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Abstract: 

 

An Equilibrium problem with an equilibrium constraint is a mathematical construct that 
can be applied to private competition in highway networks. In this paper we consider the 
problem of finding a Nash Equilibrium regarding competition in toll pricing on a network 
utilising 2 alternative algorithms. In the first algorithm, we utilise a Gauss Siedel fixed 
point approach based on the cutting constraint algorithm for toll pricing. In the second 
algorithm, we extend an existing sequential linear complementarity approach for finding 
Nash equilibrium subject to Wardrop Equilibrium constraints. Finally we consider how 
the equilibrium may change between the Nash competitive equilibrium and a collusive 
equilibrium where the two players co-operate to form the equivalent of a monopoly 
operation.  
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1. INTRODUCTION 

 

The motivation of the research in this paper stems from the observation that in recent 

years there has been increasing amount of private sector participation within areas that 

are conventionally the privy of the public purse. The driving force behind this change is 

brought about the higher efficiency of the private sector coupled with increasing public 

pressures on governments for accountability and the corresponding need to derive value 

for money from their various budgetary commitments which are ultimately funded by the 

tax paying public. 

 

In highway transportation, privately operated roads are not novel concepts [1]. However 

there has been little analysis on this topic in terms of the competition between private 

sector providers and the equilibrium outcomes, save for theoretical studies by economists 

restricted to simplified networks (e.g. [2]).  In reality, there have already been examples 

of private sector involvement in road construction and operation around the world [3]. In 

return for the private capitalists funding large amounts of initial capital investments for 

the construction of the road, they are contractually allowed to collect tolls, for some 

agreed duration from users when the road is finally opened [4]. In an era when 

government budgets are becoming increasingly tight and with traffic congestion 

becoming more of a problem in many major cities, the private sector is recognised as 

having an increasing role to play in the provision of traditional highway transportation 

investment. When the private sector is tasked with the provision of such services and in 

competition with others simultaneously doing the same, the concept of Nash equilibrium 

[5] can be used to model the equilibrium decision variables offered to the market. 

 

In this paper we consider the problem of toll and capacity optimisation in modelling the 

situation of private sector participation in the operation of transportation services. In the 

case of toll only competition, we provide two heuristics for the solution of the problem. 

One of these heuristics is then further extended to handle competition in both tolls and 

capacities. We present several examples to illustrate the performance of these heuristics. 
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In addition, we consider the effect of collusion in the setting of tolls and propose an 

intuitive structure which allows this response to be modelled.  

 

The structure of this paper is as follows. Next we define in detail the problem that we 

consider in this paper along with the concept of Nash Equilibrium from [5] which serves 

as the foundation for the type of non cooperative games that we discuss. Section 3 then 

develops two heuristic algorithms for the problem. Section 4 utilises two numerical 

examples to illustrate the performance of the algorithm. In Section 5 we relax the notion 

of non-cooperative behaviour and consider if it is possible for the players to signal, 

through their selection of strategic variables, to their competitor, their intention to collude 

such that they end up in a monopolistic equilibrium. Finally in Section 6, we summarise 

our results and provide directions for further research.  

2. Problem Definition 

Our problem is to find an optimal equilibrium toll and/or link capacity for each private 

operator1 who separately controls a predefined link on the traffic network under 

consideration. We can consider this problem to be a Cournot Nash game between these 

individual operators. The equilibrium decision variables can be determined using the 

concept of Nash equilibrium [5] which we define as follows: 

 

Nash Equilibrium 

In a single shot normal form game with N players indexed by i,j∈{1,2,...,N}, each player 

can play a strategy i iu U∈  which all players are assumed to announce simultaneously. Let 

1 2( , ,..., )Nu u u u U= ∈  be the combined strategy space of all players in this game and let 

( )i uψ be some payoff or profit function to i∈{1,2,...,N} player if the combined strategy is 

played. The combined strategy tuple is a Nash Equilibrium 
1 2

* * * *( , ,..., )Nu u u u U= ∈  for the 

game if the following holds 

   
                                                 
1  As the research transcends both game theory and market structures in the context of highway 

transportation, we will use the terms “private operators” and “players” interchangeably throughout.  
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 * * * *( , ) ( , ) , , {1,2,... },i i j i i j i iu u u u u U i j N i jψ ψ≥ ∀ ∈ ∀ ∈ ≠  (1) 

 

Equation (1) states that a Nash equilibrium is attained when no player in the game has an 

incentive to deviate from his current strategy. She is therefore doing the best she can 

given what her competitors are doing [6].  

