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Abstract

UML notations require adaptation for applications such as Information Systems
(IS). Thus we have defined IS-UML. In this article, we propose an extension to
this language to deal with functional aspects of IS. We use two views to specify
IS transactions: the first one is defined as a combination of behavioural UML di-
agrams (collaboration and state diagrams), and the second one is based on the
definition of specific classes of an extended class diagram. The final objective of the
article is to consider consistency issues between the various diagrams of an IS-UML
specification. In common with other UML languages, we use a metamodel to define
IS-UML. We use class diagrams to summarize the metamodel structure and a formal
language, B, for the full metamodel. This allows us to formally express consistency
checks and mapping rules between specific metamodel concepts.
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1 Introduction

This paper reports part of an ongoing research programme bringing formality
to the development of information systems (IS) [13]. This section motivates
our work, then provides a general introduction to the relevant aspects of IS
and formal methods.

Formality, or the addition of mathematical notations to conventional diagram-
based modelling, allows us to prove the consistency of the model at each stage
of development. This improves the verification of models, bringing verification
activities into the development process, rather than relying on implementation
testing.

Our work has two aspects. The first is to provide a rigorous underpinning to IS
modelling. This entails identifying and modifying UML modelling notations
that are appropriate to IS, and extending the UML metamodel to represent the
IS-UML. A complete formal metamodel is also prepared. The second aspect
is to provide automatic translation of IS-UML models into formal models.
Elsewhere [16,15], we have shown that, with the help of these formal models,
it is possible to construct tools that can automatically generate a consistent
implementation of the core functionality (ie a relational database schema) of
an IS.

1.1 Information systems and their modelling

IS are not complicated computational systems; they just manage a large
amount of data. Data is often a commercially-critical resource; its protection
and reliability are essential. Data security is concerned with confidentiality
(or secrecy), integrity, and availability. Data integrity is paramount; it is fa-
cilitated by the structural properties of relational databases (the main target
implementation of most IS developments). Additional IS static integrity con-
straints represent the business or enterprise rules of the system, proposed by
clients.

Data modification has the potential to break data integrity. At the implemen-
tation level, an IS generally relies on a database management system (DBMS),
which uses transactions to ensure that operations on the database leave the
database in a state that is consistent with its definition. A transaction is made
up of low-level operations on particular data. It includes all the low-level op-
erations needed to make the necessary changes to data values, and to return
the database to a consistent state. In addition, the transaction may provide
authorization, audit and other security functions, and various interface func-
tions.
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The low-level operations of the database (eg. SQL statements) do not pre-
serve integrity. For example, a creation operation simply adds a new tuple
(row) to a single database table, without inserting any required links to other
tables. Where tables have mandatory links, such a creation operation leaves
the database in an inconsistent state — a structural constraint is broken. The
DBMS guarantees atomic execution of transactions; if a component low-level
operation cannot execute, or fails to complete, then the whole transaction
aborts, and the database is restored to its (consistent) state before the trans-
action started.

In the work presented here, we consider update transactions (as opposed to
read-only transactions that do not change the state of the database). Our
models express static constraints, but do not consider dynamic constraints
(such as temporal and ordering constraints).

IS development uses graphical notations for its models, justifying this with
the assertion that diagrams help in communication with clients. For data
modelling, it has been traditional to use variants of semantically well-defined
entity-relationship (E/R) diagrams. More recently, UML class diagrams have
been widely used, implicitly adopting an E/R semantics. UML class diagrams
include concepts that are not required for database modelling, and lack some
important aspects such as keys. Rigorous use of UML for data modelling
requires some modification of conventional UML class diagram metaconcepts.

IS functional specification is often neglected, or is achieved by inelegant use of
techniques designed for procedural program design (data flow diagrams, Jack-
son structures such as entity life histories). Within UML, there are a number
of models that can be adapted to IS behavioural modelling. We focus on use
cases, state diagrams (a class or table view of behaviour) and collaboration
diagrams (a transaction view of behaviour). Even in conventional UML, the
semantics of these notations are not always transparent, and the relationship
between metaconcepts of different models are not well-defined. For example,
the links between operations on classes and state diagram actions, between
messages and events, and between the parameters of events, messages and
operations, are obscure.

1.2 IS-UML for formal modelling of IS

Model-based formal methods such as B or Z are well suited to the expression
of models with important static constraints, and to the verification of these
constraints across state changes. In our work, we have favoured B: in [11] we
justify our use of B for IS-UML language definition.

A B model can be built incrementally from simple machines, which, for IS,
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can model a single IS entity or table and the low-level operations on it. Trans-
actions can be modelled as assemblies of simple machines that provide the
integration and interfacing needed for the low-level operations in the simple
machines. The Appendix A gives a summary of B notations used in this paper.
For a full account, see [1].

A further advantage of using B is the development support. Commercial tools
such as AtelierB (used widely in France, for example in the development of
transport control systems [3]) provide modelling and proof support. The tool
checks the type-correctness of the formal model, then generates the proof
obligations (POGs) needed to prove the consistency of each model. In analysis
of B models of IS, we find that these POGs are almost always discharged
automatically [17].

To introduce formality to IS development, we have developed the IS-UML no-
tation and tool [8,9]. Our language definition in B is supplemented by graphical
summaries of the abstract syntax (AS) of IS-UML, using UML class diagrams.
(When the IS-UML work was started, UML metamodels were the only graph-
ical form available.)

The graphical summaries allow comparison with the Object Management
Group (OMG) metamodels for UML, MOF etc. Like OMG, our approach
to metamodelling requires expression of the abstract syntax of the modelling
language. In the UML community, OCL [28] is used to elaborate diagrammatic
models with static constraints. OCL provides a means of referring to diagram
components, of navigating links in diagrams, and a basic set-based logic for
expressing constraints. IS-UML does not use OCL. Although OCL syntax and
semantics is being addressed with some rigour, the language is not stable; it
does not express the whole UML model, only the additional constraints; and
it is not supported by full formal analysis tools. We present the IS-UML defi-
nition in B. This B metamodel adds predicates to complete the AS definition
and to give the static semantics of the notations. We believe that it would be
possible to add facilities for working with OCL to the IS-UML metamodels,
to support the whole of the relevant parts of UML.

For an IS-UML development, we take UML class diagrams and various UML
behavioural diagrams and specialize them for IS specification. We use our de-
fined translation rules to extract from these diagrams a B model that permits
consistency checking of the specification. The method has three main elements:

(1) Generate a B specification of the static structure and elementary opera-
tions of the system – this starts from a class model extended with added
IS features such as static constraints [10].

(2) Generate transactions from IS-specialized UML state and collaboration
diagrams. The IS-UML diagrams are annotated with formal definitions
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derived from the formal model of the static structure.
(3) Prove the consistency of the model, by discharging the consistency proofs

derived by the B prover (here, Atelier-B).

The graphical approach suits traditional IS developers. It is also a good
medium for summarizing the structure of each view of a model and facili-
tates readability and thus comprehension of the specification. For instance a
single class diagram generates several pages of B notations which have to be
read line by line, page by page, whereas the graphical notations present several
dimensions of reading on one page.

To use our IS-UML tool, a diagram tool with serialisable output is needed. We
use the ROSE environment to construct the UML diagrams. In order to apply
our B translation tool, we must ensure that the diagrams conform to the IS-
UML notations. However environments such as ROSE do not provide elaborate
consistency checking either between or within diagrams — the translated B
model could be meaningless or produce type checking errors that are difficult
to interpret. Instead, we verify the graphical model before translating it to B.
To do this, we need to formally define the syntax and semantics of the IS-UML
notations, and to express formally the correspondences between concepts in
different diagrams.

