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Abstract

The effects of rotation on the evolution of non-Gaussian statistics of velocity
increments in rotating turbulence are studied in this paper. Following the La-
grangian evolution of the velocity increments over a fixed distance on an evolving
material element, we derive a set of equations for the increments, which pro-
vides closed representation for the nonlinear interaction between the increments
and the Coriolis force. Applying a restricted-Euler-type closure to the system,
we obtain a system of ordinary differential equations, which retains the effects
of nonlinear interaction between the velocity increments and the Coriolis force.
A-priori tests using direct numerical simulation data show that the system cap-
tures important dynamics of rotating turbulence. The system is integrated
numerically starting from Gaussian initial data. It is shown that the system
reproduces qualitatively a number of observations in rotating turbulence. The
statistics of the velocity increments tend to Gaussian when strong rotation is
imposed. The negative skewness in the longitudinal velocity increments is weak-
ened by rotation. The model also predicts that the transverse velocity increment
in the plane perpendicular to the rotation axis will have positive skewness, and
that the skewness will depend on the Rossby number in a non-monotonic way.
Based on the system, we identify the dynamical mechanisms leading to the
observations.

Keywords: Fluid dynamics, Geophysical flows, Turbulence, Rotating frame,
Intermittency

1. Introduction

Rotating turbulence plays an important role in many different areas, in-
cluding geophysical, astrophysical and engineering applications. In rotating
turbulence, the effects of rotation enter through the Coriolis force [1, 2]. The
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relative importance of the Coriolis force in homogeneous turbulence is quali-
tatively measured by the Rossby number defined as the ratio of the nonlinear
advection term to the Coriolis force. There has been a continuous effort to un-
derstand the effects of the Coriolis force that have led to the peculiar features of
rotating turbulence. It is known that in rotating turbulence the energy transfer
in the Fourier space is weakened by the phase-scrambling effects generated by
the inertial waves [3, 4]. As a consequence, steeper energy spectrum is observed
in simulations and experiments [5, 6, 7, 8, 9], which is also predicted by phe-
nomenological and analytical models [10, 11]. On the other hand, it is argued
that the nonlinear interaction between resonant waves is largely responsible for
the generation of coherent columnar vortex structures, the tendency towards
two-dimensionalization, inverse energy cascade, and a number of other phenom-
ena [12, 13, 6, 14, 8, 15], although recently it is shown that linear mechanisms
may also make important contributions [16, 17].

For non-rotating turbulence, the small-scale structures of turbulence have
received considerable attention. Measured by velocity increments and veloc-
ity gradients, the statistics at small scales have been shown to be highly non-
Gaussian (see, e.g., [18]). The non-Gaussian statistics are generated by frequent,
intense fluctuations in small scale quantities, which presents great obstacles to
the efforts to develop universal models. Similar approaches have been adopted
in the study of the small-scale structure of rotating turbulence recently. The
statistics of velocity gradients have been studied in [19]. It is observed that,
generally, the statistics tend to become more Gaussian in rotating turbulence.
A phenomenon that has received considerable attention is the observation that
the vertical vorticity component displays positive skewness, which takes the
maximum at some intermediate value of the Rossby number[13, 15, 20]. Visu-
ally, the observation is related to the prevalence of cyclonic vortices in rotating
turbulent fields. It is observed that the maximum in the skewness coincides
with the maximum in the three-dimensional to two-dimensional energy transfer
[15]. The phenomenon has been attributed to the instability of anti-cyclonic
vortices in [13]. On the other hand, [21] shows that the initial growth of the
skewness is proportional to the product between the rotation rate of the frame
of reference and the mean vortex stretching. Since the mean vortex stretching
is positive in an isotropic turbulence, this will lead to an algebraic growth in the
skewness when rotation is imposed. Using data generated by direct numerical
simulations (DNS), [20] studies the problem in great detail and concludes that
the stationary value of the skewness are affected by a number of other param-
eters. The properties of velocity increments have also been documented in the
experimental and/or DNS studies reported in [22, 19, 9, 23, 24, 25]. The scaling
law of the velocity increments is measured, showing reduced anomalous scaling.
Skewness of the longitudinal velocity increments is also observed to be weak-
ened by rotation. Several phenomenological models are proposed to explain the
observations regarding the scaling law in rotating turbulence [22, 25].

