University of Work

This is a repository copy of Maximum-entropy theory of steady-state quantum transport.
White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/4017/

Article:

Bokes, P and Godby, R W orcid.org/0000-0002-1012-4176 (2003) Maximum-entropy theory of steady-state quantum transport. Physical Review B. 125414. -. ISSN 2469-9969

https://doi.org/10.1103/PhysRevB.68.125414

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Erratum: Maximum-entropy theory of steady-state quantum transport [Phys. Rev. B 68, 125414 (2003)]

P. Bokes and R. W. Godby

(Received 29 September 2005; published 17 November 2005)
DOI: 10.1103/PhysRevB.72.199904
PACS number(s): 73.23.Ad, $05.30 . \mathrm{Ch}, 05.60 . \mathrm{Gg}, 99.10 . \mathrm{Cd}$

We have identified an error in the derivation of Eq. (14) in the above-named paper. ${ }^{1}$ The correct value of the induced potential $\Delta \phi$, in the absence of phase-incoherent scattering, is in fact zero. ${ }^{2}$ This renders the subsequent discussion of $\Delta \phi$ and the 4-point conductance $G_{4 P}$ incorrect in this case.

The main results and conclusions of the paper, as well as the example which refers to the modified 4-point conductance $\widetilde{G}_{4 P}$ in which phase incoherence is accounted for, are correct and unchanged.

Both phase-coherent and phase-incoherent cases are analyzed further in a new paper. ${ }^{2}$

[^0]
[^0]: ${ }^{1}$ P. Bokes and R. W. Godby, Phys. Rev. B 68, 125414 (2003).
 ${ }^{2}$ P. Bokes, H. Mera, and R. W. Godby, Phys. Rev. B 72, 165425 (2005).
 () ()