There are two possible levels of consistency checking. The first level consists
of simply checking that the syntax of the diagrams is valid. For this, our
formalization of metamodels is sufficient. It gives well-formedness rules for the
different diagrams and allows checks of intra and inter diagrams consistency.
The next level consists of verifying the “behaviour” of the specified system.
This implies describing the dynamic semantics of the metamodels. The formal
expression of the behavioural semantics of structural concepts comprises the
specification of the semantic domain and of the links between the concepts
and the semantic domain. It is difficult to directly specify or validate a formal
dynamic semantics of transactions. However, a semantics of the functional
aspects is already given by the translation from IS-UML to B; the discharging
of the B proofs demonstrates that a transaction semantics is valid.

In this paper, we focus first on the specification of functional aspects of the IS,
elaborating our previous published accounts, and then on the way of ensuring
a consistent global specification. We present a simple example in UML, ex-
plaining its direct translation into B (Section 2). We then outline how we have
formalized class diagram notations (Section 3.1), and extend the formalization
to state and collaboration diagrams (Sections 3.2, 3.3). Consistency rules and
relationships between all the diagrams are considered further in Section 4,
whilst overall evaluation and conclusions appear in Section 5.
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Customer
CardNo : NAT1

NameCu : STRING

Deposit : BOOLEAN

MaxLoan : NAT

VideoCopy
Code : NAT1

ShelfNo : NAT
0..*0..1

VideoType
Title : STRING

Category : CAT

NumFree : NAT
10..* 1

BelongsTo

0..*

Loan
LoanDate : DATE

Duration : {Short,Long}

0..1 0..*

Fig. 1. Class Diagram of the Video-club Example

2 IS-UML diagrams and their B representation

This section introduces a simple example (used throughout the paper). We
use this example to review our earlier work on class diagrams in IS-UML
and their translation into B. We only present the basic concepts needed to
understand our overall approach. The section summarizes static aspects and
develops different ways of modelling transactions. It outlines the restrictions
and extensions of UML that can be applied and how we use UML with B to
present a full, verified model of an IS.

Example

A video club’s loan system is modelled as a UML class diagram (Figure 1).
The video loan system comprises Customer, VideoCopy and VideoType classes.
The association between VideoCopy and VideoType, called BelongsTo models
a VideoCopy belonging to exactly one VideoType; each VideoType can have
many VideoCopys. Between Customer and VideoCopy, there is an association
class, Loan, modelling the current loan of a VideoCopy by a Customer ; a Cus-
tomer can loan many VideoCopys, and a VideoCopy can be loaned at a time
to one Customer. In the model, CardNo identifies a customer instance, Code
identifies a video copy instance, and Title identifies a video type instance. On
Customer, the Deposit attribute is true if a customer has made a deposit,
which allows him to benefit from a long duration loan, and false otherwise,
which restricts him to a short duration loan. The MaxLoan attribute deter-
mines the maximum number of loans a customer can have at the same time.
On VideoType, the NumFree attribute models the number of actual video
copies for a particular Title that are available for loan at a particular time.
Other attributes are self-explanatory.
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2.1 B generation of static structure and elementary operations

Our approach starts by formalizing the class diagram. Here, we summarize
the mapping rules (for full treatment, see [21] for class constructs and [11,16]
for allocation of formal statements to specific B machines).

For each IS-UML class A, we define an abstract set SA of all possible instances
of A. A variable vA represents the set of existing instances of A, a subset of
SA. Each attribute Att of the class A is modelled by a variable vAtt which is a
binary relation between vA and the type TAtt of the attribute. Depending on
the multiplicity of the attribute, this relation may become a function (→), an
injection (), etc. We impose the rule that UML basic types correspond to B
basic types. An association Ass between two classes X and Y is modelled by
a variable vAss defined as a relation between the existing instances of the two
classes vX and vY . The form and the directionality of this relation depends
on the multiplicity of each association end (or role). An attribute of an as-
sociation is formalized like an attribute of a class. A summary of association
multiplicities and their corresponding B translations is given in Appendix B.

The B specification is built up from B machines; classes are defined in the
lowest level machines, which include elementary operations to create, delete
and modify instances. Associations, user-defined operations and transactions
are built on top of these machines, which are referenced by the B USES or
INCLUDES mechanisms as appropriate. The Appendix A summarizes the B
machine syntax used in this paper. Within each machine, abstract sets are de-
fined as B SETS ; variables representing classes, attributes and associations are
defined as B VARIABLES. The B INVARIANT expresses typing, associates
attributes to classes, and models associations. For example, the B machine for
the class Customer in Figure 1 would contain the clauses,

SETS

CUSTOMER
VARIABLES

Customer ,CardNo,NameCu,Deposit ,MaxLoan
INVARIANT

Customer ⊆ CUSTOMER ∧
CardNo ∈ Customer  NAT1 ∧
NameCu ∈ Customer → STRING ∧
Deposit ∈ Customer → BOOLEAN ∧
MaxLoan ∈ Customer → NAT

The invariant states that the Customer variable, which represents the set of
known instances of customers, is a subset of the set of all possible customers,
CUSTOMER. The remaining four clauses bind the attributes, shown in figure
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1, to Customer and give their type. Note that CardNo, which is the primary
key, or unique identifier, of the class, is defined using a total injective function,
capturing the fact that there must be a value for each customer’s CardNo, and
that each value is unique to one customer.

The associations Loan (and its attributes, LoanDate and Duration) and Be-
longsTo are defined in machines with a B USES relationship to the customer,
videoCopy or videoType machines, as appropriate. The associations are defined
by the following invariant:

INVARIANT

BelongsTo ∈ VideoCopy → VideoType ∧
Loan ∈ VideoCopy 7→ Customer ∧
LoanDate ∈ Loan → DATE ∧
Duration ∈ Loan → {Short ,Long}

BelongsTo is a function between two sets of class instances, representing the
0.. ∗ to1 association in figure 1. The association class Loan is first defined as
the function between Customer and VideoCopy , and then its class attributes
are added in the same way as for an ordinary class, above.

In IS, all operations are built from elementary create, delete and update op-
erations. These have a generic form, namely a standard precondition and a
standard effect – for a create operation, the precondition is always that the in-
stance does not exist, and the effect is to add the instance to the set of known
instances. Thus, the elementary operations descriptions can be automatically
generated from the class diagram[11]. We generate operations for inserting
or deleting objects of a class or links of an association and for modifying at-
tributes. The form is illustrated in the following B operation specification, to
add a new instance of customer.

B Add Customer(cu, nu, na, de,ml)
PRE

cu ∈ CUSTOMER − Customer ∧
nu ∈ NAT1 ∧
nu 6∈ ran(CardNo) ∧
na ∈ STRING ∧
de ∈ BOOLEAN ∧
ml ∈ NAT

THEN

Customer := Customer ∪ {cu} ||
CardNo := CardNo ∪ {cu 7→ nu} ||
NameCu := NameCu ∪ {cu 7→ na} ||
Deposit := Deposit ∪ {cu 7→ de} ||
MaxLoan := MaxLoan ∪ {cu 7→ ml}
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END

The five parameters represent input to the operation – a customer instance
(cu), and its four attribute values. The B PRE clause, or precondition for
the operation, gives the required types for the five parameters, and also states
that the input customer and the value for the CardNo attribute, nu, must
not already exist (a new customer is not an existing customer, and it should
not be possible to create a new customer using an existing card number).
The operation is specified as the parallel composition of five B substitutions,
each of which assigns the relevant parameter to the system state. Thus, the
customer, cu is added to the set of existing customers, Customer , and each
attribute value is coupled to this customer instance, and added to the set of
attribute couplings.

Thus, the preconditions enforce the invariant of the machine representing the
class, and always include the assertion of the parameter types. The operation
adds appropriate instances to each state variable.

So far we have used only information extracted from the class model to derive
the B specification. In order to address system-level behaviour (as opposed to
elementary operations), we need to consider how database transactions can
be specified, and what UML notations can be adapted to provide material for
a full behavioural specification.