Thus, it appears that there is not yet consensus as to the mechanisms of
some observations regarding the non-Gaussian statistics in velocity increments
and velocity gradients. In particular, the understanding based on the dynamics
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of the governing Navier-Stokes (NS) equations is desirable. In this paper, we
intend to provide a partial yet unified explanation for a number of observations
via a simple dynamical model. To provide the background for the model, we
note that it is closely related to recent research on the so-called restricted Euler
approximation and several models for the small-scale dynamics of turbulence. In
the restricted Euler (RE) approximation, the equation for the velocity gradient
is truncated, and only the nonlinear term and the isotropic part of the pressure
Hessian are retained [26, 27]. The velocity gradient predicted from the RE ap-
proximation develops a finite time singularity. However the tensorial structure
of the gradient reproduces a number of important features observed in turbu-
lence, such as the preferential alignment between the vorticity vector and the
intermediate eigen-direction of the strain rate tensor [26, 27, 28, 29]. Thus, the
RE approximation has been used as a base model to understand the small-scale
turbulence. A number of models for the pressure Hessian have been proposed
to regularize the approximation. A useful idea is to follow the Lagrangian evo-
lution of material elements, which has been pursued in [30, 31, 32, 33] (see also
[34] for a recent model). The ideas are adopted to study the evolution of veloicty
increments in [35]. A simple dynamical model for the velocity increments is de-
rived by following the Lagrangian evolution of a linear element [35]. The model
is generalized to turbulence in two and four spatial dimensions, and to include
the increments of passive scalars in [36]. These models reproduce quite a few
important observations regarding the non-Gaussian statistics of the increments,
thus have helped clarify the origins of the observations from a dynamical point
of view. It is also predicted that the increments of a passive scalar [36] are
more intermittent in four spatial dimensions (compared with three spatial di-
mensions). In this paper, we applied the ideas to study the evolution of the
non-Gaussian statistics of velocity increments in rotating turbulence. In order
to incorporate the Coriolis force, a local coordinate system attached to an evolv-
ing material line is introduced. We show that, with the help of the coordinate
system, a system of equations for the velocity increments over a fixed distant on
the material line can be derived. The analysis of a restricted-Euler-type approx-
imation of the system shows that several features of rotating turbulence can be
reproduced, which thus provides explanations to some of the observations from
a dynamical perspective.

The paper is organized as follows: In section 2, the system of the equations
is derived, and an a-priori analysis is conducted. The numerical solution of the
system is presented in the section 3. Conclusions are summarized in section 4.

2. Derivation of the equations and a-priori tests

Following the idea of [35, 36], we keep track of a line element r(t) and consider
the velocity increments over a fixed distance ℓ along the direction of the element
r̂(t) ≡ r/r, where r ≡ |r| is the length of the line element. In [35, 36], where non-
rotating turbulence is considered, a system of two equations for the longitudinal
and transverse velocity increments over ℓ is derived. In rotating turbulence,
however, we first need to define a local Cartesian coordinate system in order to
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Figure 1: The local coordinate frame defined by the direction of a line element r̂ and rotation
direction.

better account for the effects of the Coriolis force. Suppose the rotation axis is
k, so that the angular velocity of the frame of reference is Ω = Ωk, which is
independent of time. We define the local Cartesian coordinate system by the
following three unit vectors (see Fig. 1):

r̂(t), ŝ(t) = Ω× r̂/||Ω× r̂||, t̂(t) = r̂× ŝ. (1)

With u(x, t) denoting the velocity field, in the above local coordinate frame the
velocity increment can be decomposed into three components:

δu ≡ u(x+ ℓr̂, t)− u(x, t) = U r̂+ V ŝ +W t̂. (2)

That is, U denotes the longitudinal velocity increment along the direction of
the line element, while V and W denote the two transverse increments.

To derive the equations for the increments, we consider the coarse-grained
NS equations filtered at scale ∆ ∼ ℓ. Let ũi denote the filtered velocity field,
and Ãij ≡ ∂iũj denote the filtered velocity gradient, the equation for Ãij in a
rotating frame of reference reads

DtÃij = −ÃikÃkj − 2εjklΩkÃil

−
2

3
(Q+Ωkω̃k)δij +Hij . (3)

where Dt ≡ ∂/∂t+ ũj∂j is the material derivative in the filtered velocity field.
The second term on the right-hand side (RHS) comes from the Coriolis force.

Hij ≡ (−∂2
ij p̃−∂2

ikτkj +ν∇2Ãij)−
1

3
δij(−∇2p̃−∂2

mkτkm) is the anisotropic part
of the pressure, subgrid-scale (SGS) stress, and viscous stress Hessian [27, 35].
The first term in the second line represents the corresponding isotropic part. p̃
is the filtered pressure, τij ≡ ũiuj − ũiũj is the SGS stress, ω̃i ≡ (∇× ũ)i is the

filtered vorticity, and Q ≡ −ÃmnÃnm/2 is the second tensor invariant of the
filtered velocity gradient [27].

According to the Kolmogorov phenomenology, the contributions to the veloc-
ity increment δu mainly come from the motions around the scale ℓ. Therefore,
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we have δu ≈ δũ ≡ ũ(x + ℓr̂, t) − ũ(x, t), given that ∆ ∼ ℓ. Since the filtered
velocity field is smooth over the scales ∼ ℓ, we use linear approximations, and
obtain

δũi ≈ ℓr̂ · ∇ũi = ℓr̂j∂j ũi = ℓr̂jÃji. (4)

As a consequence, U ≈ δũ · r̂ ≈ ℓÃij r̂ir̂j . Working out the expressions for V
and W in a similar way, we find that the increments can be written as

U = ℓÃjir̂j r̂i, V = ℓÃij r̂iŝj , W = ℓÃij r̂i t̂j . (5)

Based on Eq. (5), the equations for the velocity increments can be derived from

the equation for the filtered velocity gradient Ãij and those for the direction

vectors. Using the evolution equation of the line element Dtri = Ãjirj , the
equations for the direction vectors can be deduced from their definitions given
in Eq. (1). In doing so, one finds that

Dtr̂ = V ℓ−1ŝ+Wℓ−1t̂, (6)

Dtŝ = V ℓ−1(cot θt̂− r̂), (7)

Dtt̂ = − cot θV ℓ−1ŝ−Wℓ−1r̂. (8)

Angle θ in the equations is the angle between the line element r and the rotation
axis k, which evolves according the following equation:

Dtθ = −W ℓ−1. (9)

