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Abstract 

The application of tomographic imaging techniques developed for medical applications to the data 

provided by the scanning thermal microscope will give access to true three-dimensional information on 

the thermal properties of materials on a µm length scale. In principle, the technique involves 

calculating and inverting a sensitivity matrix for a uniform isotropic material, collecting ordered data at 

several modulation frequencies, and multiplying the inverse of the matrix with the data vector. In 

practice, inversion of the matrix in impractical, and a novel iterative technique is used. Examples from 

both simulated and real data are given. 

Keywords: scanning thermal microscopy; tomographic imaging; sensitivity matrix; polymers 

Introduction 

The Scanning Thermal Microscope (SThM) can sense the thermal properties of materials on a sub-µm 

length scale [1] by applying a constant power input to the material, and measuring the resulting 

temperature change. The resulting two-dimensional image is a weighted projection of the properties of 

the bulk material onto the surface plane across which the probe is scanned. If a sinusoidal modulation is 

applied to the heat input, an evanescent thermal wave is generated which decays exponentially with a 

thermal diffusion length that depends on the thermal properties of the material, and on the modulation 

frequency. In principle, therefore, it is possible to access the thermal properties at different depths 

within the material by varying the modulation frequency. In practice, generating quantitative data 

related to depth is non-trivial [2]. 

An analogous problem has been solved for Electrical Impedance Tomography (EIT), a method of 

generating three dimensional images of the electrical impedance of a material. The particular case that 

has been solved is for 3D imaging of the human chest [3]. The problem is to reconstruct some property 

of the interior of a material when measurements are confined to the surface. The starting point is to 

consider the material to be composed of volume elements (voxels), each of which is assumed to be 

uniform and isotropic. Measurements can be made at points on the surface � in general, a measurement 

consists of injecting energy (electrical current, heat) and measuring the resulting change (voltage, 

temperature). At least one independent measurement has to be made for each voxel. A sensitivity 

matrix is constructed by calculating the change in the measured property, for every measurement site, 

of an incremental change in the properties of each voxel. We then have, for the temperature case: 

 [surface temperature distribution] = [sensitivity matrix] x [distribution of thermal properties] 

where [ ] indicates a matrix. The scanning thermal microscope injects heat, and measures the resultant 

temperature change, with the same probe, so for a volume consisting of l layers and m x n surface 

points (i.e. l x m x n voxels), only m x n independent measurements can be made. However, we can 

make measurements at an arbitrary number of modulation frequencies, so a minimum of l modulation 

frequencies will give sufficient independent measurements. 

It is clear that pre-multiplication of the above equation by the inverse of the sensitivity matrix will give:  

 [sensitivity matrix]-1 x [surface temperature distribution] = [distribution of thermal properties] 

so we can now determine the distribution of thermal properties. We will now show: 
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1. how the sensitivity matrix is calculated in 1D and 3D (the 1D is relevant for materials consisting of 

uniform layers) 

2. how the computational problem of finding an inverse for the sensitivity matrix is solved 

3. results from simulated 1D and 3D data 

4. results from real data. 

Background Theory 

Thermal Diffusion. 

The rate at which heat is transferred across a surface per unit area per unit time is the heat flux  f.  For 

an isotropic solid, the flux is related to the rate of change of temperature T along the normal to an 

isothermal by the heat conduction equation: 
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where k is the thermal conductivity, and n∂∂  denotes the spatial differential, normal to the 

isothermal surface. 

Consider an element of volume through which heat is flowing but which does not contain any internal 

sources of heat.  For the non-steady case, the possibility of heat storage within the element must be 

considered and the rate of heat gain in the element from flow across its faces must be equal to the rate 

of heat storage.  This is governed by the rate of temperature change with time and the material 

properties, density and specific heat.  For a homogenous isotropic solid whose thermal conductivity is 

independent of the temperature, this leads to the diffusion equation: 
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where ck ρα =  is the diffusivity of the material, ρ  the density, and c the specific heat. 