2.2 Different views of user transactions in IS-UML

Now the specification of the example IS is extended to model behaviour. To
specify the functional aspects of the information system, we use two views
to highlight different aspects of transactions. The first uses UML behavioural
diagrams, state diagrams and collaboration diagrams. The second allows trans-
actions to be directly specified in an extended class diagram.

The two views are designed after the generation of B specifications from the
class diagram since they use the names from the class diagram and the gen-
erated operations.

Before considering the two views, we note that, in IS-UML, use cases give
a general view of user transactions. A use case contains all the transactions
related to the same business sub-system. For example, the Loan Management
use case gathers all the transactions creating or deleting a loan, changing its
duration, etc.
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2.2.1 UML behavioural diagrams for IS behaviour

A transaction can be specified by state diagrams and collaboration diagrams.
IS-UML imposes some constraints on their use, to capture specific features
of IS and to facilitate the B translation. First, we present examples of both
models in graphical form. We then illustrate their use in the B translation of
the example system.

Graphical representation

State diagrams model the permitted sequences of states of an instance, from
creation to deletion. There is at most one state diagram per class or associa-
tion. Each arc represents a state transition, and is labelled,

EventName [Guard] / Action

The event that triggers a transition may be generated internally or externally.

In formalizing the information from the state diagrams, there are two ways to
handle state information. The first, which we do not favour, is used in much
action-based modelling. In this approach, a state variable is included in each
class with the sole purpose of determining the state of each instance. Thus,
in figure 2, there would be states, LongLoan and ShortLoan. Transitions can
then be written to change the value of the state variable. This approach is
not natural in a model-based approach, and we prefer to distinguish states by
their characteristics – each state in a state diagram represents can be defined
in terms of the range of values that the variable can take whilst an instance
is in that state. Thus, for the class Loan, the LongLoan state applies to all
instances of the class for which the value of the “Duration” attribute (a native
attribute of the class) is “Long”.

Through this definition of states, it is easy to see that state in the state
diagram, and, indeed, guards on state transitions, can be written as Boolean
conditions on variables, and can be expressed as predicates, in B invariants.
We can also associate such Boolean statements with a name, akin to defining
the state variable, as illustrated in the Create Loan() operation, below, in the
B DEFINITION clauses. Thus, IS-UML imposes two rules to assist the B
translation of state diagrams:

(1) States and guards must be defined as well-formed B predicates.
(2) The name of an action on a transition must correspond to the name of a

B operation of the relevant class.

Figure 2 is the state diagram for the video club’s Loan association class. A loan
instance is created with either a long or a short duration, depending on the
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LongLoan ShortLoan

CreateLoan( cu,vc,d )[ C1 ] /

B_Add_Loan(cu,vc,d,Long)

CreateLoan( cu,vc,d )[ C2 ] /

B_Add_Loan(cu,vc,d,Short)

ReturnLoan( vc ) / B_Del_Loan(vc)

ReturnLoan( vc ) / B_Del_Loan(vc)

[C1] : deposit(cu)=true
[C2] : deposit(cu)=false

Fig. 2. State Diagram of the association class Loan

value of the deposit attribute of the customer that makes the loan. The event
CreateLoan(cu, vc, d) can trigger either of the two transitions; the transition
actually fired depends on the guard (C1 or C2 ). In IS-UML, we impose the
condition that exactly one guard is true at any time that an event occurs.
A guard must be expressed by the user as a B predicate. For example, the
condition corresponding to C1 is:

deposit(cu) = TRUE

A loan instance is created by the B operation B Add Loan, called with param-
eters (cu, vc, d, x) where x stands for Short or Long. The first three parameters
are provided by the triggering event. Once created, the loan instance is only
deleted on receipt of the event, ReturnLoan(vc).

Collaboration Diagrams are used to express IS transactions; these typically
incorporate operations on more than one class, and may have extra precondi-
tions expressing business rules. In the example, there is a simple transaction
to create a loan instance, Figure 3.

An IS-UML collaboration diagram belongs to exactly one use case. We re-
quire that this is represented by a controller “class”, which receives the input
message that triggers the transaction. In this simple transaction, the con-
troller is responsible for generating the internal message calls to create the
loan and update the number of free copies of the video type corresponding to
the requested video copy. Here, one of the subsequent triggers is the internal
CreateLoan(cu,vc,d) event, which appears in the state diagram, Fig. 2 above.
The other trigger is a direct call to the B operation B Change NumFree, spec-
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Loan VideoType

LoanManagementUseCaseControl

Environment

[C] : (card(Loan~ [{cu}] < MaxLoan(cu)) &
        (vc \: dom(Loan))

CreateLoan(cu,vc,d)
B_Change_NumFree(BelongsTo(vc),NumFree(BelongsTo(vc)-1))

[C] MakeLoan(cu,vc,d)

Fig. 3. Collaboration Diagram of the Transaction MakeLoan

ified on the VideoType class. The message that triggers the transaction can
be guarded. Thus, the condition

(card(Loan−1[{cu}]) < MaxLoan(cu)) ∧ (vc 6∈ dom(loan))

tests first that the cardinality of the set of loans for the customer (obtained
by applying the inverse of the function defining the Loan association to the
relevant customer) is less than the maximum number of loans authorized for
the customer; secondly, the constraint tests that the requested video copy is
available.

To understand the full transaction, the information in the collaboration, class
and state models must be combined. Thus, the state model indicates that
CreateLoan(cu,vc,d) results in the direct addition of the loan instance, with a
duration value corresponding to the deposit of the customer. From the collab-
oration diagram, we see that the transaction to create a loan not only create
a new loan instance but also decreases the number of free copies available for
the video type of the requested video copy.

B representation

The B translation of behaviour is built on the lowest level B machines, the B
translation of the class model (see [11] for details).

The state diagram for a class is used to create internal operations built up
from elementary operations, with user-defined constraints. For example, the
B operation corresponding to the CreateLoan(cu,vc,d) event is defined in a
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B machine, called SD-Loan. SD-Loan INCLUDES the Loan machine, which
gives it access to the elementary operations of Loan. SD-Loan USES the
Customer and VideoCopy machines, which allows it to access their state. B
DEFINITIONS are used to express states, simplifying subsequent clauses
of the SD-Loan machine. For example, the clause

DEFINITIONS

Initial(vc, cu) == vc ∈ VideoCopy ∧ cu ∈ Customer ∧ (vc, cu) 6∈ Loan
LongLoan(vc, cu) == (vc, cu) ∈ Duration−1[{Long}]

states that, first, in the Initial state, the video copy and the customer referred
to here do exist, secondly that the loan instance (vc,cu) does not already exist,
thirdly that a loan instance (vc,cu) is in the LongLoan state if its Duration
attribute is Long.

The B operation to create a loan is,

CreateLoan(cu, vc, d)
PRE

Initial(vc, cu) ∧
(deposit(cu) = TRUE ∨ deposit(cu) = FALSE )

THEN

SELECT deposit(cu) = TRUE
THEN B Add Loan(cu, vc, d ,Long)

WHEN deposit(cu) = FALSE
THEN B Add Loan(cu, vc, d , Short)

END

END

The precondition (PRE clause) contains first the Boolean definition of the
required state for this operation to take place (the starting state in figure 2).
Secondly, from figure 2, we note that two different creations are possible – one
guarded by each of the disjoined predicates on deposit(cu) – this disjunction
is a tautology and could be omitted from the B, but is retained to demon-
strate this point. There is also an implicit precondition that establishes the
preconditions of the called elementary operations.

Two proof obligations are generated. The first one is a standard B proof
obligation and expresses the fact that the operation representing the action
on the transition preserves the invariant of the machine. The second one is
generated from the state diagram and allows us to proof that the operation
establishes the predicates of the target states, here the LongLoan state or
ShortLoan state.