With Eqs. (6-8) and Eq. (3), the equations for the velocity increments can then
be derived from the definitions (Eq. 5). After some algebra, the final equations
are obtained as follows:

DtU =− U2ℓ−1 + V 2ℓ−1 +W 2ℓ−1 + 2ΩV sin θ

−
2

3
Qℓ−

2

3
Ωkω̃kℓ+ ℓHij r̂ir̂j , (10)

DtV =− 2UV ℓ−1 +WV ℓ−1 cot θ

− 2Ω(U sin θ −W cos θ) + ℓHij r̂iŝj , (11)

DtW =− 2UWℓ−1 − V 2ℓ−1 cot θ − 2V Ωcos θ

+ ℓHij r̂i t̂j . (12)

The equations describe the Lagrangian evolution of the velocity increments over
the displacement ℓ. The most prominent feature of the equations is that the
nonlinear interaction between the velocity increments as well as the Coriolis force
are in closed form. Therefore the system is particularly suitable for examining
the interplay between these two physical factors. On the other hand, the Hij , Q
and the Ωkω̃k terms are not closed in the equations. To formulate a model that
can be used to simulate rotating turbulence, models for the unclosed terms need
to be developed. Several models for Hij have been constructed in the context of
the stochastic models for the velocity gradient [30, 33], which can be taken as the

5



basis for this purpose. Similarly, Q and Ωkω̃k are closed if we were to work with
a stochastic model for the full velocity gradient. However, as we have mentioned,
our goal is to gain insights into the dynamics behind the observations regarding
the non-Gaussian statistics of the velocity increments, rather than building a
model for simulation. We thus choose to employ a simple restricted-Euler-type
closure to handle the unclosed terms, and focus our attention on understanding
the effects of the closed nonlinear terms and the Coriolis force. This approach
is partly justified by the successes of previous research based on similar closure
strategies. As will be shown soon, the resulted model will also be checked against
DNS data, which confirms that the resulted system indeed captures significant
part of the dynamics of Navier-Stokes turbulence.

Thus, following the idea of the restricted Euler approximation [26, 27], we
set Hij as well as Ωkω̃k to zero in Eqs. (10-12). The term proportional to Q
represents the part of the nonlinear self-interaction that is balanced by pressure
to maintain incompressibility. As is shown in [35], part of the Q term is in
closed form in terms of the velocity increments. To see this, note that in the
local coordinate frame (see Fig. 1), the matrix Ãij can be written as

Ã =




Ãrr Ãrs Ãrt

Ãsr Ãss Ãst

Ãtr Ãts Ãtt


 , (13)

where Ãrr = U/ℓ, Ãrs = V/ℓ, and Ãrt = W/ℓ, according to Eq. (5). Ãtt =

−Ãrr−Ãss = −U/ℓ−Ãss due to incompressibility. Since Q is a tensor invariant,

it is the same for different projections of Ãij . Based on the above projection,
simple calculation shows that Q = −ℓ−2U2 + Q−, where the first term comes
from Ã2

rr and part of Ã2
tt, and Q− contains the other unclosed terms [35]. We

retain the first term while neglecting Q−. Applying these approximations (ne-
glecting Hij , Ωkω̃k and Q−), the final restricted-Euler-type model is given as:

DtU =−
1

3
U2ℓ−1 + V 2ℓ−1 +W 2ℓ−1 + 2ΩV sin θ (14)

DtV =− 2UV ℓ−1 +WV ℓ−1 cot θ

− 2Ω(U sin θ −W cos θ) (15)

DtW =− 2UWℓ−1 − V 2ℓ−1 cot θ − 2V Ωcos θ. (16)

The above equations, together with Eq. (9), form a closed system. The system
describes the effects of the nonlinear interaction terms and the Coriolis force on
the evolution of the velocity increments.

When Ω = 0, i.e., when there is no rotation, Eqs. (14-16) can be compared
with the advected delta-vee system in [35] and [36]. The advected delta-vee
system is a system of two equations for δu and δv. In present notations, δu and
δv correspond to U and (V 2+W 2)1/2, respectively. From Eqs. (14-16), one can
easily derive the equations for δu and δv. When Ω = 0, the equations are the
same as the delta-vee system. Therefore current system is a generalization to
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the advected delta-vee system. As having been pointed out in [35], the advected
delta-vee system captures a number of essential mechanisms that are responsible
for the non-Gaussian statistics in the small scales of turbulence. The current
system also contains these mechanisms. It is well-known that, in turbulence in
three spatial dimensions, the longitudinal velocity increment develops a nega-
tive skewness, which is a signature of the energy cascade process (see e.g. [18]).
Eq. (14) shows that the first term on the RHS, being always negative, will
always amplify the negative fluctuations in U . Therefore, this term produces
a self-amplification mechanism for the negative fluctuations in the longitudinal
velocity increments, and is the source of the negative skewness. Physically, it
represents an effect similar to the front-steeping process observed in the Burg-
ers’ equation [37]. On the other hand, numerous observations show that the
transverse velocity increments frequently experience violent fluctuations. As a
consequence, the probability density functions (PDF) of the transverse velocity
increments display exponential or stretched-exponential tails, compared with
the Gaussian distribution [18, 38]. This trend can be qualitatively explained
by the first term on the RHS of Eq. 15, and also the first term on the RHS of
Eq. 16. These terms show that, when the longitudinal velocity increment U is
negative, exponential growth, and hence strong fluctuations, in the transverse
increments V and W can be generated. This mechanism for generating strong
fluctuations in transverse velocity increments is termed the ‘cross amplification’
mechanism in [35]. In rotating turbulence, these mechanisms are accompanied
by the Coriolis force, as is shown by Eqs. (14-16). It is the goal of this paper to
understand the interaction between the nonlinear terms and the Coriolis force
based on the above model equations. (For more analyses concerning the nonlin-
ear interaction between the velocity increments in Eqs. (14-16) in non-rotating
turbulence, we refer the readers to [35, 36]. )