 

Problem Definition 

We now outline the problem we wish to solve as viewed by each operator with 

equilibrium conditions imposed on the users’ route choice.   

 

Define:  

A : the set of directed links in a traffic network,  

B : the set of links which have their tolls and capacities optimised,  B A⊂  

K : the set of origin destination (O-D) pairs in the network 

v : the vector of link flows [ ],av a A= ∈v   

β : the vector of link capacities [ ],a a Bβ= ∈β  

τ : the vector of link tolls [ ],a a Bτ= ∈τ  

c(v,β) : the vector of monotonically non decreasing travel costs as a function of link flows   

[ ( , )],a a ac v a Aβ= ∈c  

μ : the vector of generalized travel cost for each OD pair [ ],k k Kμ= ∈μ  

d : the continuous and monotonically decreasing demand function for each O-D pair as a 

function of the generalized travel cost between OD pair k alone, [ ],kd k K= ∈d  and 
−1D : the inverse demand function 

Ω : feasible region of flow vectors, (defined by a linear equation system of flow 

conservation constraints). 

( )iI β : the capacity investment cost function  
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If we assume that each player controls2 only a single link in the network then, following 

Yang et al [7], the optimisation problem for each player, which represents the profit for 

the operator after investment costs of capacity3  is formulated as follows: 

 

 
,

( ) ( ) ( ),Max
i i

i i i iv I i N
τ β

ψ τ θ β= − ∀ ∈τ,β τ,β  (2) 

Where iv is obtained by solving the variational inequality (see [8]-[9]) 

 ( ) ( ) ( ) ( ) ( )* * * *, , 0  for ,
T T−⋅ − − ⋅ − ≥ ∀ ∈1c v τ,β v v D d τ,β d d v d Ω  (3) 

 

The objective for each firm (payoff) is the difference between the toll revenue obtained 

by charging tolls on links operated by the thi player and the investment cost of capacity. 

The scalar θ  allows for an easy conversion of the investment cost of capacity via the 

investment function from money values into time.  

 

Note that the vector of link flows can only be obtained by solving the variational 

inequality given by (3). This variational inequality represents Wardrop’s user equilibrium 

condition which states that no road user on the network can unilaterally benefit by 

changing routes at the equilibrium [10].  Throughout this paper, we make the additional 

simplifying assumption that the travel cost of any link in the network is dependent only 

on flow on the link itself so that the above variational inequality in (3) can be solved by 

means of a convex optimisation problem [11].                

 

In the case when we have operators who compete only in maximising their revenues by 

charging tolls then the payoff function for each player would be the toll revenue alone 

and this is given by  

 ( ) ( ) ,i i iv i Nψ τ= ∀ ∈τ,β τ,β  (4) 

 

                                                 
2 Control is used as a short hand to imply that the firm has been awarded some franchise for operating the 

link.  
3 Costs of toll collection could easily be accounted for in the model but ignored here for simplicity. 
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together with the constraint as in (3) above.  

 

3. Two Heuristic Algorithms for EPECs 

 

The problem we have defined in the foregoing is in fact an Equilibrium Problem with 

Equilibrium Constraints (EPEC) [12]. In essence these are problems of finding 

equilibrium points when the constraints define the overall system equilibrium. The study 

of EPECs has only just recently surfaced as an important research area within a field of 

mathematics but has significant practical applications elsewhere.  

 

While algorithms with convergence proofs have been proposed recently for EPECs ([13]-

[14]), they have not been applied to problems that occur within transportation. In this 

paper, we propose two alternative heuristics for the resolution of the problem.  