If we consider a semi-infinite sample (T → 0 as z → ∞) heated with sinusoidally modulated energy 

which is absorbed evenly across the entire sample surface (z = 0), equation 2 can be considered to be 

one dimensional, and has the general solution: 
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In figure 1, the temperature profile with depth is plotted for a typical polymer at regular time intervals 

during a single cycle of the modulated heat input (at 1kHz).  We can see that equation 3 can be 

interpreted as an exponentially damped plane wave propagating in the z direction, with wavelength: 

 
ω
απλ 2

21 =  4 

The damping of the thermal wave is frequency dependent and can be described in terms of the thermal 

diffusion length µ.  This is defined as the distance at which the amplitude has decayed to 1/e of the 

surface value: 

 πλ
ω
αµ 2

2
1=≡  5 

At 1 kHz, for the material in Figure 1, λ1 = 37 µm. 
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Insert figure 1 

. 

 

By varying the modulation frequency, we can effectively select the penetration depth of the thermal 

wave and thus interrogate the sample material to progressively deeper levels.  In figure 2, the 

exponential envelope has been plotted for the same polymer over a frequency range from 0.1Hz to 

1MHz.  In each case, the temperature curve has been normalised to the surface temperature. 

Insert figure 2 

 

Now consider the heterogeneous 1-d case in which a discrete perturbation in the material properties is 

located at depth.  For example, consider a material with the same substrate polymer as in figures 1 and 

2, but with a perturbation located at depth 2µm to 4µm from the surface.  The perturbation corresponds 

to a 5 fold increase in thermal conductivity but with no change in diffusivity.  In figure 3, the 

temperature profiles for this heterogeneous sample are plotted as in figure 1 (The profiles for the 

equivalent homogenous material are also plotted for comparison). 

Insert figure 3 

 

The buried perturbation clearly alters the temperature profiles from the uniform case, and the depth of 

the perturbation can be visually identified.  In practice however, we are not able to explicitly measure 

these thermal profiles as measurements can only be made at the surface where the heat is applied.  

From figure 3 we can see that there is a significant change in signal amplitude at this surface and we 

note that there is also change in the phase between the applied heat flux and measured temperature 

modulation compared to the homogenous case. 

1D solution with heat losses 
In SThM, the 1D solution in equation 3 is of limited practical use as the heat source does not satisfy the 

semi-infinite criteria of heating the entire surface plane i.e. the source dimensions are not large 

compared to the wavelength. Hammiche et al. [2],  accounted for the finite sized heat source by 

extending the simple 1D solution to incorporate heat loss from the edges of the 1D sample.  Only the 

zero frequency case was considered and hence no depth information could be obtained. We now 

generalise this result. The non-steady state 1D differential equation with heat loss h can be written: 
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which has the general solution: 
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For the 1D model, the diffusion length was related only to the diffusivity of the sample and the 

modulation frequency (equation 5).  Introduction of the heat loss term indicates that the diffusion 

length is also be related to the geometry of the probe: 

 

 
hr +

=
2λ  (as r and h both contain the perimeter length)  8 

 

3D solution with heat losses 
An analytical solution for a heterogeneous 3D sample is generally not possible, so a Finite Element 

Model approach using a customised solver has been used. The sample will be effectively semi-infinite 

on the scale of probe size and solution space, which is of the order of µm.  To solve the forward 

problem the FEM must model the semi-infinite domain with sufficient accuracy such that the finite 

boundary of the model does not introduce significant errors.  Infinite elements [4] are the simplest and 

most elegant solution, and surround the finite elements on all but one surface, this being the 

measurement plane.  It is assumed that this measurement surface is thermally insulated and heat can 

only pass into the medium at the probe contact.  In this work the core finite elements are isotropic 8 

node bricks and the infinite elements also have 8 nodes and only one infinite surface. 

To simulate a variety of probe sizes, distributed loads have been used in the form of square arrays 

containing a number of load points. The amplitude of the applied heat flux at each node is determined 

by assuming the probe is made up of smaller probes which cover only a single element and the same 

heat flux is applied through each of the 4 corner nodes.  As these smaller probes intersect at common 

nodes, the overall applied heat flux is found by summing the contributions of these smaller probes.  A 

4x4µm probe is simulated using an array of 25 nodes.  