To model full transactions, the relevant collaboration diagram is translated
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into an operation on a high-level B machine which includes all the machines
for relevant state diagrams, and any required basic machines that are not
otherwise included. The transaction-level machines are the only B machines
that specify an external interface; other machines, and the state and operation
components that they specify, are internal to the system.

The MakeLoan(cu,vc,d) transaction from Figure 3 is specified as:

MakeLoan(cu, vc, d)
PRE

card(Loan−1[{cu}]) < MaxLoan(cu) ∧
vc 6∈ dom(loan)

THEN

CreateLoan(cu, vc, d) ||
B Change NumFree(BelongsTo(vc),NumFree(BelongsTo(vc)) − 1)

END

The precondition of this operation is the guard of the triggering message but
it also implicitly includes the preconditions of the called operations. Again,
proof obligations are generated to ensure that all the operations, and thus
the whole transaction, preserve the global invariant of the machine and its
included machines.

2.2.2 Specifying IS transactions with extended class diagrams

When modelling IS with UML, there are things that cannot be expressed in
state or collaboration diagrams. For instance, a common problem is modelling
a transaction that affects a number of objects of the same class, or modelling
global integrity constraints.

Rather than further adapting the UML behavioural models, we propose an
alternative approach that extends the class diagram. UML stereotypes are used
to add distinct control classes, dedicated to the management of transactions.

In UML metamodelling, stereotypes are used to define different forms of class,
whilst properties allow definition of new metamodel attributes. Three stereo-
types are used in the UML metamodels [25].

(1) Entity classes are used to describe the static part of a system. Here, the
part of a UML class diagram that contains only the entity classes and
their associations corresponds to the E/R semantics needed for IS class
diagrams.

(2) Boundary classes are used to describe the system interface, and are not
considered further here.
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(3) Control classes allow the description and co-ordination of the function-
ality of a system. We use these classes to specify transactions.

We define two kinds of Control class, to facilitate B translation and proof. An
EntityControl class is linked to one entity class 1 (or an association class).
It allows control of access to the operations of the class (or association class)
and checking of local integrity constraints. A TransactionControl class effec-
tively describes transactions. It can be linked to EntityControl classes and/or
directly to entity classes. Each TransactionControl class describes the trans-
actions of a single UML use case. It can also be used to express integrity
constraints involving several classes or associations.

The links that relate control classes to entity classes represent control flows,
rather than conventional association links. Thus we define the control flows
as UML dependency links with stereotypes. Our approach is a variation of
that of Treharne [27], who uses Control classes for general system specifica-
tion. The concept of association links all classes independently of their kinds
(entity or control). This is inadequate for our models where two stereotypes
are distinguished: ≪ op ≫ represents calls to operations of the target class; ≪

var ≫ represents read-only use of variables. In translation, these correspond to
B INCLUDES and USES references to lower level machines, respectively.

Illustration of control classes

In the video club system, there is a transaction LoanByCategory(cu,cat), that
allows a customer to select for loan any video copy in the stated category. (This
belongs to the use case, LoanManagementUseCase.) To model the transaction
using Control classes, the original class diagram is extended as shown in Figure
4.

The first extension adds an EntityControl class to Loan. LoanControl has an
operation CreateLoan that accesses the elementary operation B Add Loan.
It also verifies multiplicity and integrity constraints, through access to the
variables of Customer and VideoCopy.

The second extension adds a TransactionControl class for the required trans-
action. LoanManagementUseCaseControl gives access to the CreateLoan op-
eration, and to the elementary operation B Change NumFree of VideoType.
The relevant constraints are also verified.

We use the B language to describe operations, since our objective is to produce
complete B specifications 2 . As before, a B operation has a precondition that

1 We continue to call class an entity class, to simplify notations.
2 In our work, B is a natural choice for these descriptions. OCL lacks object cre-

15



LoanControl

CreateLoan()
ReturnLoan()

<<EntityControl>>

Customer VideoCopy

B_Change_NumFree()0..1 0..*0..1 0..*

VideoType
0..* 10..* 1

BelongsTo

Loan

B_Add_Loan()

<<var>> <<var>>

<<op>>

LoanManagementUseCaseControl

LoanByCategory()
MakeLoan()

<<TransactionControl>>

<<op>>

<<op>>
<<var>>

Fig. 4. The Example Class Diagram Extended to Model a Transaction

can express typing of parameters, business rules, and preconditions of the
called operations. In the following operation, the first three preconditions are
for typing, the next is the precondition of the called operation CreateLoan,
and the last is a business rule, stating that, to make a loan, customers must
have fewer existing loans than their limit.

videoCode ← LoanByCategory(cu, cat , d)
PRE

cu ∈ CUSTOMER ∧ cat ∈ CAT ∧ d ∈ DATE ∧
cu ∈ Customer ∧
card(Loan−1[{cu}] < MaxLoan(cu)

THEN

ANY vc WHERE

vc ∈ VideoCopy − dom(Loan) ∧
Category(BelongsTo(vc)) = cat ∧
NumFree(BelongsTo(vc)) ≥ 1

THEN

CreateLoan(cu, vc, d) ||
B Change NumFree(BelongsTo(vc), (NumFree(BelongsTo(vc)) − 1)) ||
videoCode := Code(vc)

END

END

Since the ANY substitution is non-deterministic, an additional precondition
must be added to ensure the feasibility of the operation:

∃ vc ∈ VideoCopy − dom(Loan) •
Category(BelongsTo(vc)) = cat ∧ NumFree(BelongsTo(vc)) ≥ 1

ation facilities, whilst a language such as ASL [22] is not suitable, since it is not a
declarative specification language.
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2.2.3 Transaction modelling discussion

It is well-known that designing different views of a system highlights different
aspects and properties of the system. Thus a state diagram is local to a class
and shows the effect of events on the different states of class instances. A col-
laboration diagram shows the internal structure of a transaction. The extended
class diagram summarizes the static links that exist between the transactions
of one use case and the relevant classes. There is also a correspondence be-
tween the two forms of control class and the state and collaboration diagrams.
Each B operation generated from an event in the state diagram is added to
the relevant EntityControl class. For instance, CreateLoan and ReturnLoan
are derived from the state diagram of the association class Loan and added in
class LoanControl in the extended class diagram, Figure 4. Similarly, each B
operation generated from an input message of a collaboration diagram is added
to the relevant TransactionControl class. Here the input message MakeLoan
is added to class LoanManagementUseCaseControl .

Different kinds of checks can be achieved. For example, integrity constraints
are translated into B state invariant conjuncts, thus they generate proof obli-
gations. On a state diagram, the source state of a transition gives the pre-
condition of the corresponding B operation. The target state gives additional
postconditions, and thus proof obligations. It can be proved that guards as-
sociated with each event are deterministic (only one guard is true at a given
time) and that their disjunction is always true. Moreover, model checking can
be used, in addition to the B prover, to check liveness properties.

To properly verify a specification, we must demonstrate that each operation
maintains the state invariant, and that the state invariant is not always false.
The tools associated with the B method automatically generate the required
proof obligations and have powerful mechanisms for automatically discharging
most of them. Furthermore, research on the B method is continuously improv-
ing the automatic proof facilities [2]. For us, it is one of the major advantages
of using B. In the IS domain, we have found that, if the B specification re-
spects the characteristics of IS-UML, discharging the proof obligations is not
problematic. The proofs that are not discharged automatically follow similar
patterns and are not too difficult to discharge by hand. However, proofs can
be simplified, and some errors found during proof discharge can be avoided, if
the model is verified as far as possible before translation to B.