 

The first algorithm is the diagonalisation algorithm which is a modified version of the 

non linear Gauss-Siedel method (as discussed in e.g. [15]-[16]). The second algorithm is 

a heuristic derived from reformulating the standard Cournot Nash game from economics 

as a complementarity problem and solving it using a sequential linear complementarity 

programming approach. Note that the diagonalisation algorithm can be used for both 

simultaneous toll and capacity selection as well as toll level selection only while the 

second approach is restricted to the toll level selection problem only.   

 

Diagonalisation Algorithm (Algorithm 1) 

 

One of the first algorithms introduced for this problem was that of decomposing the 

problem into a series of interrelated optimisation problems and subsequently solving each 

individually.  This is also known as a fixed point iteration algorithm which has also been 

referred to as the Gauss-Jacobi algorithm. In economics, Harker [17] popularised this 

algorithm for solving a Cournot Nash game. In a similar fashion, Cardell et al [18] and 
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Hobbs et al [19] have used the diagonalisation algorithm to solve EPECs arising in the 

deregulated electricity markets. 
 

The algorithm is presented as follows: 
 

DIAGONALISATION ALGORITHM  

Step 0: 

 

Set iteration counter 0k = . Select a convergence tolerance parameter, 

ε(ε>0). Choose a strategy for each player. Let the initial strategy set be 

denoted 
1 2( , ,..., )

N

k k k ku u u u= . Set 1k k= + and go to Step 2, 

 

Step 1: 

 

For the thi  player i∈{1,2,...,N}, solve the following optimization 

problem: 
1 max ( , ) , {1, 2,... },

i i

k k
i i i ju U

u u u i j N i jψ+

∈
= ∀ ∈ ≠  

Step 2: 

 
If 1

1

N
k k
i i

i

u u ε+

=

− ≤∑  terminate, else return to Step 1. 

 

In step 1, we utilise the Cutting Constraint Algorithm (CCA) [20] to solve the 

optimisation problem for each player holding the other player’s strategic variables fixed. 

Further details regarding the CCA are provided in the appendix to this paper.  

 

The convergence proof of the Diagonalisation algorithm when applied to single level 

Nash equilibrium problems can be found in [21]- [22].   However the proofs depend on 

certain conditions that may not be satisfied in an EPEC, particularly the concavity of 

payoff functions. In fact, convergence of the algorithm relies on the concept of diagonal 

dominance of the Jacobians of the payoff functions [23]4, which intuitively implies that a 

player has more control over his payoff functions than do his competitors.  Therefore we 

propose this algorithm to be a heuristic approach for the EPEC at hand. 

 

 

                                                 
4 Theorem 4.1, p 280  
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Sequential Linear Complementarity Problem Algorithm (Algorithm 2)  

 

Since the game between the operators in this paper is akin to a Cournot Nash game, the 

second algorithm reformulates the Cournot Nash game as a complementarity problem. 

Adopting this approach, Kolstad and Matthisen [24] developed a sequential linear 

complementarity problem (SLCP) approach to solve the resulting reformulation. At each 

iteration, the main problem is linearised (using a first order Taylor expansion) at a given 

starting point. Then the sub problem is solved as a linear complementarity problem for 

which the algorithm of Lemke [25] can be applied.  As far as we are aware, this is the 

first application of the algorithm to the EPEC.  

 

To demonstrate the approach, recall that the profits of the firm i  is given by (4). The first 

order conditions of a profit maximum for each firm are therefore given by (5)-(7) as 

follows :- 

 

 0i
i

i

f
ψ
τ

∂
= − ≥

∂
 (5) 

 0i
i

i

ψ τ
τ

∂
=

∂
 (6) 

 0iτ ≥  (7) 

 

Note that these first order conditions define a complementarity problem (CP) as 

characterized by the system given in (8):  

 

Find  Nτ +∈ℜ given : N Nf R R+ →      such that  

 
( ) 0

( ) 0
0

T τ
≥

≥
≥

f τ

τ f
τ

 (8) 

 

If we denote the linearization of f at 0τ (some arbitrary starting vector of tolls) using the 

first order Taylor expansion, then we obtain 0 0 0 0( / ) ( ) ( )( )Lf f fτ τ τ τ τ τ= + ∇ − . Hence, 



 9

following [24], the resulting Linear Complementarity Problem (LCP) is to find 
jτ +∈ℜ such that  