To investigate the thermal diffusion length limit we need to perform an analysis at a modulation 

frequency such that 0=≈ ff λλ .  If we plot the normalised temperature of the nodes beneath the 

centre of the probe array at various time intervals in the modulation cycle, we can examine the 

temperature profile with depth and determine the thermal diffusion lengths. Figure 4 shows the 

temperature profiles for probes varying in size from 1x1 µm to 12x12 µm.  

 

 

Insert figure 4 

 

 

In each case the applied modulation frequency was 0.1 Hz, but checks were performed to ensure that 

the limit had been reached.  The plots clearly show that increasing the probe size results in a deeper 

penetration of the thermal wave and thus a correspondingly increased sensitivity at these deeper planes. 

The two plots for the 1x1 µm probe (figure 4a & 4b), suggests that in 3D, the diffusion length is 

independent of the thermal properties of the material.  This is in contrast to 1D models as indicated in 

equation 4. 

We need to characterise the situation that involves both temperature modulation and three-dimensional 

heat flow. For this purpose we define an effective diffusion length λω, and it proves possible to express 

this in terms of two other characteristic lengths, one of which is λ1 as defined in equ. (4). The other is a 

�zero-frequency diffusion length�, λ0: consider the limiting case of equation (8) as the frequency is 

reduced to zero. The diffusion length for the lossy system then becomes: 

 

 λ0 → h-1/2 9 

 

Thus even with no modulation, the temperature in the medium falls rapidly with distance from the 

source, with λ0 being governed by the size of the probe. Furthermore, as we have seen from the finite 

element analyses, λ0 is almost independent of the thermal properties of the medium!  
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The three-dimensional finite element analysis leads to the following simple relation: 

 

 λω
2  × ( [λ0

-4+4 λ1
-4]1/2+ λ0

-2) = 2 10 

 

Of course, λ0 is generally less than λ1, and if λ0 << λ1 then we can use the binomial approximation to 

derive the extremely simple approximation � 

 

 λω
  ≅ λ0×[1- 0.5(λ0 /λ1)

4] 11 

 

This implies that we can consider the effect of frequency as lying within one of four �domains�: 

Low frequency (large λ1, small λ0): no significant effect of frequency upon λω, which tends towards λ0. 

Depending on the sample material, if we want frequency discrimination it may be necessary to use a 

probe of large diameter. There will therefore be a trade off between the increased scan depth and a 

reduced planar spatial resolution due to the required larger probe size. For this linear problem, a large 

probe can be synthesised from a number of measurements by a smaller probe; 

(b) Moderate frequency: λω is given by the simple binomial approximation;      

(c) High frequency: the exact equ. is needed; 

(c) Very high frequency (very small λ1, very large λ0): here, another binomial approximation 

applied to the exact equation gives � 

 

 λω
  ≅ λ1×[1- (λ1 /2λ0)

2] 12 

 

tending towards λ1 if either the modulation frequency, or the probe size (and λ0), is very large. 

 

Sensitivity matrix 

For a given change in thermal properties rp kkk −=∆  (where subscripts p and r refer to the 

perturbed and reference cases respectively), there will be an associated change in the measured surface 

temperature amplitude rp TTT −=∆ .  There will also be an associated change in the phase between 

the applied heat flux and the temperature, but we shall only consider the variation in amplitude due to 

the practical difficulties of making accurate phase measurements. 

The ratio of these quantities is defined as the sensitivity: 

 
k

T
s

∆
∆
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The sensitivity will vary with the depth of the material perturbation and with modulation frequency.  If 

we assume that there is a linear sensitivity relationship, then the sensitivity relationship for each 

measurement frequency f can be represented by a set of linear equations: 

 iiff ksT ∆=∆ ,  14  

which can be written in matrix notation as: 

 Skt =  15 

Here t is the vector of the change in surface temperature at each measurement frequency, k is the 

change in thermal properties in each of the discrete elements and S is the sensitivity matrix.  Perturbing 

each element in turn and finding the corresponding sensitivity coefficient for each of the measurement 

frequencies forms the sensitivity matrix.  As we perturb the deeper regions in the material, the 

temperature change will gradually reduce until it is at such a level that it can not be measured above the 

unavoidable measurement noise.  
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Matrix inversion: solving the inverse problem 