If we want to have a meaningful IS-UML specification, we have to check the
consistency between the different views, for instance that a message in a collab-
oration diagram is either a generated operation or an event of a state diagram.
To prove the consistency conjectures on an IS-UML model, it is essential that
the class, state and collaboration diagrams are consistent. The following sec-
tions present our approach to this, based on rigorous metamodelling.
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3 Formalizing IS-UML metamodels

To deal with the issue of consistency of views, we must have a formal system
model. This provides a framework for reasoning about the relationships be-
tween the different views. For each kind of diagram, we present a metamodel
in the B specification, and a summary in UML class diagrams to highlight
links between the concepts. This at least ensures syntactical coherence, and
also captures part of the static semantics. Note that in the metamodels, the
correspondence between the state space in B and the UML static elements is
the same as that defined for IS-UML models.

3.1 Formalizing IS-UML class diagram notations

Our formal metamodel for IS-UML class diagrams, that describe the entity
classes and their relationships, is described elsewhere [10,11]. The parts of the
class diagram metamodel relevant to the paper are shown in Figure 5. The
main metamodel concepts are Class and Association. An association class
is represented by a Class instance, an Association instance and an instance
of the metamodel association assocClass . An Attribute is a Characteristic of
a Class ; an association end, AssocEnd , is that of an Association. Figure 5
also shows operations, focusing on the elementary database operations that
were generated automatically in our B translation, GeneratedOp, and its three
subclasses. The abstract superclass Operation defines the signature of an op-
eration (attributes opName and opParams). For simplicity, this figure omits
the meta-structures of inheritance and static constraints.

updateAtt

DeleteOp

InsertOp

Attribute

attribName : NAME
attribType : TYPE

UpdateAttributeOp

1

0..1

1

0..1

GeneratedOp
<<abstract>>

Characteristic

characMult : POW NAT
characChange : Boolean

<<abstract>>

AssocEnd

roleName [0..1] : NAME

Class

className : NAME

1

1..n

1

1..n

opClass

1

0..n

1

0..n

characClass

Association

assocName [0..1] : NAME

0..1

1

0..1

1

assocAssocEnd2

0..1

1

0..1

1

assocAssocEnd1

0..1

0..1

0..1

0..1

assocClass

Operation

opName : NAME
opParams : TPARAM

<<abstract>>

Fig. 5. Extract of the Metamodel for the IS Class Model
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The B counterpart of the abstract syntax concepts is described in the following
tables. Here, only the relevant clauses are given. The B metamodel requires a
number of abstract sets, written in upper case, whereas names of VARIABLES
correspond to the UML names.

Table 1 gives the typing invariants for each meta-class.

Subclasses have the same type as their superclass; the instances are a subset
of the superclass instances. An invariant is added to express the disjointness
of subclasses. For example,

Attribute ∪ AssocEnd = Characteristic ∧

Attribute ∩ AssocEnd = ∅

Table 1
B Variables and Typing Invariants of IS Metamodel Classes

Class ⊆ CLASS

Association ⊆ ASSOCIATION

Characteristic ⊆ CHARACTERISTIC

Attribute ⊆ Characteristic

AssocEnd ⊆ Characteristic

Operation ⊆ OPERATION

GeneratedOp ⊆ Operation

DeleteOp ⊆ GeneratedOp

InsertOp ⊆ GeneratedOp

UpdateAttributeOp ⊆ GeneratedOp

Table 2 gives the invariants that express the typing of attributes and their
mappings to classes. Mandatory attributes are represented by total functions.

The type of opParams, seq(TPARAM ), models an ordered list of parameters.
TPARAM is a triple of a name, a type, and an indicator of whether the
parameter is input (i) or output (o) 3 :

TPARAM ∈ NAME × TYPE × {i , o}

3 There are many other ways of modelling parameters, including simply allowing
a multi-valued attribute of type TPARAM. At some point, the type of the logical
parameter needs comparing to the type of the actual parameter supplied, which
may be, for example, the value of an attribute.
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Table 2
B Variables and and Typing Invariants Associating Attributes to IS Metamodel
Classes

className ∈ Class  NAME

characMult ∈ Characteristic → P(NAT )

characChange ∈ Characteristic → BOOLEAN

attribName ∈ Attribute → NAME

attribType ∈ Attribute → TYPE

roleName ∈ AssociationEnd 7→ NAME

assocName ∈ Association 7→ NAME

opName ∈ Operation → NAME

opParams ∈ Operation → seq(TPARAM )

The abstract set, TYPE, represents any relevant UML- and user-defined data
types. The B abstract set, NAME, represents any name in the metamodel.

Metamodel associations are expressed as relations or functions, table 3.

Table 3
B Variables and their Typing Invariants Representing Associations in the IS Meta-
model

opClass ∈ GeneratedOp →→ Class

updateAtt ∈ UpdateAttribOp  Attribute

characClass ∈ Characteristic → Class

assocClass ∈ Association 7 Class

assocAssocEnd1 ∈ Association  AssocEnd

assocAssocEnd2 ∈ Association  AssocEnd

Additional constraints can be defined by B invariants: four of them are illus-
trated here.

• Each instance of AssocEnd must be linked to exactly one instance of Asso-
ciation, either by association assocAssocEnd1 or assocAssocEnd2 :

ran(assocAssocEnd1) ∩ ran(assocAssocEnd2) = ∅ ∧
ran(assocAssocEnd1) ∪ ran(assocAssocEnd2) = AssocEnd

This means that an instance of AssocEnd is either the first or the second
end of an association but not both.
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• GeneratedOp is an abstract class and its subclasses are disjoint :

GeneratedOp = InsertOp ∪ DeleteOp ∪ UpdateAttributeOp ∧
InsertOp ∩ DeleteOp = ∅ ∧
InsertOp ∩ UpdateAttributeOp = ∅ ∧
DeleteOp ∩ UpdateAttributeOp = ∅

• The uniqueness of operation names within a class is an example of the
internal and mutual consistency properties of the metamodel. The invariant
states that, for any two operations of a particular class, if the operations
have the same name then they are the same operation:

∀ c ∈ ran(opClass) •
∀ o1, o2 ∈ opClass−1[{c}] •

opName(o1) = opName(o2) ⇒ o1 = o2

• The fourth example requires that, for UpdateAttribOps, the attribute up-
dated must be of the class acted on by the superclass GeneratedOp:

∀ op ∈ UpdateAttribOp •
updateAtt(op) ∈ allClassAttributes(opClass(op))

where allClassAttributes() returns all the attributes of a class.

Figure 6 synthesizes the abstract syntax metamodel of the new concepts
and relationships introduced in the extended class diagrams. The stereotyped
classes are defined as the two meta-classes EntityControlClass and Transac-
tionControlClass. These are subclasses of ControlClass. The class ExtendedOp 4

contains the operations defined in EntityControl classes. The class Transaction
contains the operations defined in all the TransactionControl classes. The
class BasicOp is added to represent all the sorts of operations that act on
only one class or association class. Its two subclasses are GeneratedOp, de-
fined above, and ExtendedOp. The association between GeneratedOp and
ExtendedOp specifies that an extended operation is constructed from gen-
erated operations. The association BaOpClass links each BasicOp instance to
the class where it is defined; for a GeneratedOp instance, it corresponds to the
association opClass described in Figure 5.

The association useVarCl maps ControlClass instances to Class instances.
This allows the stereotyped dependency link ≪ var ≫ to be defined. Sim-
ilarly, the association ECuseOpCl models the stereotyped dependency links

4 Our early work on operation metamodel [11] uses the term UserOp. We change it
to ExtendedOp to avoid confusion with transactions which are also user operations
but at the system level.
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Fig. 6. Metamodel for Extended Class Diagrams

≪ op ≫ between EntityControl Class and Class. The associations TCuseOpCl
and TCuseOpEC , between TransactionControl Class and Class , and between
TransactionControl Class and EntityControl Class respectively, allow the def-
inition of the ≪ op ≫ stereotyped dependency links issued by an instance of
TransactionControl Class. These associations are derived by navigation; this
cannot be recorded graphically, but is included in the formal metamodel. Ta-
bles 4 and 5 give the formal specification of the new concepts of extended class
diagrams.