Given the drastic approximations that we have made, it is desirable to check
to what extent the model captures the dynamics of the Navier-Stokes turbulence.
We thus compute the correlation between the rates of changes of the velocity
increments predicted from the model and the actual rates of changes resulted
from the full Navier-Stokes dynamics, using a DNS data set. The former is cal-
culated from the right-hand sides of Eqs. (14-16), while the latter is calculated
by following the evolution of line elements , as well as the velocity increments
over the line elements, in filtered DNS velocity fields. In what follows, the latter
results are referred to as the ‘exact’ results. The technical details of the analysis
have been explained in [35]. The DNS data are generated by solving the NS
equations with pseudospectral method and Adam-Bashforth second order time
integration. The flow is forced at wavenumbers |k| < 3, injecting energy at a
constant rate. 2563 grids are used. The Coriolis force is integrated exactly us-
ing integrating factor, based on the helical decomposition of the Fourier modes
[4]. Initial velocity field is taken from a fully developed isotropic velocity field
obtained from pre-simulations without rotation. The initial Reynolds number
Reλ ≡ u′λ/ν ≈ 114, where u′ = 0.66 is the initial root-mean-square (rms)
velocity fluctuation and λ the Taylor length scale. The initial Rossby number
Ro ≡ u′/ΩL is set to 0.2, where L = π is the forcing scale. The data used in
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the following analysis are taken at a time when an approximate k−2 spectrum
is observed [5]. Fig. 2 shows the energy spectra for the data with or without
rotation, compensated with k2.
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Figure 2: Energy spectra compensated with k2. Solid line: with rotation; dashed line: initial
spectrum (without rotation).
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Figure 3: Correlation between the rates of changes of the velocity increments predicted from
model [Eqs. (14-16)] (model results) and those calculated by tracking the Lagrangian evolution
of the material lines and the increments (the exact values). Lines with symbols: Ro = 0.2;
symbols only: without rotation. Squares: DtU , circles: DtV , gradients: DtW . k∆ = π/∆.

Fig. 3 plots the correlation coefficients for the rates of changes of the incre-
ments at several filter scale ∆. The results for rotating turbulence are plotted
with lines with symbols. The results obtained from the DNS data of non-rotating
turbulence are also plotted with symbols for comparison. Averaging is taken
over all the grid points and for r̂ along the two coordinate directions in the plane
normal to the rotating axis. Therefore θ = π/2 and the W component of the
increment is in the direction of the rotation axis. ℓ is taken as the same as ∆ in
each case. In rotating turbulence, the figure shows that, for DtU and DtV , the
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correlation coefficients are close to 0.6, with only small variation over different
scales. ForDtW , the correlation coefficient is somewhat smaller. At small scales
(with larger k∆ ≡ π/∆), the coefficient ranges between 0.4 and 0.5. At larger
scales, the correlation tends to decrease. Since the W component points along
the rotation axis, the Coriolis force affects its evolution indirectly through the
pressure field. Since the effects of pressure have only been partially accounted
for (by including part of the Q term), it is probably the reason why the correla-
tion between the model for DtW and the real dynamics is relatively weaker at
large scales, where the effects of rotation becomes stronger. Nevertheless, Fig.
3 shows that the model captures a significant part of the dynamics in rotat-
ing turbulence, particularly for the U and V components. The results suggest
that the model is a better representation of the dynamics of the Navier-Stokes
turbulence for moderate rotation rates.

For non-rotating turbulence, the correlation coefficient for DtU is about the
same as in rotating turbulence at smaller scales. The values increase slightly at
larger scales, whereas in rotating turbulence the values decreases slightly. The
values for DtV and DtW are almost the same at small scales, as one would
expect in isotropic turbulence. At larger scales, some small difference can be
observed, probably due to the residual anisotropy in large scales. The coeffi-
cients for DtV and DtW in non-rotating turbulence are about the same as the
values for DtW in rotating turbulence. Interestingly, in rotating turbulence, the
correlation coefficients for DtV are bigger that its values in non-rotating tur-
bulence. To summarize, the correlation coefficients in non-rotating turbulence
show some differences in both qualitative and quantitative aspects, but the level
of correlation is still significant. The observations are consistent with the results
reported in our previous publications [35, 36].