 
0( / ) ,

0

( ) 0T

Lf q M

q M

τ τ τ
τ
τ τ

= +
≥

+ =

 (9) 

Where 0 0 0( ) ( )q f fτ τ τ= − ∇  and 0( )M f τ= ∇  

In summary the proposed algorithm is as follows 

 
SEQUENTIAL LINEAR COMPLEMENTARITY PROBLEM ALGORITHM 

Step 0: Choose some starting vector of tolls 0τ . Select a 

convergence tolerance parameter, ε(ε>0),  and set 

1k k= + and go to Step 2, 

Step 1: Use finite differencing approximation to obtain ( )kf τ  

and ( )kf τ∇  

Step 2: Solve the LCP (9) to obtain 1kτ +  

Step 3: Check convergence: If maximum of 1( )kf τ ε+ < , 

terminate else set 1k k= +  and  go to Step 1 

 

Note that in order to solve the LCP, we require both the Jacobian of the profit function 

( )kf τ  for each firm in the game at iteration k and the Hessian ( M ). To do so, we solve a 

traffic assignment problem at kτ and perturb the tolls by using the method of central 

differences (forward and backward) to approximate the gradients. The underlying 

assumption here is that the derivatives exist and can be approximated in this way.  

 

Additionally, this algorithm is only applied to the situation when we consider the 

maximisation of total revenue from tolls, ignoring any competition in capacity selection. 

This stems from the fact that when both tolls and capacity are simultaneously optimised 

by competing players, the problem is no longer a complementarity problem but in fact a 

Variational Inequality and it is not possible to apply this algorithm in that case.  
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As with the diagonalisation approach, the convergence proof of this algorithm relies 

specifically on the concavity of the payoff functions of each firm [24]5. While this 

assumption is usually acceptable in modelling the classical Cournot Nash game for which 

it was developed, it may not be satisfied in a general EPEC setting. Furthermore we have 

made use of finite differencing to obtain derivatives. For these reasons, therefore, our 

proposed algorithm is to be viewed as a heuristic. In terms of implementation, to solve 

the SLCP in Step 2, we used the PATH solver [26] within MATLAB.  

4. Numerical Examples 

 

In this section, we provide two examples of how the proposed heuristics are used to solve 

for the optimal tolls and capacity. In addition, we compare the equilibrium outputs under 

the scenarios of competition, monopoly and under the objective of (second best) social 

welfare maximisation.  

 

In the case of monopoly, we assume that the there is a single private operator controlling 

the predefined links in the network. Hence this is a simpler problem that can be solved 

directly using the CCA (see Appendix A) or any derivative free direct search method 

(e.g. Hooke Jeeves direct search [27] or Nelder Mead Simplex algorithm [28]). For the 

results presented here, the CCA was utilised.  

 

In the case of social welfare maximisation, the central planner solves the following 

problem.  

 
( )

1

0
Max ( ) ( )

. .
,

0

kd

a a a
k K a A

d x c v v

s t

τ

τ τ

−

∈ ∈

−

∈ Ω

≤ ≤

∑ ∑∫

v d
 (10) 

 

                                                 
5 Theorem 1, p 741 
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Where τ is the pre-specified upper bound on tolls on tolled links, [ ],a a Bτ τ= ∈ . The CCA 

algorithm can be utilised for this problem. 

 

Example 1  

 

The first example is taken from [29]. The link specific parameters and the elastic demand 

functions can be found therein. This network has 18 one way links with 6 origin 

destination pairs (1 to 5, 1 to 7, 5 to 1, 5 to 7, 7 to 1 and 7 to 5).  

 

Two separate scenarios are considered in this numerical example. In Scenario 1, Links 3 

and 4 shown as dashed lines in Figure 1 are the only links in this network that are subject 

to tolls.  In Scenario 2, Links 7 and 10 shown in an alternative style of dashed links 

represent the only links subject to tolls in the network.  Note that in all which follows we 

set the maximum allowable toll to be 1000 seconds.  