Transaction ⊆ Operation

ExtendedOp ⊆ BasicOp

ControlClass ⊆ CONTROLCLASS

EntityControlClass ⊆ ControlClass

TransactionControlClass ⊆ ControlClass

Table 4
B Variables and Invariants for New Classes of Extended Class Diagrams

In table 5, the function representing the derived association is equivalent to
the composition of the formal representations of the associations. For exam-
ple, ECuseOpCl is obtained by the navigation from EntityControlClass to
ExtendedOp and from BasicOp to Class. It is defined as:

ECuseOpCl == ExOpEC−1 o

9 BaOpClass

and we add the constraint:
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TrBaOp ∈ Transaction ↔ BasicOp

∧ dom(TrBaOp) = Transaction

BaOpExOp ∈ ExtendedOp ↔ GeneratedOp

∧ dom(BaOpExOp) = ExtendedOp

BaOpClass ∈ BasicOp →→ Class

useVarCl ∈ Class ↔ ControlClass

TrTC ∈ Transaction →→ TransactionControlClass

ExOpEC ∈ ExtendedOp →→ EntityControlClass

Table 5
B Variables and their Typing Invariants Representing New Associations of Extended
Class Diagrams

ECuseOpCl ∈ EntityControlClass  Class

This specifies that an EntityControlClass instance is linked to exactly one
Class instance and, reciprocally, a Class instance is associated to at most one
EntityControlClass instance.

Additional constraints express static semantics such as “all the generated op-
erations referenced by an extended operation must belong to the same class”.

3.2 Formalizing IS-UML state diagram notations

In UML, the semantics of state and collaboration diagrams is deliberately
informal, to allow them to be used to model different kinds of system. Our
objective is to define the concepts that are useful for IS specification.

As we discussed in Section 2.2.1, a UML state diagram models the possible
states of an object of one class, the permitted transitions, and the events
that trigger transitions; the IS-UML metamodel is summarized in Figure 7.
The links between the state diagram concepts and the other metamodels are
described in Section 4.

A StateDiagram is linked to one class. It comprises Transitions. A Transition
may have a guard (SDguard) – a boolean expression defining the firing con-
dition of the transition. A Transition may be triggered by a named SEvent.
These events are either time-related (TimeEvent) or conventional (OpEvent).
The latter may convey parameters.
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Fig. 7. IS-UML State Diagram Metamodel

Every Transition is associated with two instances of State, a source and a
destination, that can be the same in the case of a reflexive transition. A State
is named; its genre indicates whether it is only an initial state, only a final
state, or an intermediate state in the life of an instance of the relevant class.
Each State is defined by a boolean expression, the statePredicate, on the values
of the attributes of the class or its associations.

The B representation of the abstract syntax concepts is given in the following
tables. Table 6 gives the typing invariants for each meta-class.

StateDiagClass ⊆ CLASS

State ⊆ STATE

StateDiagram ⊆ STATEDIAG

Transition ⊆ TRANSITION

SEvent ⊆ SEVENT

OpEvent ⊆ SEvent

TimeEvent ⊆ SEvent

Action ⊆ ACTION

SDGuard ⊆ GUARD

Table 6
B representation of state diagram metaclasses

The metamodel subclasses require additional exclusivity and coverage con-
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straints in B:

OpEvent ∪ TimeEvent = SEvent
OpEvent ∩ TimeEvent = ∅

Table 7 gives the invariants that express the typing of attributes and their
mappings to classes. Table 8 models the associations in the metamodels.

stateName ∈ state → NAME

genre ∈ state → {init , int ,fin}

statePredicate ∈ state → BOOLEXP

SDguardExp ∈ SDGuard → BOOLEXP

eventName ∈ sEvent → NAME

actionName ∈ action → NAME

actionParams ∈ action → seq(TPARAM )

eventParams ∈ opEvent → seq(TPARAM )

Table 7
B invariants for state diagram metamodel attributes

StDiagToClass ∈ StateDiagram → StateDiagClass

sTransition ∈ Transition →→ StateDiagram

source ∈ Transition → State

destination ∈ Transition → State

transTrigger ∈ Transition 7→→ SEvent

effect ∈ Action  Transition

transGuard ∈ SDGuard  Transition

Table 8
B representation of state diagram metamodel associations

The full metamodel includes B invariants capturing a wide variety of con-
straints and semantic details. Examples of the different kinds of constraints
are as follows.

Unique names

UML requires various concepts to have unique names. In state diagrams,
we illustrate this for state names. Within a state diagram sd, the values of
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stateName are distinct (though they need not be distinct between diagrams):

∀ t ∈ sTransition−1[{sd}] •
∀ s1, s2 ∈ source[{t}] ∪ destination[{t}] •

stateName(s1) = stateName(s2) ⇒ s1 = s2

Constraints on transitions

• a state is either a source or a destination of a transition, and can be both:

State = ran(source) ∪ ran(destination)

• there is always something associated to a transition: a guard or an event or
an action:

Transition = ran(transGuard) ∪ dom(transTrigger) ∪ ran(effect)

• if there is an action associated to a transition, then there is also an event.

ran(effect) ⊆ dom(transTrigger)

The reason for the last constraint is technical: we need an event to give a
name to the generated B operation that corresponds to the transition. Note
that there are other transitions that have only a guard. They are generally
called automatic transitions. For example, customers who have exceeded their
loan date move automatically to a state “lateCustomer”. In this case, there is
no B operation generated for the transition.

Constraints on transitions associated to the same event

An OpEvent can trigger several transitions, depending on the source state
and/or the guard. However all the transitions must belong to the same state
diagram:

∀ ev ∈ OpEvent • card(sTransition o

9 transTrigger−1[{ev}]) = 1

Constraints on parameters

Actions and events ultimately provide the input parameters of operations, so
cannot be output parameters on the diagram:

∀ n ∈ NAME • ∀ t ∈ TYPE •
∀ r ∈ ran(actionParams) • r 6= (n, t , o)

This means that the third element of the parameters cannot be “o”.
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3.3 Formalizing IS-UML collaboration diagram notations

A UML collaboration diagram describes how different objects interact, by
exchanging messages, to complete a task. In the database part of an IS, there is
no message passing (among tables); the task is achieved as a transaction under
the control of a DBMS transaction manager. For IS-UML, we have modified
collaboration diagrams to specify transactions from a use case. The diagram
shows the classes of objects involved, and which operations are called under
what conditions. The metamodel (Figure 8) simply comprises the messages
that make up the diagram.

CDCond

CDCondExp : BOOLEXP

Message

messName : NAME
messParams : TPARAM

<<abstract>>

0..1

1

0..1

1

condMess

UseCase TargetClass

CollDiag

0..n

1

0..n

1

refUseCase

InternalMessage
1..* 11..* 1

IMessSendToClass

InputMessage

11 11

collTrigger

1..n

1

1..n

1

compMess

Fig. 8. IS-UML Collaboration Diagram Metamodel

The IS-UML collaboration metamodel has two subclasses of Message. An In-
putMessage is the triggering message of a collaboration diagram. An Inter-
nalMessage is triggered by an InputMessage and refers to a particular Target-
Class. A Message can have an associated condition that is a boolean expres-
sion. Each Message is defined with a name and a parameter list. Tables 9, 10
and 11 give the B specification.