Fig. 4 shows the joint PDF of the exact values of DtV and the values
calculated from the model (solid lines). Also shown is the conditional average
〈DtVModel|DtVDNS〉 (dashed line). The data are calculated at ∆ = ℓ = 16δx,
where δx = π/128 is the grid size. Note that, for a perfect model, the joint PDF
would fall entirely on the diagonal. For our model, the joint PDF spreads around
the diagonal to some extent. The model appears to somewhat over-predict the
probabilities of large fluctuations. Nevertheless, the joint PDF clearly shows
significant correlation between the model and the exact values. Similar trends
can be observed in the joint PDF forDtU (not shown). The conditional average,
shown by the dashed line, is consistent with the results for joint PDF. The curve
is only slightly steeper than the diagonal. The results for DtW are shown in
Fig. 5. One can see that the joint PDF for DtW spreads out relatively wider
around the diagonal, which explains the somewhat lower correlation coefficient
for DtW observed in Fig. 3. The conditional average is a bit shallower than
the diagonal, indicating that, on average, the model tends to underestimate
the rate of change of W . Overall, the joint PDFs show significant correlation
between the model predictions and the exact values, complementing the results
for correlation coefficients.
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Figure 4: Joint PDF of DtVDNS and DtVModel (solid lines) and the conditional average
〈DtVModel|DtVDNS〉 (dashed line). DtVDNS is the rate of change of the transverse velocity
increment V calculated by following the Lagrangian evolution of velocity increment over a
line element. DtVModel is the rate of change given by the model expression calculated using
DNS data. Starting from inside, the levels are 10−1, 10−2, 10−3, 10−4. The dotted line is
the diagonal.

3. Numerical results and discussions

In this section we study the evolution of the velocity increments predicted
by the model, starting from initial Gaussian random condition. U , V and W are
initialized as Gaussian random numbers with zero mean and unit variance, so
that the velocity scale is u′ = 1. Initially the material line elements point to dif-
ferent directions with equal probabilities, so that cos θ is uniformly distributed
in [−1, 1]. At any time t, statistics are accumulated from the evolving ensemble.
Eqs. (9), (14-16) are solved numerically, using the same method as in [35]. As
noted in [35, 36], because the line elements tend to concentrate in the stretching
directions of the velocity gradient, the statistics of the evolving ensemble will
be different from the statistics taken over random directions. To compare the
results with the latter, the measure correction procedure described in [35, 36] is
applied. Experimental and DNS results have so far only been reported for in-
crements defined in the perpendicular plane. To compare with these results, we
plot the PDFs of U , V , and W conditioned on cos θ = cos 90◦ = 0, correspond-
ing to the case where the line elements lie in the perpendicular plane. We set
the displacement ℓ = 1, and define the Rossby number as Ro ≡ u′/Ωℓ = 1/Ω.

As a base case for comparison, we first consider the results when Ω = 0. Fig.
6 shows the PDFs of U at several times ranging from t = 0 to t = 0.24. The
PDFs of V and W at the same times are shown in Fig. 7. Note that the time
scale defined with initial parameters is ℓ/u′ = 1. Thus the figures show that the
PDFs of the longitudinal velocity increments develop negative skewness rapidly.
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Figure 5: Same as Fig. 5, but for DtW .

At the same time, exponential or stretched exponential tails are built up in the
PDFs of the transverse velocity increments. These trends reproduce the results
of [35], and are qualitatively consistent with the well-known observations in
turbulence, as having been shown in [35]. The results confirm numerically that
the current system is consistent with the advected delta-vee system derived in
[35]. Fig. 7 shows that, as expected, the PDFs of V and W are nearly identical
to each other, except for some small differences due to statistical fluctuations.

We now consider the results when rotation is present. The first results are
concerned with the effects of rotation on the skewness of the longitudinal velocity
increments. Figs. 8 and 9 show the PDFs of U at Rossby number Ro = 0.1 and
0.05, respectively. Different curves correspond to different times, shown with
the same legend as in Fig. 6. Comparing the two figures with Fig. 6 (for which
Ω = 0), one can see that the asymmetry in the PDFs of U shown in Figs. 8
and 9 is smaller. In other words, the model predicts that the skewness in U is
reduced when rotation is imposed. For Ro = 0.05, the PDFs are actually very
close to Gaussian.

The shapes of the PDFs can be measured quantitatively by the skewness
and the flatness. The skewness of a random variable X is defined as SX ≡
〈(X − 〈X〉)3〉/〈(X − 〈X〉)2〉3/2, where 〈· · ·〉 denotes the ensemble average. The
flatness of X is defined as FX ≡ 〈(X − 〈X〉)4〉/〈(X − 〈X〉)2〉2. Fig. 10 shows
the time evolutions of −SU , calculated by integrating the conditional PDFs
[35]. Data for several Ro numbers are shown. When there is no rotation, −SU

increases over time, and take a value around 0.5 at t = 0.24 (solid line). When
rotation rate increases (the Ro number decreases), the increase of −SU over
time is suppressed. −SU appears to oscillate around zero, with an amplitude
that decreases with the Ro number. With Ro = 0.025, i.e., strong rotation, the
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Figure 6: Evolution of the conditional PDFs of U when there is no rotation (Ro = ∞). Dotted
line: initial Gaussian distribution; solid line: t = 0.06; dashed: 0.12; dash-dotted: 0.18; dash-
double-dotted: 0.24. σU is the root-mean-square value of the longitudinal velocity increment
U .
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Figure 7: Evolution of the conditional PDFs of V (lines) and W (symbols) when there is no
rotation (Ro = ∞). Dotted line: initial Gaussian distribution; solid line and squares: t = 0.06;
dashed line and circles: 0.12; dash-dotted line and gradients: 0.18; dash-double-dotted line
and deltas: 0.24. σV and σW are the root-mean-square values of the velocity increments V
and W , respectively.

