
This is a repository copy of FUNCTIONAL PEARL : lazy wheel sieves and spirals of
primes.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/3784/

Article:

Runciman, C. orcid.org/0000-0002-0151-3233 (1997) FUNCTIONAL PEARL : lazy wheel
sieves and spirals of primes. Journal of Functional Programming. pp. 219-225. ISSN:
1469-7653

https://doi.org/10.1017/S0956796897002670

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1017/S0956796897002670
https://eprints.whiterose.ac.uk/id/eprint/3784/
https://eprints.whiterose.ac.uk/

J. Functional Programming 7 (2): 219–225, March 1997. Printed in the United Kingdom

c© 1997 Cambridge University Press

219

FUNCTIONAL PEARL

Lazy wheel sieves and spirals of primes

COLIN RUNCIMAN
Department of Computer Science, University of York,

Heslington, York YO1 5DD, UK

e-mail: colin@cs.york.ac.uk

1 Summary

The popular method of enumerating the primes is the Sieve of Eratosthenes. It can

be programmed very neatly in a lazy functional language, but runs rather slowly.

A little-known alternative method is the Wheel Sieve, originally formulated as a

fast imperative algorithm for obtaining all primes up to a given limit, assuming

destructive access to a bit-array. This article describes functional variants of the

wheel sieve that enumerate all primes as a lazy list.

2 A standard solution

Few readers of this journal will be unfamiliar with the following program to

enumerate the primes using The Sieve of Eratosthenes:

primes = sieve [2..]

sieve (p:xs) = p : sieve [x | x <- xs, x mod p > 0]

This little program, or something very like it, has been part of the stock-in-

trade of lazy list-processing for over twenty years (Turner, 1975). For all its dainty

appearance, however, the program makes brutal demands on the reduction machine.

Suppose we compute pk , the kth prime. Sample reduction counts† are:

p100: 36,558 p1000: 3,124,142 p5000: 75,951,324

Why is the computation so costly? There are two main reasons for inefficiency

in generate-and-test programs: the generator may be too simple, producing com-

paratively few successful candidates among many failures; or the test may be too

complex, performing unnecessarily extensive checks. Both reasons apply here. The

generator [2..] offers all integers > 1 as candidate primes. The multi-stage test

makes pk+1 an item in pk intermediate lists between the initial list of candidates and

the final list of primes – sieve’s argument at recursion depth d being the list of

numbers > pd not divisible by any of p1 · · · pd.

† Reduction counts in this article are those reported by Mark Jones’ HUGS interpreter,
computing pk as the value of primes!!(k-1) for some definition of primes.

220 C. Runciman

primes = sieve [2..]

sieve (p:xs) = p : [x | x <- xs, noFactorIn primes squares x]

noFactorIn (p:ps) (q:qs) x =

q > x || x mod p > 0 && noFactorIn ps qs x

squares = [p*p | p <- primes]

Fig. 1. A circular program with fewer intermediate lists and fewer tests for divisors than the
standard solution using a recursive sieve.

3 A circular program with a cheaper test

The technique of circular programming (Bird, 1984) can be used to avoid the inter-

mediate lists of the recursive sieve. By reformulating sieve so that it refers directly

to the list of primes it is producing, it need no longer be recursive. Instead of

checking for a single prime factor in the list comprehension of each recursive call,

we check for all possible prime factors in one qualifier.

To implement this scheme, we need some way of cutting short the search for

factors in primes. Otherwise the computation will fall into an unproductive black

hole of self-reference. We use an elementary fact: if x is composite, it must have a

prime factor p with p ≤ √
x; so if we reach a prime larger than

√
x without passing

a factor of x, we may conclude that x is prime. The revised program is shown in

figure 1. The addition of the test q > x not only avoids the black hole; it also avoids

many of the tests for divisors carried out by the recursive sieve. This double gain

is reflected in reduction counts less than 35% of the original even when computing

only as far as p100, and less than 4% when computing p5000.

p100: 12,395 (< 35%) p1000: 267,152 (< 10%) p5000: 2,325,932 (< 4%)

4 Wheels: a series of generators

Imagine a wheel of unit circumference, with a spike at one point on its rim. Roll this

wheel along a tape. After n revolutions, there are n regularly-spaced holes through

the tape, one unit apart. This wheel is equivalent to the generator we have used so

far. Numbering the first hole 2, it generates 2, 3, 4, 5,

But this wheel is only the smallest, W0, in an infinite series of wheels, Wk for

k = 0, 1, 2, 3, Following Pritchard (1982), let Πk = p1.p2. · · · .pk the product of

the first k primes. Then Wk is a wheel of circumference Πk , with spikes positioned

at exactly those points x units round the circumference where x mod pn > 0 for

n = 1 . . . k. Because Πk mod pj = 0 for all j ≤ k, no matter how far Wk is rolled,

beyond pk the numbers spiked are exactly those without prime divisors ≤ pk .