 
Figure 1: Network for Example 1 (Koh et al, 2007)  

 
 

 

 

 

 

 

 1 
2 

3 
6 11 7 

94 

5
14 

13 
17 

16 

18 

15 
8 

10 12 

1 2 5 

3

4

76 



 12

Table 1: Comparing Solution by Alternative Algorithms for Example 1 [29]. 

(Tolls in seconds)  
Algorithm Diagonalisation6 SLCP7 

 Toll Iterations  Iterations 

Scenario 1 Link 3 530.63 25 530.55 6 

 Link 4 505.65  505.62  

Scenario 2 Link 7 141.37 25 141.36 6 

 Link 10 138.29  138.29  

 

Table 1 shows the resulting tolls and number of iterations required for each algorithm for 

the Nash solution.  As shown the resulting tolls are almost identical and any differences 

are due to the convergence criteria used.  SLCP uses fewer iterations as it does not rely 

on a diagonalisation approach and this would suggest the algorithm is more efficient.  

 

Table 2 shows the tolls, revenues collected and the change in social welfare for each toll 

pair under (a) the competitive case, (b) the monopoly case and (c) the second-best 

welfare case where operators are assumed to co-operate to maximise social welfare. 

 
Table 2: Tolls, Revenues and Welfare Changes under Alternative Market Structure Assumptions  

(Tolls in seconds, Revenue and Welfare in seconds/hr)  

  
Competition: Revenue 

Maximisation 

Monopoly:  Revenue 

Maximisation 

Second Best Welfare 

Maximisation 

Scenario Link Toll Revenue
Welfare 

Change 
Toll Revenue

Welfare 

Change 
Toll Revenue

Welfare 

Change

1  3 530.63 461,882 87,633 1000 789,743 -4,153 510.93 449,583 87,818

  4 505.65 420,293  1000 641,860  488.13 407,301  

Total Revenue   882,175   1,431,603   856,883  

2  7 141.37 105,295 187,422 713.19 280,255 150,587 181.83 116,203 202,311

 10 138.29 100,848  709.53 266,465  179.30 110,580  

Total Revenue   206,143   546,720   226,783  

                                                 
6 Using the diagonalisation algorithm with CCA and a termination tolerance of ε  = 1e-06. 
7 Using the SLCP algorithm with a termination tolerance of ε  = 1e-06. 
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Table 2 shows that when there are no alternative routes available (as in the case of 

Scenario 1 where Links 3 and 4 are tolled), the monopolist can charge the maximum toll 

allowable.  In fact the upper bound of the toll here is a binding constraint on the revenues 

in the monopoly case.  However in the case of two competing operators, each player has 

no alternative but to succumb to the strategy charged by the other and hence ultimately 

both are only able to charge a much lower toll (50% lower than the monopolist’s toll).  

 

The overall welfare change for Scenario 1 under competition in fact approximates that of 

second best social welfare maximisation. It is also clear that as expected society as a 

whole is worse off under monopoly. 

 

The more interesting case emerges in Scenario 2 when there is an alternative link 

available for travel into destination Zone 5 which is left untolled (Link 17) in Figure 1.  

Even the monopolist controlling Links 7 and 10 together cannot charge the maximum 

allowed toll of 1000 seconds on each link to maximise his revenue. In the case of 

competition, Table 2 shows that the tolls charged and the total revenue earned are even 

lower than that under that of a central planner attempting to maximise social welfare in a 

second best case. It is an interesting observation here that the competition has the effect 

of driving tolls down below the socially optimal level.  However the change in social 

welfare is also lower under competition. 

 
INDEX OF RELATIVE WELFARE IMPROVEMENT 

 

In [30], a relative improvement measure ω was defined as the ratio of the overall welfare 

gain under second-best regulation compared to non-intervention, and the overall welfare 

gain under first-best regulation where all links are tolled at their marginal cost toll 

compared to non-intervention. For this model, the overall welfare gain under first-best 

pricing (denominator of ω ) is 460,853 seconds. The ω values for the three situations of 

competition, monopoly and welfare maximisation are as shown in Table 3.   
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Table 3: Index of Relative Welfare Improvement under alternative scenarios 

Test Pair Competition  Monopoly  Second Best Welfare 

Maximisation 

Scenario 1 0.19 -0.01 0.19 

Scenario 2 0.41 0.33 0.44 

 

This enables us to confirm that the welfare gains under second best welfare maximisation 

and under competition for both scenarios are similar.  

