Transformation Reaction 
E0 
(V) 

Eh @ pH 7 
(V) 

Eh @ pH 10.5 
(V) 

Assumptions 

O2 Depletion+ O2 + 4H+ + 4e− = 2H20 1.23 0.805 0.598 PO2 = 0.2 bar 

Denitrification+ 
NO3

− + 6H+ + 5e−  
= 1/2N2 + 3H2O 

1.24 0.713 0.464 
[NO3

−] = 1 mmol L-1 
PN2 = 0.8 bar 

Cr reduction* 
Cr(VI) to Cr(III) 

CrO4
2− + 5H+ + 3e−  

= Cr(OH)3 + H2O 
1.198 0.508 0.163 [CrO4

2−]=250 μM 

Mn reduction + 
Mn(III) to Mn(II)  

Mn3O4 + 2H+ + 2H2O + 2e–  
= 3Mn(OH)2 

0.480 0.066 -0.140 - 

Fe reduction* 
Fe(III) to Fe(II) 

Fe(OH)3 + H+ + e−  
= Fe(OH)2 + H2O 

0.257 -0.157 -0.364 - 

Fe reduction+ 
Fe(III) to Fe(II) 

Fe(OH)3 + HCO3
− + 2H+ + e− 

= FeCO3 + 3H2O 
1.078 - 

-0.266 
-0.321 

[HCO3
−] = 20 mmol L-1 

[HCO3
−] = 1 mmol L-1 

Sulfate reduction+ 
S(VI) to S(-II) 

SO4
2− + 10H+ + 8e−  

= H2S + 4H2O 
0.301 -0.217 -0.476 [SO4

2−] = [H2S] 

Bicarbonate reduction 
to acetate

×
  

C(VI) to C(0) 

2HCO3
− + 9H+ + 8e−  

= CH3COO− + 4H2O 
0.187 -0.292 -0.525 

[HCO3
−] = [CH3COO−] 

= 20 mmol L-1 

      
 
+ after Langmuir (1997) 
* calculated using thermodynamic data from Stumm and Morgan (1996) 
× calculated using thermodynamic data from Thauer (1977) 
 
 
 
 
 
 
 
Table 2: Major elements in fused samples measured by XRF (corrected for loss on ignition 

at 1000°C). 
 SiO2 

% 
Al2O3 

% 
CaO 
% 

MgO 
% 

Fe2O3 
% 

Cr2O3 
% 

TiO2 
% 

Mn3O4
% 

Na2O 
% 

K2O 
% 

SO3 
% 

LOI 
% 

Grey silty clay 71.41 9.73 2.29 0.35 3.47 0.45 0.56 0.12 0.56 1.56 0.03 9.30
Unweathered waste 3.61 4.27 40.29 5.85 7.04 4.93 0.05 0.07 n.d. 0.03 5.10 28.40
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Figure 1. Sketch map of the site showing the sampling locations. 
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Figure 2. Geochemical response of the unamended (■) and acetate-amended ( ) microcosms: (a) pH, (b) 
porewater NO3

− concentration, (c) porewater Cr(VI) concentration (d) % of 0.5 N HCl extractable Fe as 
Fe(II) in soils, (e) porewater SO4

2− concentration. Response in individual acetate-amended microcosms 
from triplicate series (I-III) are shown in (c) and (d). Error bars shown are one standard deviation from the 
mean of triplicate experiments. NO3

− and SO4
2− data were corrected using Cl− variability to account for 

instrument variability. Data from sterile controls are shown using open symbols. 
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Figure 3:  Phylogenetic tree showing the relationship between a representative sequence from 
clade A and 16S rRNA gene sequences of previously described bacteria. Geobacter 
metallireducens was included as an out-group. The scale bar corresponds to 0.1 nucleotide 
substitutions per site. Bootstrap values (from 1000 replications) are shown at branch points. 
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Figure 4:  Phylogenetic tree showing the relationship between a representative sequence from 
clade B and 16S rRNA gene sequences of previously described bacteria. Geobacter 
metallireducens was included as an out-group. The scale bar corresponds to 0.1 nucleotide 
substitutions per site. Bootstrap values (from 1000 replications) are shown at branch points. 
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Figure 5:  Phylogenetic tree showing the relationship between a representative sequence from 
clade C and 16S rRNA gene sequences of previously described bacteria. Geobacter 
metallireducens was included as an out-group. The scale bar corresponds to 0.1 nucleotide 
substitutions per site. Bootstrap values (from 1000 replications) are shown at branch points. 
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Figure 6:  Phylogenetic tree showing the relationship between a representative sequence from 
clade E and 16S rRNA gene sequences of previously described bacteria. Geobacter 
metallireducens was included as an out-group. The scale bar corresponds to 0.1 nucleotide 
substitutions per site. Bootstrap values (from 1000 replications) are shown at branch points. 
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Figure 7:  Microbial communities of (a) the unamended microcosms (30 clones) and (b) the 
acetate-amended microcosms (30 clones) after incubation under anaerobic conditions for 68 
days. Charts show phylogenetic affiliation of the 16S rRNA gene sequences 