Functional pearl 221

5 Computing wheels from primes...

A wheel can be represented by a construction including its circumference and a list

of spike positions.

data Wheel = Wheel Int [Int]

For example, W0 is represented by Wheel 1 [1]. The full infinite series of wheels

can be defined as in figure 2. Wk+1 is generated by rolling Wk around a rim of

circumference Πk+1, excluding multiples of pk+1 from the spike positions obtained.

wheels =

Wheel 1 [1] :

zipWith nextSize wheels primes

nextSize (Wheel s ns) p =

Wheel (s*p) [n’ | o <- [0,s..(p-1)*s],

n <- ns,

n’ <- [n+o], n’ mod p > 0] 6

3

2

2

1

5

4

Fig. 2. Defining an infinite series of wheels of increasing size. The diagram shows how W1 is
used to generate W2, illustrating the application nextSize (Wheel 2 [1]) 3.

...and primes from wheels

Our primes programs so far have only used W0 as generator. What options are

there for the use of larger wheels?

Fixed wheel solutions. We could simply use Wk for some fixed k, but this has two

disadvantages. First, we have to make some special arrangement to compute the first

k primes (or else write them into the program explicitly) as they are needed to build

Wk . Secondly, whatever k we choose, it will be a poor choice in some circumstances:

if few primes are needed, a small wheel is best; if many are needed, a large one is

best.

Variable wheel solutions. The alternative is a circular program that computes both

wheels and primes according to demand. The larger the primes to be computed,

the larger the wheel used. But this raises a key question: When exactly should the

wheel be changed? At least two different answers can be given:

1. Change when it is most convenient to do so. The program will be simple, and

the change-over will be cheap. Specifically, roll Wk exactly (pk+1 − 1) times

before changing to Wk+1. Then the change occurs at exactly the point where

Wk+1 would have started its second revolution had it already been in use.

2. Change just often enough to avoid all residual sieving. This maximises the

benefits of using a series of wheels, but at the cost of a more complex program.

Specifically, roll Wk only until it reaches p2
k+1, then change to Wk+1 which must

take up the computation part way through a revolution.

We shall consider each alternative, in order.

222 C. Runciman

6 Lazy wheel sieve Mark I

First, a solution changing wheels at a point that allows the new wheel to start a

complete revolution. Figure 3 gives the new definitions of primes and sieve.

primes = sieve wheels primes squares

sieve (Wheel s ns : ws) ps qs =

[n’ | o <- s : [2*s,3*s..(head ps-1)*s],

n <- ns,

n’<- [n+o | s <= 2 || noFactorIn ps qs n’]]

++ sieve ws (tail ps) (tail qs)

Fig. 3. The Mark I wheel-sieve.

The comprehension in the sieve computation is similar to that in nextSize:

both roll a given wheel a number of times determined by a given prime. But

circularity makes the sieve definition more delicate, and in several places we must

tread carefully to avoid a black hole. Rather than pattern-match eagerly against the

sequence of primes ps presented as sieve’s second argument, head and tail are

applied when needed. We further avoid dependence on ps by separating the first of

the offsets o from a range computation for the rest that is strict in its upper limit,

and by searching for factors in ps only when s>2.

The performance of the Mark I Wheel Sieve compares favourably with the circular

sieve (which uses only the equivalent of W0). Sample reduction counts are:

p100: 4,920 (∼ 40%) p1000: 131,713 (∼ 50%) p5000: 1,445,789 (∼ 60%)

7 Lazy wheel sieve Mark II

In the alternative wheel-changing solution, each wheel is changed just in time to

avoid residual sieving. This method is more awkward to program because the old

wheel must stop rolling in mid revolution. List comprehensions no longer provide a

convenient way to express wheel-rolling. Instead of a comprehension such as

roll ns s p =

[n’ | o <- 0,s,..(p-1)*s,

n <- ns,

n’ <- [n+o], c n’]

we resort to explicit recursion and the use of foldr:

roll ns s p = roll’ (p-1) 0

where

roll’ 0 _ = []

roll’ t o = foldr (turn o) (roll’ (t-1) (o+s)) ns

turn o n xs =

let n’ = o+n in

if c n’ then n’:xs else xs

Functional pearl 223

To express a wheel change in mid-revolution, we can redefine the turn auxiliary so

that it conditionally substitutes for xs a recursive call using a different wheel.

Another tricky aspect of the Mark II wheel-sieve is that the new wheel must

start rolling in mid revolution. The simple list-of-spikes representation would force an

ungainly and expensive dropWhile (< p*p). This motivates a revised representation

of wheels: split the spikes of Wk into two lists, the first containing all spikes < p2
k

and the second those > p2
k .

data Wheel = Wheel Int [Int] [Int]

A change of representation for wheels entails a new definition of nextSize.

Because of the split spike-list we use foldr in place of a comprehension. As there

is no longer any residual sieving, the sieve function is renamed spiral: it too uses

the foldr technique, and the major recursive call representing a wheel-change is

made within the turn auxiliary. Figure 4 shows a full program for the Mark II sieve.

The application of dropWhile to the recursive spiral computation may be

surprising. Didn’t we change the representation of wheels to make this unnecessary?