UseCase ⊆ USECASE

CollDiag ⊆ COLLDIAG

Message ⊆ MESSAGE

InputMess ⊆ Message

InternalMess ⊆ Message

CDCond ⊆ CDCOND

TargetClass ⊆ CLASS

Table 9
B representation of collaboration diagram meta-classes

The only specific constraints in a collaboration diagram express the unique-
ness of message names inside a collaboration diagram, the kind of message
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messName ∈ Message → NAME

messParams ∈ Message → seq(TPARAM )

CDCondExp ∈ CDCond → BOOLEXP

Table 10
B invariants for collaboration diagram metamodel attributes

refUseCase ∈ CollDiag → UseCase

collTrigger ∈ InputMess → CollDiag

compMess ∈ InternalMessage →→ inputMessage

condMess ∈ CDCond  Message

IMessSendToClass ∈ InternalMessage →→ TargetClass

Table 11
B representation of collaboration diagram metamodel associations

parameters (as in a state diagram) and constraints defined on Message sub-
classes:

InternalMessage ∪ InputMessage = Message
InternalMessage ∩ InputMessage = ∅

4 A consistent global view of an IS

Having outlined our modelling approach and the formally underpinned meta-
models that allow us to check individual diagram consistency, we now explore
what can be elaborated on a whole “IS-UML specification”. There are two
kinds of issues: consistency checks between metamodels and mapping rules
between specific concepts of metamodels.

4.1 Consistency among metamodels

Using the formal metamodels, there is a number of consistency checks among
the metamodels that can be carried out.

Syntactic unification is achieved by linking corresponding concepts in the
metamodels. For instance, each state diagram relates to a class that must
exist in the class diagram.
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StDiagToClass ⊆ Class

That is, StateDiagClass is a subclass of Class.

In the same way, the target class of an internal message in a collaboration
diagram must exist in the class diagram.

TargetClass ⊆ Class

The main links among the metamodels are summarized in Figure 9, by way
of the definition of derived associations, ActRefOp, IMessRefGenOp, IMess-
RefOpEv.

StateDiagClass

TargetClass Class

OpEvent

InternalMessage

0..n

0..1

0..n

0..1

/IMessRefOpEv

Action

GeneratedOp
<<abstract>>

0..n

0..1

0..n

0..1

/IMessRefGenOp

0..n

1

0..n

1

/ActRefOp

Collaboration Diagram

Metamodel (extract)

State Diagram Metamodel (extract)

Extended Class Diagram Metamodel (extract)

Fig. 9. Consistency Links between the Metamodels

An action must correspond to a generated operation, in that it is a call to
such an operation. This constraint can be expressed by defining the derived
association ActRefOp. Note that for the moment, we just consider name cor-
respondence and do not take account of parameters.

ActRefOp ∈ Action → GeneratedOp ∧
ActRefOp = {ac 7→ genop | ac ∈ Action

∧ genop ∈ effect o

9 sTransition o

9 StDiagramToClass o

9 opClass−1[{ac}]
∧ actionName(ac) = opName(genop)}

An internal message of a collaboration diagram refers to a particular class and
concerns either a direct call to a generated operation of the class, or an event
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of the state diagram of the class (if it exists). As previously, this is expressed
by defining the two derived associations IMessRefGenOp and IMessRefOpEv :

IMessRefGenOp ∈ InternalMessage 7→ GeneratedOp ∧
IMessRefGenOp = {im 7→ genop | im ∈ InternalMessage

∧ genop ∈ IMessSendToClass o

9 opClass−1[{im}]
∧ messageName(im) = opName(genop)}

IMessRefOpEv ∈ InternalMessage 7→ OpEvent ∧
IMessRefOpEv = {im 7→ ev | im ∈ InternalMessage

∧ ev ∈ IMessSendToClass o

9 StDiagToClass−1o

9

sTransition−1 o

9 transTrigger [{im}]
∧ messageName(im) = eventName(ev)}

We need to express that these functions are total and exclusive because an
InternalMessage is either the concern of a GeneratedOp or of an OpEvent of
a state diagram, but not both:

dom(IMessRefGenOp) ∩ dom(IMessRefGenOp) = ∅ ∧
dom(IMessRefGenOp) ∪ dom(IMessRefGenOp) = InternalMessage

One area of potential checking that we have not fully explored is the expression
of guards, conditions and static constraints. In the metamodels, any type that
is a predicate is expressed using the general BOOLEXP. We could express
further constraints if we used a more complex type for these predicates.

4.2 Mapping rules between metamodels

Semantic unification occurs, owing to the fact that the same translation into B
is used on one hand for events in state diagrams and input messages of collabo-
ration diagrams and, on the other hand, for operations of EntityControl classes
or TransactionControl classes. Figure 10 illustrates the mapping rules: two new
associations are defined formally in Table 12. Each event of a state diagram
leads to the creation of an extended operation (association OpEventExtOp)
in the EntityControl class linked to the class where the state diagram of the
event is defined. Similarly each input message of a collaboration diagram leads
to the creation of a transaction (association InputMessTransaction) in the
TransactionControl class that corresponds to the UseCase.

The two other associations of Fig. 10 are derived associations, with additional
constraints.
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Fig. 10. Mapping Rules between the Metamodels

OpEventExtOp ∈ OpEvent  ExtendedOp

InputMessTransaction ∈ InputMessage  Transaction

Table 12
B representation of the mapping rules

SDiagramECClass == sTransition−1 o

9 transTrigger−1 o

9

OpEventExtOp o

9 ExOpEc

The following constraint states that each state diagram is necessarily associ-
ated with an entity control class and, reciprocally, an entity control class is
associated with at most one state diagram:

SDiagramECClass ∈ StateDiagram  EntityControlClass

The same format is used for UseCaseTCClass :

UseCaseTCClass == refUseCase−1 o

9 collTrigger−1 o

9

InputMessTransaction o

9 TrTC

with the associated constraint:

UseCaseTCClass ∈ UseCAse  TransactionControlClass
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Let us detail one of the mapping rule. This is described by a B operation, in
Fig. 11. Bracketed numbers refer to the numbered lines of Fig. 11. Let sd be
the state diagram associated to an event ev :

sd == CHOICE(transTrigger−1 o

9 sTransition[{ev}])

The CHOICE operator applies on a non-empty set, and returns an arbitrary
element of the set. Here the set transTrigger−1 o

9 sTransition[{ev}] has only
one element, the state diagram of ev , because of the constraint that all the
transitions associated to one event belong to the same state diagram (see page
26).

For each event ev , an extended operation newOp is created in the relevant
EntityControlClass instance. The precondition, line (1), of the operation Map-
EvToOp specifies that the name of the event cannot be the name of an existing
operation of the class associated to sd because in a class, all operations must
have distinct names and we create the operation newop with the name of the
event ev . The body of the operation MapEvToOp consists of:

• creating the new operation op, lines (2) and (3), and setting its attributes
opName and opParams , lines (4) and (5).

• setting its associations BaOpExOp and BaOpClass (see Fig. 6). The first,
line (6), links an extended operation to the generated operations it calls. For
an extended operation corresponding to an event ev , these operations are
retrieved by taking the generated operation associated to the action defined
on each transition triggered by the event:

transTrigger−1 o

9 effect−1 o

9 ActRefOp[{ev}]

BaOpClass links a basic operation to the class where it is defined. In this
case, line (7), the class is that associated with the state diagram sd of ev ,
that is StDiagToClass(sd).

• linking the new operation op to the relevant EntityControlClass instance, if
it exists, line (9). Otherwise we need to create this class, lines (10) to (14).
To know if this class exists, we use the association ECuseOpCl by testing
whether StDiagToClass(sd) is linked to an EntityControlClass instance, line
(8).

• linking op and ev with the association OpEventExtOp, line (15).