 

Example 2 

 

Our next example is based on a network with 4 OD pairs and 11 one way links with 

parameters taken from Yang et al [7]. In this example there are 3 players, each 

controlling a single link on the network shown in Figure 2.  

 

Figure 2: Network for Example 2 [7]  
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In the problem setting, players simultaneously optimise both tolls and capacity to 

maximise total profit as given by equation (2).  In particular, θ is given as 0.114 which is 

common to all players and the investment cost functions take the form 0,( )i i iI tβ β= . In 

other words, the investment cost is dependent on the free flow travel time ( 0,it ) for each 

link. The free flow times for the 3 links 9, 10 and 11 (shown as dashed lines in Figure 2) 

are 11,11 and 15 secs respectively.  

 

Full details of the link parameters and the OD (with elastic demands) can be found in [7].  

In that paper, the authors employed a heuristic based on sensitivity analysis to solve this 

problem. The comparison against monopoly and competitive situations can be found in 

[7] and are not reproduced here.  

 

For reasons mentioned above we have not been able to implement the SLCP algorithm to 

this problem. Hence only the diagonalisation method is employed for this example and 

the results are shown in Table 4 where it is compared against those reported in [7]. 

 

Table 4: Comparing Results from [7] with Diagonalisation Algorithm for Toll and Capacity Selection 

(Tolls in seconds, Capacity in pcus and Profit in secs/hr)  

 Results Reported in [7] Diagonalisation Algorithm8 

 Toll Capacity Profit Toll Capacity Profit 

Link 9 4.52 151.60 301.43 4.52 151.74 303.30 

Link 10 4.76 193.04 417.14 4.76 193.01 418.89 

Link 11 2.97 61.88 25.93 2.97 61.29 27.69 

 

We believe that our results differ slightly from Yang et al due to the numerical 

differences arising from utilising different convergence criteria used in solving the user 

equilibrium problem. However the numerical differences are reasonably insignificant and 

we can conclude that the proposed diagonalisation algorithm does provide solutions that 

are similar to those reported by Yang et al. The number of outer loops of the 

                                                 
8 Using the diagonalisation algorithm with CCA and a termination tolerance of ε  = 1e-06. 
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diagonalisation algorithm was 25. However, the number of iterations of the method used 

by Yang et al were not reported in their paper.  

5. Possibilities for Collusion between operators 

 

This section of the paper investigates collusion and considers whether it is possible for 

operators to receive signals from a competitor to achieve the revenues associated with 

monopoly control over their networks. In this section of the paper, our examples are 

restricted to games with two players.  To this effect, we introduce a scalar, α ( 0 1α≤ ≤ ), 

which represents the degree of cooperation between the players when they optimise their 

toll revenues for links under their control.  

 

With α , we can consider a more general form of the expression for the payoff function 

(4)  given in (11) 

 ( ) ( ) ( ( ) ), , ,i i i j jv v i j N i jψ τ α τ= + ∀ ∈ ≠τ,β τ,β τ,β  (11) 

 

(11) reduces to the familiar form of (4) when α = 0; when α= 1, the objective of each 

player is to maximise the total toll revenue of both players.  Note that he can only 

however change tolls on links under his control and continues to take the other player’s 

toll as exogneous. Thus whilst the thi player is in the process of optimising his revenue, 

he is taking into account a proportion represented by α  of the thj  player’s toll revenue. In 

doing so via the diagonalisation algorithm, he is effectively “signalling” to his competitor 

that the wishes to “collude” to maximise total revenue. It is implicitly assumed that 

players reciprocate the actions of the competitors and would do likewise. Thus the α term 

represents some intuitive level of collusion between players.   

 

Consider the network shown in Figure 1 and recall the two separate scenarios developed 

therein with Scenario 1 being toll revenue competition on links 3 and links 4 while 

Scenario 2 represented toll revenue competition on links 7 and links 10. 
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Collusion in Scenario 1  

Figure 3 shows, for the case depicted in Scenario 1, how the toll solution moves from 

Nash Solution when (α= 0) towards the monopoly solution (α= 1) as the level of 

collusion is increased. (Note that the graph flattens out beyond α= 0.8 as we have 

artificially capped the upper limit of the toll to be 1000 secs.)  In particular, when α=1, 

we obtain exactly the same solution as the monopoly operator’s toll as shown in Table 2. 