To recover the spatially distributed material properties ik∆  from the measured surface measurements 

fT∆  we have to solve: 

  tSk
1−=  16 

In general a large change in k will usually result in only a small change in t and these measurements 

are said to be ill-posed, i.e. many of the elements of the sensitivity matrix are very close to zero. The 

sensitivity matrix is therefore highly ill-conditioned and the true matrix inverse does not exist. In 

Electrical Impedance Tomography, truncated singular value decomposition (SVD) was used in order to 

assess the degree of matrix condition, perform the regularisation, and find its pseudo-inverse [3].  As a 

rule of thumb, the level at which the singular values are truncated is at a level which corresponds to the 

measurement signal to noise ratio. Solution techniques must take the following factors into account: 

1. The matrix S may not be square: in the EIT case the solution grid is finer than the measurement 

grid ("super-resolution") and the set of equations is then underdetermined. 

2. Even when S is square the matrix  is very ill-conditioned: the reconstruction process is ill-posed. 

This is a standard approach which works well in applications (such as EIT) for which the singular value 

spectrum has a pronounced knee so that choosing a suitable cutoff can be done. However, the primary 

disadvantage of the pseudo-inverse technique is that its computation does not scale well: the cost of a 

straightforward implementation of the technique is proportional to the cube of the number of 

unknowns, and for the thermal problem this leads to estimates of 6 Tbytes of storage and 2000 years to 

invert the matrix!  

It is not logically necessary to produce a full singular value decomposition of S. Once the cutoff value 

has been chosen, and experiments made to determine how many singular values (say M) are likely to 

fall above this cutoff, then only the largest M singular vector/value triplets are needed. Standard 

algorithms exist for this; but these still require the full sensitivity matrix S. However, S is highly 

structured. An iterative technique was developed for computing the M largest singular triplets which 

needed only values of Sv (and S'v) for a vector v; these matrix-vector products can be computed 

without forming S. Since the partial SVD decomposition can be carried out offline (it depends only 

upon S, not upon the sample measurements t) the time taken for a given k is also low. 

The Best Linear Estimate Technique 

The SVD reconstruction technique itself is less effective than for the EIT problem, because the SVD 

spectrum has no sharp knee. An algorithm based on the Best Linear Estimate (BLE) method has 

therefore been used to solve the inverse problem. The BLE or Stochastic Inverse algorithm addresses 

the illconditioning by explicitly considering the inaccuracies in the measurement of the vector t, 

treating these inaccuracies as noise. It addresses the equations: 

      Sk = t + n        17 

where n represents the noise and is supposed random; and seeks the "best" (in a stochastic least squares 

sense) linear reconstruction of k. This yields the defining equations: 

 (SWS' + mI)k = t       18 

where W is a matrix which itself depends upon k, and m is related to the estimated noise level and I is 

the identity matrix. 

W represents the expected value of k2 taken over all noise instantiations. Estimating W requires a 

"world model": prior knowledge of the class of solutions sought. This is the major advantage of the 

BLE approach: the technique can be tailored to the specific application. Given a world model and an 

estimate of the noise in the measured response, an iterative search technique is used to produce a 

solution to the original problem which is a best fit in a linear sense to this model. 

Computationally we considered three cases: 1) small occlusions in the sample; 2) layered samples 

based on a large grid; and 3) a 1-D layered system where the layers are seen as single entries in the 

solution vector. This system stems from the physical model in which the measurement probe is 

effectively infinite in size. Cases 1 and 2 generate very large computational problems and differ in the 
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world model appropriate to the solution. Case 3 has the same world model as Case 2, but is 

computationally very much simpler.  

The sensitivity matrix  is large for the 3-D formulation. The size is ( ) ( )x y d x y fn n n n n n× × × × ×  

where nx is the grid size in the x direction, ny the grid size in y direction, nd the grid size in depth, and nf 

the number of modulation frequencies. For a 32x32x8 grid with 8 frequencies, the matrix size is 226 ≈ 

67.106 elements. The structure of the matrix was exploited in order to reduce the time taken to solve the 

problem. The problem was formulated using the SVD decomposition of the sensitivity matrix. The full 

SVD decomposition is not available due to its expense in both time and memory but about 500 of the 

largest SVD values were generated. The matrix has a double Block Toeplitz structure with only 

( )x y d fn n n n× × × distinct elements. By exploiting the structure of Toeplitz matrices  the matrix 

vector multiplications can be performed at FFT speed.  