skewness is essentially zero. Fig. 11 plots the flatness of U as a function of
time, for several Ro numbers. Fig. 11 shows that the growth of the flatness of
U over time is again suppressed when strong rotation is imposed. At Ro = 0.1,
FU stays at a value around 3.1 with little fluctuation. At Ro = 0.05 and
0.025, FU is essentially equal to 3, the value for Gaussian distribution. A small
value of FU implies that large fluctuations happen with less probability. The
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Figure 8: The conditional PDFs of U at Rossby number Ro = 0.1. Line legend is the same as
in Fig. 6.

results thus indicate that strong rotation tends to reduce the appearance of
large fluctuations in the longitudinal velocity increments. When Ro = 0.2 (not
shown), however, the flatness appears to take somewhat larger values than in
the case without rotation. The value reaches 3.8 at t = 0.24, compared with
the value 3.5 when there is no rotation. The reason for this increase is not
clear at present. Nevertheless, the overall prediction of the model is that, when
strong rotation is imposed, both the skewness and flatness of the longitudinal
velocity increment are weakened. This prediction is consistent with DNS and
experimental results (see, e.g., [4, 9, 19]).

We now consider another interesting feature in rotating turbulence, the pos-
itive skewness in the cyclonic vorticity component (i.e., the vorticity component
along the rotation axis). Observations in rotating turbulence have shown that
the distribution of cyclonic vorticity displays positive skewness. As is sum-
marized in section 1, the skewness varies with the Rossby number in a non-
monotonic way, with a maximum reached at an intermediate Rossby number
[13, 15]. Two main explanations have been proposed for the origin of the skew-
ness. The anti-cyclonic vortices are shown to be unstable under the action of
background rotation in [13]. The mechanism is proposed as an explanation for
the positive skewness for the cyclonic vorticity component. On the other hand,
[21] (see also [20] ) shows that the initial growth rate of the skewness is pro-
portional to the product between Ω and the mean vortex stretching. Since the
mean vortex stretching is positive in isotropic turbulence, positive skewness will
be generated when rotation is imposed.

As our model is developed for the velocity increments over a single line
element, it does not contain sufficient information to determine the evolution
of the vorticity. However, the V component is related to the cyclonic vorticity
component ωz when the line element is perpendicular to the rotation axis. For
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Figure 9: The conditional PDFs of U at Rossby number Ro = 0.05. Line legend is the same
as in Fig. 6.

example, when the displacement ℓ is along the x direction, ωz = V/ℓ− ∂ux/∂y,
according to the definition in Eq. 5. Thus, one may conjecture that V will
also display positive skewness in rotating turbulence. It is interesting to check
if the model will be able to predict this behavior. Figs. 12, 13 and 14 give
the PDFs of V predicted by the model, at Rossby number Ro = 0.2, 0.1, and
0.05, respectively. We recall that there is no skewness in V when the rotation
rate is zero, as is demonstrated by Fig. 7. The PDFs of V at Ro = 0.5 (no
shown) also display no visible skewness. However, Fig. 12 shows that strong
positive skewness for V has been developed at Ro = 0.2, reminiscent of the
positive skewness for the cyclonic vorticity component. Furthermore, Figs. 13
and 14 show that the skewness tends to decrease when the rotation rate is
further increased. At Ro = 0.05, the PDFs show little deviation from the
Gaussian distribution. Therefore, the development of the positive skewness is
the strongest around Ro = 0.2. Fig. 15 gives the skewness of V as a function
of time for several Rossby numbers. The skewness grows initially and then
oscillates around a positive value. For comparison, a power-law (Ωt/2π)n, where
n = 0.75, is also plotted in Fig. 15. The power law has been used to fit the initial
growth of the skewness of the cyclonic vorticity component in [20]. Slightly
different values for n are used in [9, 17]. Fig. 15 shows that the growth of the
skewness of V is approximately algebraic, but with a rate slightly faster than
the empirical power law. The maxima are reached at roughly the same values
of Ωt/2π for the three Rossby numbers, and the values are between 0.2 and 0.3.
The range of the values is similar to the one for the skewness of the cyclonic
vorticity component documented in [20].

Finally, Fig. 16 shows the evolution of the flatness of V over time for dif-
ferent Rossby numbers. Similar to the flatness of the longitudinal component
U , when the rotation rate increases, the development of the flatness over time
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Figure 10: The evolution of −SU , the magnitude of the skewness of the longitudinal velocity
increment U , at Rossby number Ro = ∞ (solid line), 0.1 (dash-dotted), 0.05 (dash-double-
dotted), 0.025 (dotted).
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Figure 11: The evolution of FU , the flatness of the longitudinal velocity increment U . Legend
is the same as in Fig. 10.

is suppressed. The values of the flatness are smaller compared with the val-
ues when no rotation is present. At the smallest Rossby numbers Ro = 0.05
and 0.025, the flatness again stays at the Gaussian value 3, consistent with the
results for the PDFs.