 
Figure 3: Tolls for both operators as collusion parameter (α) varies (Scenario 1)  
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Collusion in Scenario 2  

In the case of Scenario 2, where there is an additional route (Link 17) that is not subject 

to tolls, this form of implicit collusion however does not obtain the solution under 

monopoly.  In particular, consider the situation when α=1, then employing the 

diagonalisation algorithm, the equilibrium tolls obtained are as shown in Table 5.  
 

Table 5: Tolls and Profits for Scenario 2 considering collusion with α=1 

Link Toll (seconds) Revenues (seconds) 

Link 7 189.76 116,186 

Link 10 186.58 111,216 

Total Revenues  227,402 

Competitive Solution

Monopoly Solution 
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Figure 4 illustrates however that the above solution is in fact a local optimum of the total 

revenue function. The results reported in Table 5 are plotted together in Figure 4 where it 

is compared against the global optimum which is in fact the solution under monopoly 

(see Table 2). 

 
Figure 4: Total Revenue Surface as Tolls on Link 7 and Link 10 vary 

 
This illustrates the general difficulty with optimisation algorithms and the potential for 

local equilibrium to be located. There is also a possibility that in Scenario 2, there 

continues to be a link (17) available that is in competition with the tolled links and hence 

even under collusion, there could exist an incentive to capture that untolled traffic by 

reducing the toll charge which may result in a local solution rather than a global one. 

6. Summary and Conclusions 

 

In this paper, we have considered a problem with the focus on understanding the 

equilibrium decision variables offered by private operators competing to maximise their 
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individual profits non-cooperatively. In particular we recognised that this problem is 

effectively an Equilibrium Problem with an Equilibrium Constraint and subsequently 

proposed two heuristics for the solution of this problem. The first is an adaptation of the 

Gauss-Siedel iterative scheme integrated within an optimisation problem. The second 

algorithm that we have proposed (SLCP) results from recognising that a Cournot Nash 

game can be modelled as a complementarity problem and can be solved by sequentially 

linearising the problem and solving it as a linear complementarity problem. At present we 

have heuristically employed central differencing techniques to solve this problem, 

however it is of further research interest to study the use of advances in sensitivity 

analysis to replace the finite differencing estimation adopted here to further improve the 

algorithm. Further research would also be directed at efforts in developing new 

algorithms to solve the EPEC occurring in this situation.  

 

We have also attempted to investigate the possibility of operators colluding implicitly to 

maximise total profits instead of individual profits. To this effect, we introduced a 

collusion parameter to reflect the degree of cooperation between operators.  Implicit in 

the assumption was that operators would be willing to reciprocate the action of the other 

and we have ignored the associated issues of stability of coalitions formed.  Nevertheless, 

even for the simple examples presented in this paper, we have found the potential for 

multiple equilibria to be obtained. There is much scope to develop this work further 

considering the case of asymmetric collusion where one operator colludes more than the 

other which takes us into the area of leader-follower games such as Stackelberg with a 

subtle difference being that with partial collusion the follower may come out as the 

winner.  

 

In addition, the analysis presented in this paper can be employed to study competition 

between cities intending to introduce road pricing and/or other demand management or 

capacity enhancement measures. These serve as topics for further research which could 

build on the findings presented here.  
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Appendix: The Cutting Constraint Algorithm  
 

Mathematical Program with Equilibrium Constraints 

 

In the case of a single operator (operator is a used here generically) who sets tolls and/or 

capacities to optimise some objective function which could be to maximise social welfare 

in the case of a local authority or to maximise profit in the case of a private firm. This 

optimisation problem is effectively an MPEC. The economic paradigm for a generic 

MPEC is based on the setting of a Stackleberg game where the leader sets his strategic 

decision variables and the road users on the network follow. In optimising his objective 

the decision maker has to take into account the responses of the road users whose route 

choice is given by Wardrop’s Equilibrium Condition. A large amount of development has 

occurred in this branch of mathematical optimisation [31] which has applications in e.g. 

mechanics, robotics and transportation analysis. The primary difficulty with the MPEC is 

that they fail to satisfy certain technical conditions (known as constraint qualifications) at 

any feasible point [32] - [33]. In recent research [29], we investigated the use of the 

cutting constraint algorithm (CCA) [20] to solve an MPEC in the context of second best 

congestion pricing and capacity optimisation. 