 

Experimental 

Comparison of SVD and BLE with model data 
The Singular Value Decomposition and Best Linear Estimator methods were compared for a solution 

space (8x8x8 cubic voxels of side 1µm) which was sufficiently small that SVD inversion of the 

sensitivity matrix was feasible. Data vectors for 8 modulation frequencies were calculated for a 

uniform isotropic medium (k=0.142  Wm-1K-1, α=0.11x10-6 m2s-1) containing two 2µm sided cubic 

inclusions which represent a 100% change in thermal conductivity.  These were positioned at different 

depths.  To avoid inverse-crimes5 a slightly larger model was used to compute the simulated data sets 

compared to that used to generate the sensitivity matrix.  Figure 5 shows a comparison between the two 

reconstruction methods.  The problem with the small 1x1µm probe is demonstrated when multiple 

inclusions are reconstructed as the signal from the superficial inclusion dominates signals from deeper 

planes.  However, as the probe size is increased to 12x12µm, the true extent of the superficial inclusion 

is found and the deeper inclusion can be detected.  The improvement in image sharpness with the BLE 

reconstruction is self-evident. 

 

 

Insert figure 5 

 

 

 

 

BLE reconstruction with 1D (layered) samples 

In scanning thermal microscopy, a modulated heat input is applied to the sample at frequency ω and the 

3rd harmonic temperature response is measured at the surface (see 3ω method [6] in appendix).  The 

probe is scanned across the sample in a raster fashion so that a 2-d image can be formed as shown in 

Figure 6.  By applying the heat over an range of increasing modulation frequencies the penetration 

depth of thermal wave progressively shortens.  In this way it is possible to obtain 3-d information 

regarding the sub-surface features in a non-destructive way. 

 

 

 

 

Insert figure 6 

 

Initial efforts have concentrated on the reconstruction of real samples with layered structures 

(effectively 1D) as considerable difficulties were met in the fabrication of 3D test samples with known 

morphology  Several suitable samples have been produced by the industrial partners within this 

consortium.  These include: 
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• Bulk PET (poly(ethylene terephthlate)) [1 mm thick sheet] 

• Steel [3 mm thick] 

• GLC sample: multilayered film consisting of  5 µm thick PET 

 40nm Aluminium 

      5µm adhesive 

      25µm PET 

• 25 µm PET on a steel substrate (500 µm) 

• Barrier packaging film #1:  The total thickness is 46 µm, The composition is not completely 

known but it contains polyamide and polyethylene.  The thickness' of the six different successive 

layers are: 3 µm; 0.5 µm; 11 µm; 6,5 µm; 1 µm and 24 µm. 

• Barrier packaging film #2: The total thickness is 117 µm.  At the outer side is a 17 µm thick 

layer with a melting point of 255 °C (PET).  Then follows a print layer, 3 µm thick.  The third 

layer is an adhesive, 2 µm thick.  Layer 4 is 7 µm thick aluminium.  Layer 5 is an adhesive with a 

thickness of 2 µm and a melting point slightly below 70 °C.  Layer 6 is at the back of the film. It is 

PE-grade with a thickness of 86 µm and it has a melting point of 112 °C. 

 

Cross-sectional images of the barrier packaging films are shown in Figure 7.  Small pieces of both 

films have been embedded in epoxy resin and then thin slices perpendicular to the film have been cut 

by means of a microtome.  The slices are photographed in transmitted light on a microscope to show 

the different layers of the film.  They are both examples of 'high-tech films' which are routinely dealt 

with by the end user community. 