The above results demonstrate that the model is able to qualitatively repro-
duce several important trends observed in DNS and experiments. Besides, the
positive skewness in the transverse velocity increment in the plane perpendicular
to the rotation axis has not been reported before. Because of the simplicity of
the model, it is possible to understand the effects of each term in the equations,
and explain the observations in terms of the interplay between different terms,
as we will show now. First of all, when the Rossby number is small (rotation
is strong), the Coriolis forces in Eqs. (14) and (15) dominate. If we neglect
the nonlinear terms, the evolution of U and V is decoupled from W , when the
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Figure 12: The evolution of the conditional PDFs of V at Rossby number Ro = 0.2. Legend
is the same as in Fig. 6.
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Figure 13: The evolution of the conditional PDFs of V at Rossby number Ro = 0.1. Legend
is the same as in Fig. 6.

displacement is perpendicular to the rotation axis. In this limit, Eqs. (14) and
(15) are simplified to

DtU = 2ΩV, DtV = −2ΩU. (17)

It is trivial to show that an energy-like quantity U2 + V 2 is conserved by the
system. Thus, U and V are bounded by initial conditions and non-Gaussian
tails are prohibited. This explains the observations in Figs. 9 and 14 that,
when Ro is small, the negative skewness in U is reduced and the PDFs of both
U and V stay close to Gaussian.
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Figure 14: The evolution of the conditional PDFs of V at Rossby number Ro = 0.05. Legend
is the same as in Fig. 6.

The origin of the positive skewness of V at moderate Ro numbers can also be
understood from Eqs. (14-16). As we mentioned before, the positive skewness
of V is related to the positive skewness of the cyclonic vorticity component ωz.
Therefore, the following discussion also applies qualitatively to the latter. We
will compare the explanations based on our model with those proposed in the
literature. At moderate Ro numbers, the PDFs of U still display significant
negative skewness, albeit already weakened by rotation. When U is negatively
skewed, the Coriolis force −ΩU in the equation for V [Eq. (15)] has a positive
skewness. Thus, according to Eq. (15), the Coriolis force tends to produce posi-
tive skewness in V . Since the negative skewness in U is an indication of positive
vortex-stretching in turbulence, this mechanism resembles the one identified by
[21] (see also [20]), where the skewness of the vertical vorticity component is
explained in terms of the interaction between vortex stretching and the Coriolis
force. On the other hand, due to the Coriolis force ΩV in the equation for U [Eq.
(14)], negative fluctuations in V tend to increase negative skewness of U . Again,
because of the Coriolis force in the equation for V , negative skewness in U will
have an effect to promote the positive fluctuations in V and reduce its negative
fluctuations. In other words, negative fluctuations in V tend to self-diminish,
which thus also contributes to positive skewness in V . In effects, this mechanism
affects the skewness of V in a way similar to the destablization of anti-cyclonic
vortices due to background rotation. The latter is proposed in [13] to explain
the positive skewness of the cyclonic vorticity component. Therefore, our model
suggests that both the mechanisms proposed in the literature contribute their
parts to the positive skewness in the cyclonic vorticity component in rotating
turbulence. However, it may not be necessary to invoke any coherent structures
in the flows to explain the phenomenon.

The above analysis implies that the magnitude of the skewness in V depends
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Figure 15: The growth of the skewness of V over time for Ro = 0.2 (dashed line), 0.1 (dash-
dotted), and 0.05 (dash-double-dotted). The dotted line is (Ωt/2π)0.75 .
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Figure 16: The growth of the flatness of V over time for Ro = ∞ (solid line), 0.2 (dashed
line), 0.1 (dash-dotted), 0.05 (dash-double-dotted), and 0.025 (dotted).

on both the rotation rate and the magnitude of the negative skewness in U .
When rotation is so strong that the nonlinear self-interaction is negligible, the
skewness in U is suppressed, and so is the positive skewness in V . At very large
rotation rates, the distribution of U becomes symmetric, as in Fig. 9. As a
result, V also becomes symmetric.

The dynamics of U and V can also be qualitatively understood via the
phase portraits of the system. To simplify the analysis, we set W as zero in
the equations of U and V and consider the case when the displacement ℓ is
perpendicular to the rotation axis. The resulted system reads

DtU = −
1

3
U2ℓ−1 + V 2ℓ−1 + 2ΩV, DtV = −2UV ℓ−1 − 2ΩU. (18)

Integrating the equation, one can show that the system has the following invari-
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Figure 17: The phase portrait for the approximate dynamics of (U, V ) given by Eq. (18). (a):
Ω = 0 (Ro = ∞), (b): Ω = 5 (Ro = 0.2). The phase portraits are separated into two parts by
the horizontal line V = −Ωℓ. In the upper part, the orbits point in the clockwise direction,
while in the lower part, the orbits point in the counter-clockwise direction, as indicated by
the arrows.

ant

H(U, V ) =

[
U2 +

3

5
(V +Ωℓ)2 + 3(Ωℓ)2

]
(V +Ωℓ)−1/3. (19)