5 Conclusions and further work

Our work on IS-UML provides a specialization of UML for IS development.
The formal metamodel, and the ability to automatically translate models into
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newOp ← MapEvToOp(ev)
PRE

ev ∈ OpEvent ∧
(1) eventName(ev) 6∈ StDiagToClass o

9 BaOpClass−1 o

9 opName[{sd}] ∧
operation ⊂ OPERATION

THEN

(2) ANY op WHERE op ∈ OPERATION − operation
THEN

(3) ExtendedOp := ExtendedOp ∪ {op} ||
(4) opName(op) := evName(ev) ||
(5) opParams(op) := evParams(ev) ||

BaOpExOp := BaOpExOp ∪
(6) {op} × (transTrigger−1 o

9 effect−1 o

9 ActRefOp[{ev}]) ||
(7) BaOpClass(op) := StDiagToClass(sd) ||
(8) IFStDiagToClass(sd) ∈ ran(ECuseOpCl)

THEN

(9) ExOpEC (op) := StDiagToClass o

9 ECuseOpCl−1(sd)
ELSE

(10) ANY newec WHERE

(11) newec ∈ CONTROLCLASS − ControlClass
THEN

(12) EntityControlClass := EntityControlClass ∪ {newec} ||
(13) name(newec) := name(StDiagToClass(sd)) + ′Control′ ||
(14) ExOpEC (op) := newec

END

END ||
(15) OpEventExtOp(ev) := op ||
(16) newOp := op

END

END

Fig. 11. Mapping an Event to an Extended Operation

B gives the ability to rigorously check the conformance of models to the meta-
model, the internal consistency of models, consistency across class, state and
collaboration diagrams, and the ability of the modelled system to maintain
data integrity.

Whilst other research has applied formal definition and translation to E/R
diagrams or class models [6,7,5,14,18,27,26], there is little previous work on
formal modelling of the functional aspects, particularly for IS. The adapta-
tion of conventional UML diagrams for IS is essential, since most IS still use
relational, rather than object-oriented, database technology. It is essential to
model IS transactions, since these are the primary functional concept of IS,
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and are responsible for establishing and maintaining data integrity. In addi-
tion, for most IS applications, transactions are important for security control
(access control, authentication, etc). It is thus not sufficient to only model the
low-level operations on database tables. To model the internal structure of
transactions, we must model the control aspect, since there are no objects to
call the methods of other objects.

We use B in our work on IS-UML, but recognize that the same approach can be
used with any model-based formal language. The main advantage of B are the
relatively-advanced tool support for proof. Most commercial work with B is
for critical systems. For IS, the necessary consistency proofs are comparatively
straightforward, and are automatically discharged by tools such as Atelier B
[4]. Furthermore, the proofs follow a general form which allows reuse of proof
tactics [15]. Most aspects of the B model can thus be generated and proved
automatically from a set of UML diagrams that conforms to the IS-UML
metamodel. For this reason, we believe that our approach can be incorporated
into practical IS modelling and development.

In our approach, there is a direct mapping between the concepts in the B
models and the structure of the IS-UML diagrams. This assists in traceability
(see [12]). Other research projects combining UML and B find similar advan-
tage in the use of B to add rigour to UML. However, none of the other work
is dedicated to IS. Our focus on IS simplifies the metamodel and formal mod-
elling, but, as a result, the semantics given by translation rules is necessarily
different from that of, for example, UML-B [26], which is developed for more
general systems modelling.

Other rigorous approaches to UML only apply consistency checking to the
formal models (by using support tools), not to diagrams. In IS-UML, we have
a formally-based metamodel that allows us to apply a range of consistency
checks to the diagrammatic models before translation to B.

For the translation to B, in addition to conformance to the IS-UML meta-
model, it is currently necessary to express logical expressions associated with
model constructs (conditions, guards etc.) as B predicates. However, if the
IS-UML approach were extended to permit OCL annotations, and to auto-
matically translate these to B predicates, then the developers could construct
models entirely in the familiar diagrammatic medium, before automatic trans-
lation to B for formal analysis. A consequence of this extension would be that
IS-UML could be completely aligned with current initiatives in object-oriented
development (model driven development, model management, etc [20]), whilst
continuing to provide rigorous analysis and proof of consistency.

Our work includes a prototype tool that takes IS-UML diagrams and gener-
ates the B models needed for rigorous analysis [17]. Up to now, the diagrams
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are produced using the Rose environment [24]; annotations that cannot be
expressed graphically are added in the documentation field of the relevant el-
ement. Rose is no longer the best UML tool available; we need to generalize
tool support for modern UML tools, exploiting the serialized output formats
provided by commercial tools (eg. in XMI). Ideally, we need to be able to
customize the modelling tool to impose the necessary features of IS-UML on
the models, rather than having to apply checks of conformance to the meta-
model after diagram construction. Again, alignment with current practice in
metamodelling tools would allow us to exploit model management techniques
(model comparison, model merging, model transformation) that are under
development (see EU Modelware project publications [19]).

Although most of our work has been on the formal IS-UML metamodel, we
are also looking at other ways of analysing the metamodel. For example, with
Paige, we are developing an executable metamodel using Eiffel that can be
analysed by testing the metamodel program, following the method of [23].

Immediate plans for IS-UML include at least the following.

• Complete the behavioural aspects of IS-UML — for example, we need to
add behaviours in relation to inheritance and composition, to the limited
extent that these apply to IS.

• Further facilitate proofs of model consistency by exploring an intermedi-
ate level of consistency checking, to verify that the predicates used in the
different diagrams are satisfiable (ie. that they are not always false). This
is not essential, but if such checks are not applied, then the B proof tool
might generate a proof obligation that is always false and thus cannot be
automatically discharged; the cause of such a problem is not easily traceable
from the output of the B proof tools.
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Appendix A: B notations

A B MACHINE comprises a number of (optional) clauses. Those used in this
paper are as follows. The details are taken from the B language and method
definition [1].
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MACHINE

introduces the name of the machine
SETS

introduces the name of given sets — we use deferred sets, in which details
are omitted; such sets are implicitly finite and non-empty

VARIABLES

introduces the machine components, the identifiers of its variables
INVARIANT

Conjoined predicates that constrain the machine variables — there
must be a predicate to define the type of each variable in the VARIABLES

clause, in the form, variable ∈ SET ; there may be further constraints.
DEFINITIONS

Macro statements for use in the other machine clauses
OPERATIONS

Introduces all the operations of this machine
OperationName(parameter list)
PRE

The precondition of the operation — conjoined predicates, including (at least)
a predicate to define the type of each parameter

THEN

Specification of the operation — a parallel series of substitutions of the form
variable := expression || . . .

END

To terminate an operation
END

To terminate the machine specification

In B, there are separate notational conventions for specifications and refine-
ments; all the notations used here are for specifications. The notations used
for operation substitutions in this paper are as follows.

OperationName(parameter list)
PRE

predicates
THEN

SELECT P THEN S
WHEN Q THEN T

END

Bounded choice: P and Q are predicates, and S and T are the substitutions
that occur when the predicates are true.

OperationName(parameter list)
PRE

predicates
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THEN

ANY z WHERE P
THEN S

END

Unbounded choice, allowing an arbitrary instance to be selected: z is any
instance of a variable (that does not occur in the PRE clause); P is a
predicate constraining the instance of z, and S is the substitution that

occurs on the selected variable.

In B, large machines are constructed using smaller machines through various
access links. A machine Ma that uses another machine Mb (link USES) can
read the variables of Mb but not modify them. A machine Ma may include
another machine Mb (link INCLUDES): the variables of Mb can be read in
Ma but modified only by using the operations of Mb.

Appendix B: Translation of associations into B

The following table is a summary of the translation of UML associations into
binary relations available in B.

↔ relation ∗ to ∗ mapping

→ function ∗ to 1 mapping , all domain takes part

 injection 1 to 1 mapping , all domain takes part

7→ partial function ∗ to 1 mapping , not all domain takes part

7 partial injection 1 to 1 mapping , not all domain takes part

7→→ partial surjection ∗ to 1 mapping , not all domain, all range takes part

Table 13
Example Mappings Modelled by Relation and Functions

39