 

 

 

Insert figure 7 

 

Data has been collected from these samples using AC SThM over the modulation frequency range 

10Hz to 10kHz. Measurements were carried out using purpose-built electronic instrumentation together 

with an EG&G lock-in amplifier model 5302 with 1 MHz bandwidth and nth harmonic (including 3rd 

harmonic) detection capability. Positioning of the probe on the surface sample with constant force 

feedback was carried out using a ThermoMicroscopes Explorer AFM. A Wollaston wire resistive 

thermal probe was used as a highly localised heat source, so as to apply a modulated temperature 

program to the surface of the sample at the contact point. Based on  calibration using the melting points 

of a number of polymers, the amplitude modulation of the temperature is estimated at 10 K. Probe 

current is modulated at frequency ω. The voltage across the probe, at the third harmonic frequency 3ω, 

is monitored by the lock-in amplifier. A Visual Basic program, using ThermoMicroscopes �SPMTools� 

routines, was written to ramp up the frequency automatically, and to log data through the microscope 

controller. As these samples are layered structures, it is appropriate to collected the data at only a single 

point and use the 1D (lossy) reconstruction.  In Figure 8, the raw temperature amplitude data is plotted 

which shows that the different samples give quite different frequency responses.  It is these differences 

which facilitate the subsurface imaging.  It is interesting to note that the PET on steel sample gives an 

almost identical response to bulk PET.  This suggests that the 25µm PET layer is too thick for the steel 

to be detected below and gives an indication as to the maximum scanning depth for this probe size.  It 

is also of interest that overall, both the packaging films give a lower temperature amplitude than the 

bulk steel sample. 

Insert figure 8 

Using these data sets, we can normalise them to a reference.  For example we can normalise the GCL 

sample (which is largely PET with a 40nm layer of aluminium and 5µm adhesive layer) to the bulk 

PET sample.  The reconstructed image should then indicate the percentage change in thermal 

conductivity of the GCL sample referenced to PET.  In order to validate the reconstruction we can 
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generate simulated data using typical thermal properties of constituent materials.  In Figure 9, the real 

and simulated images have been reconstructed using the BLE method with 128 independent frequency 

measurements which results in a 128 element 1-d image. 

 

Insert figure 9 

 

The reconstruction of the virtual sample clearly identifies the high conductivity Al layer, but not the 

adhesive layer immediately below the Al (the thermal properties of this layer were not known). In the 

reconstruction of the data from the real sample, the high conductivity Al layer is again seen, with a 

backing layer representing the adhesive. The changes at 14 -19 µm and at > 28 µm are artefacts of the 

reconstruction method, which decrease as the number of elements in the reconstruction increase. These 

results show that imaging of layered materials is possible. There are, however, a-priori reasons to 

suggest that 1-d reconstruction techniques are non-optimal. The sensitivity matrix formulation of the 

problem contains the implicit assumption that a change in the thermal properties of a single element 

does not affect the heat flow through the material. This is a reasonable assumption for a 3-d 

reconstruction of a material with discrete inclusions, but is clearly not a good assumption for a 1-d 

reconstruction. 

In Figure 10, the image reconstruction of the barrier packaging samples are shown.  The data has been 

normalised to reference data which was measured on the underside (substrate side) of the sample.  The 

substrate is sufficiently deep to be considered infinitely thick. In these two cases, a number of layers 

have been identified within each material, but the limitations of 1-d reconstruction limit the accuracy 

with which both the position and conductivity of each layer can be estimated. 

Insert figure 10 

 

 

Attempts at obtaining a data set which is suitable for 3D reconstruction is still continuing.  Problems 

have been encountered which are primarily due to the difficulties in fabricating suitable test samples 

with known morphology. The requirements for a test sample are 1) the surface should be independent 

of the position of any inclusion (because current scanning thermal microscopes are unable to 

distinguish between topological changes and thermal changes) and 2) an object or objects of known 

thermal properties must be placed within the material at a known position. This has proved to be 

unexpectedly difficult (particularly the surface topography condition), and requires further effort. The 

latest results can be found on the TASM web-site. http://www.shef.ac.uk/uni/academic/I-M/mpce/tasm 

Summary 

The scanning thermal microscope measures thermal properties in a plane, which are a non-linear 

projection of the three-dimensional properties of the material onto the surface. The resulting data is 

frequency dependent, which gives access to the third dimension. Decoding this data to produce an 

image of the thermal properties in three dimensions is an extremely large computational problem. The 

use of iterative methods to solve the inverse problem has been shown to be feasible, but still requires 

testing with non-layered materials of known morphology.
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Appendix: the 3ω method applied to Scanning Thermal Microscopy 