 

Reinterpretation of Variational Inequality Condition  

 

Let us define the 2 additional variables  

aβ : a pre-specified upper bound on capacities, [ ],a a Bβ β= ∈  

τ : a pre-specified upper bound on tolls, [ ],a a Bτ τ= ∈  

 

As we have defined in the main paper, the feasible region of flow vectors,Ω , is a linear 

equation system of flow conservation constraints  
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From convex set theory, e.g. [34]9, ( ), ∈ Ωv d  can be defined as a convex combination of a 

set of extreme points.  Hence we can rewrite the equilibrium condition (3) using the 

following: 

( ) ( ) ( ) ( )* * * *, , , , 0  for 
T Te e e Eτ β τ β−⋅ − − ⋅ − ≥ ∀ ∈1c v u v D d q d  

 

Where ( , )e eu q is the vector of extreme link flow and demand flow indexed by the 

superscript e, and E is the set of all extreme points of Ω . 

 

A Cutting Constraint Algorithm for the MPEC 

 

The Cutting Constraint Algorithm redefines the variational inequality using the extreme 

points as shown above. Together with the initial extreme point, generated by an initial 

shortest path problem, and the constraints defining feasible flows, the master problem is 

solved to find the optimal tolls and capacities at each iteration. Subsequently new 

extreme points (“cuts”) are found by solving a sub problem using the results for the 

current iteration. 

The CCA Algorithm is shown as follows:  

Step 0:  Initialise the problem by finding the shortest paths for each O-D pair; set l 

(iteration counter) = 0; define the aggregated link flow and demand flow 

( , )l lu q ; and include ( , )l lu q  into E . 

Step  1: Set 1l l= +  Solve the Master Problem with all extreme points in E and 

obtain the solution vector ( ), , ,τ βv d ;then set ( ), , ,l l l lτ βv d . 

Step  2: 
Solve the Sub Problem with ( ), , ,l l l lτ βv d and obtain the new extreme point 

(ul,ql); 

Step 3: Convergence Check:  

If ( ) ( ) ( )( ) ( )1, , , , 0
TTl l l l l l l l l lτ β τ β−⋅ − − ⋅ − ≥c v u v D d q d , terminate and 

                                                 
9 Theorem 2.1.6, p43 
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( ), , ,l l l lτ βv d  is the solution, otherwise include ( , )l lu q  into E  and return to 

Step 1. 

 

The Master Problem in Step 1 is defined as follows:  

( )
( )

( )
( ) ( ) ( ) ( )

1, , ,

* * * *

min , , ,

. .
0                                            for given  and 

0                                          for given  and 
,

, , 0  for

a a

a a

T Te e

s t
a B

a B

τ β
ψ τ β

τ τ ε
β β γ

τ β −

≤ ≤ ∀ ∈

≤ ≤ ∀ ∈

∈ Ω

⋅ − − ⋅ − ≥

v d

1

v d

v d

c v u v D d q d  e E∀ ∈

 
 

 

The sub problem of Step 2 is a shortest path problem which is formulated as follows:  

( )
( ) ( )( )

( )

1

,
min , , , ,

. .
,

TT

s t

τ β τ β−⋅ − ⋅

∈ Ω

u q
c v u D d q

u q

  

 

Further details of our implementation of the algorithm can be found in [29]. Our 

numerical experiments indicate that for a small network tested in that paper, CCA 

obtained the global solution in a large number of test instances (as verified against a 

multi-start derivative free Hooke Jeeves [27] method). Instances where it failed could be 

resolved by modifying the variable bounds which is recognised as a common obstacle in 

applying gradient based non linear programming methods to solve MPECs.   

 