Indeed, the revised representation makes it easy to skip values < p2
k from the first

revolution of a new wheel Wk; but for very small values of k the circumference Πk

is less than p2
k , so it is necessary to skip values beyond the first revolution. After

wheels =

Wheel 1 [1] [] :

zipWith3 nextSize wheels primes squares

nextSize (Wheel s ms ns) p q =

Wheel (s*p) ms’ ns’

where

(xs,ns’) = span (<=q) (foldr (turn o) (roll (p-1) s) ns)

ms’ = foldr (turn 0) xs ms

roll 0 _ = []

roll t o =

foldr (turn o) (foldr (turn o) (roll (t-1) (o+s)) ns) ms

turn o n rs =

let n’ = o+n in [n’ | n’ mod p > 0] ++ rs

primes = spiral wheels primes squares

spiral (Wheel s ms ns : ws) ps qs =

foldr (turn 0) (roll s) ns

where

roll o =

foldr (turn o) (foldr (turn o) (roll (o+s)) ns) ms

turn o n rs =

let n’ = o+n in

if n’==2 || n’ < head qs then n’:rs

else dropWhile (<n’) (spiral ws (tail ps) (tail qs))

Fig. 4. The Mark II wheel sieve.

224 C. Runciman

three wheel changes, dropWhile acts as an identity but for the small overhead of

one comparison at each subsequent change.

Measured by reduction counts, Mark II out-paces Mark I, but the margin between

the two is very slight until several hundred primes have been computed. Even by

p1000 the margin is only 12%.

p100: 4,841 (∼ 98%) p1000: 116,646 (∼ 88%) p5000: 1,245,756 (∼ 86%)

8 Giant wheels and lazy spirals

The similar performance of the two wheel-sieve variants is more striking when

one considers the sizes of wheels involved. Suppose we evaluate primes as far as

p5000(= 48, 611). The largest wheel used by the Mark I wheel-sieve is W6 since

Π6 = 30, 030 < p5000 < 510, 510 = Π7.

Drawn to the scale of figure 2, W6 would comfortably encircle a large building –

quite a big wheel, though its representation does not involve numbers beyond the

scope of single-word machine arithmetic. The Mark II wheel-sieve, however, reaches

W47 since

p47 = 211 <
√
p5000 < 223 = p48.

Now Π47, the circumference of W47, is an 86-digit number. On the same scale as

before, the dimensions of W47 far exceed those of the visible universe! We must not

construct any more of such a huge wheel than is strictly necessary. Lazy evaluation

is essential. Continuing with the illustration of computing primes up to p5000, of

the three components in the representation of W47: the circumference Π47 is never

evaluated; the spikes less than p2
47 = 44, 521 are never evaluated; only a fragment of

the rim of W47 beyond p2
47 is constructed, containing just 373 spikes.

Figure 5 shows a way of tracing the enumeration of primes by a wheel-sieve

program. Drawing the wheels concentrically, the computation can be traced as

a spiral. Beginning on the rim of W0, the spiral orbits the centre once for each

completed revolution of a wheel, and its increasing radius is equal to that of Wk at

the point where the program switches to Wk as a new wheel. Each generated prime

is marked at the appropriate point on the spiral, positioned on a radius passing

through the spike that generated it.

9 Final remarks

There is some scope for improving the wheel-sieve programs given here. For example,

during the construction of Wk+1 using Wk , each candidate spike is tested for non-

divisibility by pk+1. But the failing candidates are exactly the products of pk+1 and

a spike in Wk — a fact exploited in the array-based algorithm of Pritchard (1982).

(That algorithm also changes wheels according the principle used for our Mark II

program, so it has hardly a vestige of sieving, despite its name.)

Functional pearl 225

29

29

7

7
5

11

Fig. 5. Fragments early in the spirals of primes resulting from the two alternative
wheel-changing rules: the dotted spiral traces Mark I, and the dashed spiral Mark II.
(W3 is shown half-size to resolve a conflict of scale.)

Reduction counts are handy and machine-independent. But they give only a rough

indication of comparative costs. Among the factors they ignore, for example, the

Mark II program uses more memory than Mark I.

One could of course write wheel-sieve variants for the indefinite enumeration of

primes in an imperative language, but I’d rather not. On the way to the functional

solutions the worst one meets is the odd black hole, which a helpful compiler-

writer may arrange to be pin-pointed in the source program. All the most intricate

problems of scheduling and memory management are solved for free as part of the

paradigm.

It is hard to beat the cute simplicity of the two-line sieve with which we began.

But even after improvement, it cannot match the wheel-sieve programs for speed.

Besides, the spirals have an elegance of their own.

Acknowledgements

My thanks to Richard Bird and John Hughes for helpful comments.

References

Bird, R. S. (1984) Using circular programs to eliminate multiple traversals of data. Acta

Informatica, 21(3), 239–250.

Pritchard, P. (1982) Explaining the wheel sieve. Acta Informatica, 17, 477–485.

Turner, D. A. (1975) SASL language manual. Technical Report CS/75/1. Department of
Computational Science, University of St. Andrews.