 

Insert figure 11 

The  heating current is: 

 i = I0 + Iωcos(ωt) 

and the heat flux Q is given by i2R: 

( )Q
R

I I I I t I t= + + +
2

2 4 20

2 2

0

2

ω ω ωω ωcos( ) cos( )  

Assuming the heat flux at these 3 frequencies is constant, this will lead to a surface temperature 

fluctuation T at the probe 

T T T t T t= + + + +0 2 2ω ω ω ωω φ ω φcos( ) cos( ) . Now R will vary due to this temperature 

fluctuation as: 

[ ]R R T Ta= + −0 1 α( )  

where Ta is the ambient temperature (and can be set to zero), and α is the temperature resistivity 

coefficient for the probe.  The voltage across the resistor is given simply as v = iR, which in this case 

is: 

[ ] ( )0 cos( ) 1V I I t R Tω ω α= + +    

substituting for T 

[ ] ( )0 0 2 2cos( ) 1 cos( ) cos(2 )w tV R I I t T T t Tω ω ω ω ωω α ω φ φ= + + + + + +    

[
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xpanding and grouping frequency terms gives: 
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The 2ω component of the measured voltage v will therefore be a complicated combination of the ω and 

2ω temperature amplitudes with a corresponding phase combination, given by: 

 2 sin(2 )V K tω ωω φ θ= + +  

where  

K I R T I R T I R T= + −
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The 3ω signal which gives T2ω  and φ ω2 directly, measures how the resistance changes with thermal 

power rather than just input current. Its value is independent of R0, and thus, independent of errors 

based on inhomogeneous temperature distributions in sample or probe. However, the signal is 

relatively weak. 
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Figure 1. 1D temperature profiles with depth during a cycle of a 1kHz modulated heat input.  

Material properties: k = 0.142 Wm-1K-1, α = 0.11e-6 m2s-1.  In practice a DC offset is applied to that 

the probe temperature is always above ambient, but this has been ignored for clarity 

Figure 2. 1D temperature profile envelope plotted for the same material as in figure 1 over a range 

of modulation frequencies (0.1 Hz to 1 MHz).  Each profile has been normalised to the 

surface temperature. 

Figure 3. 1D temperature profiles for an inclusion buried at depth 2µm to 4µm within the substrate 

as described in figure 1 (also shown).  The inclusion corresponds to a 5 fold increase in 

thermal conductivity compared to the substrate, but with no associated change in thermal 

diffusivity.  The DC offset has been ignored for clarity. 

Figure 4 Temperature profiles for various sized probes and two homogenous materials at 0.1Hz 

(mat-1: k=0.142  Wm-1K-1, α = 0.11x10-6 m-2s-1;  Mat-2:  k=0.0238 Wm-1K-1, α = 

18.4x10-6 m-2s-1).  a) 1x1µm probe - mat1, b) 1x1µm probe � mat2, c)4x4µm probe - 

mat1, d)6x6µm probe - mat1, e)8x8µm probe - mat1, f)12x12µm probe - mat1 

Figure 5.   3D reconstruction of computer simulated data sets.  The ideal image represents the FEM 

model thermal distribution from which the simulated data sets are generated.  Results for 

two different probe sizes (i.e. contact area) are given for the SVD and BLE 

reconstruction methods. 

Figure 6.   Scanning Thermal Microscopy.  The probe is scanned with constant force, variations in 

heat flow out of the probe are measured by monitoring the Wheatstone bridge voltage 

which is then used to create contrast in the thermal image. 

Figure 7.   'Edge-on' transmitted light micrograph of the barrier (sausage and coffee) packaging 

film samples.  The samples appear curved although the original film is actually flat. 

Figure 8.   Temperature amplitude variation with modulation frequency for the layered samples 

studied. 

Figure 9.   1-d BLE reconstruction of a simulated and real sample corresponding to the GCL film 

(5mm PET, 40nm Al, 5µm adhesive, 25µm PET) referenced to bulk PET. 

Figure 10.   1D BLE reconstruction of the barrier packaging samples referenced to the substrate side 

of each sample. 

Figure 11.   No caption. 
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