Several contours of H(U, V ), which are also the trajectories of (U, V ) in the
phase plane, are shown in Fig. 17, for (a) Ro = ∞ and (b) Ro = 5. When
there is no rotation (i.e., Ro = ∞), the expression of H(U, V ) is reduced to
(U2+3V 2/5)V −1/3, which is the same as the expression in [36] for the invariant
of the advected delta-vee system (in three spatial dimensions). In this case, the
origin is a degenerated fixed point (see Fig. 17a). The trajectories show that,
when the phase points move towards the negative U direction due to the self-
amplification mechanism, the magnitude of V must increase drastically. This
behavior is a consequence of the cross amplification mechanism. Therefore, the
phase portrait provides an intuitively straightforward picture for the dynamics of
the system. When rotation is imposed, the phase portrait is shifted downwards,
as is shown in Fig. 17b. Meanwhile, two centers appear at (0, 0) and (0,−2Ωℓ)
(Note that point (0,−Ωℓ) is not a fixed point for Ω 6= 0). The phase portraits
allow an intuitive understanding of the effects of rotation on the skewness in
V . When rotation is absent, the portrait is symmetric with respect to V = 0,
therefore no skewness is generated in V . When rotation is present, the phase
portrait is no longer symmetric. Fig. 17b shows that the values of V between
−Ωℓ and zero will be increased when U < 0, and decreased when U > 0. When
U has a negative skewness, the tendency for V to increase prevails that for V
to decrease. The net effect is to increase V and hence generate the positive
skewness in V . When the values of V fall between −Ωℓ and zero, the phase
points move in the clockwise direction along the trajectories. Therefore, there
is a tendency to generate negative skewness in U and, subsquently positive
skewness in V . This tendency corresponds to the self-diminishing effects of
negative fluctuations of V mentioned above. Therefore, the physical picture
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emerging from the phase portrait is consistent with our previous analysis based
on the dynamical equations. Even though the phase portraits are based on the
simplified system, the qualitative picture is expected to be the same for the full
system as far as the dynamics of U and V is concerned.
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Figure 18: The evolution of the flatness of W . Legend is the same as in Fig. 16.

Finally, we briefly discuss the results for the other transverse velocity incre-
mentW . Fig. 18 shows the flatness ofW as a function of time, for several Rossby
numbers. It can be seen that, even with strong rotation such that Ro = 0.025,
the flatness still increases over time, departing from the Gaussian value 3. The
rate of increase of the flatness is somewhat slower initially, compared with the
case without rotation (solid line), resulting in smaller values initially. But the
difference is small. The general observation about the results of W is that the
effects of rotation on W are relatively weak. The DNS analysis in [19] seems
to show similar trends for the gradients of the velocity components. In partic-
ular, it is found in [19] that, while the flatness of the transverse gradients of
all velocity components is reduced by rotation, the flatness of the transverse
gradients of the vertical velocity component (corresponding to W ) sustains a
larger value compared with other components. In other words, the effects of
rotation is weaker on the vertical component. The model prediction on W is
qualitatively consistent with this observation.

4. Conclusions

To summarize, we have derived a system of equations describing the evolu-
tion of velocity increments over a fixed distance on an evolving material element
in rotating turbulence. The system extends the ideas presented in previous pa-
pers [35, 36] to include the effects of rotation. To do so, a Lagrangian local
coordinate frame is defined. As a result, the nonlinear interaction between the
increments as well as the Coriolis force are closed in the system, which thus
allows detailed investigations of their effects. Focusing on the dynamical effects
of the nonlinear interaction terms as well as the Coriolis force on the evolution
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of the velocity increments, we employ a simple restricted-Euler-type closure to
the system, neglecting the anisotropic pressure Hessian and a few other terms.
The resulted model is used to elucidate the basic dynamical mechanisms behind
the evolution of the non-Gaussian statistics of velocity increments. We show
via a priori analyses of DNS data that the model captures important dynamics
in the Navier-Stokes equations. Numerical experiments starting from Gaussian
initial conditions show that the model reproduces a number of observations re-
garding the effects of rotation on the development of the non-Gaussian statistics
in the increments. In particular, the model reproduces the trend that the neg-
ative skewness in the longitudinal velocity increments is attenuated by strong
rotation. The model also predicts that the transverse increment in the plane
perpendicular to the rotation axis will develop positive skewness, and the mag-
nitude of the skewness depends on the rotation rate non-monotonically. This
behavior of the velocity increment is closely related to the positive skewness
of the cyclonic vorticity component, but has not been reported before. Tak-
ing advantage of the simplicity of the model, we identify the specific processes
responsible for the observations, which helps clarify the roles of different expla-
nations proposed in the literature.

We conclude that the model is useful to assist our understanding of the
effects of rotation. Nevertheless, a number of terms have been omitted. Appro-
priate models for these terms need to be developed in order to obtain stationary
statistics and make quantitative comparisons with DNS and experimental data.
Our preliminary a priori DNS analyses reported above have provided useful in-
formation as to the overall effects of the neglected terms. However, the roles of
each individual term need to be understood. As a first step, one could perform
a conditional statistical analysis of the unclosed terms. If we consider the joint
PDF of the velocity increments, the unclosed terms will appear as conditional
averages for given values of the velocity increments. These conditional averages
determine the probability fluxes generated by the unclosed terms. DNS analyses
of the conditional averages will shed light on the specific effects of each unclosed
term. For the advected delta-vee system in non-rotating turbulence, an analysis
of this kind has been conducted [39]. One interesting observation is that the
pressure Hessian displays distinctively different behaviors from the viscous and
SGS stress terms. The viscous and SGS stresses serve as damping terms so that
the probability fluxes produced by these term terms point to the origin in the
phase plane for the velocity increments. On the other hand, the stream traces
of the probability flux vector field produced by the pressure Hessian originate
from a source near the origin, follow anti-clockwise circular paths and terminate
at a sink near the origin. Therefore, the modelling of pressure Hessian and the
other terms requires different treatments. This is our on-going work. For the
system reported here, the behaviors of the conditional averages will be different
due to the presence of rotation. Furthermore, the quantity Ωkωk appears as a
new term. Thus it is of considerable interests to look into the statistics of these
quantities using DNS or experimental data of rotating turbulence. The infor-
mation obtained from such analyses would be useful resources for the modelling
of the unclosed terms. These could be the next steps in the research along this
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line.
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