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COMMON HYPERCYCLIC VECTORS FOR FAMILIES OF

OPERATORS

EVA A. GALLARDO-GUTIÉRREZ AND JONATHAN R. PARTINGTON

Abstract. We provide a criterion for the existence of a residual set of common

hypercyclic vectors for an uncountable family of hypercyclic operators, which is

based on a previous one given by Costakis and Sambarino. As an application,

we get common hypercyclic vectors for a particular family of hypercyclic scalar

multiples of the adjoint of a multiplier in the Hardy space, generalizing recent

results by Abakumov and Gordon and also Bayart. The criterion is applied to

other specific families of operators.

1. Introduction

Let B be a separable complex Banach space. A bounded linear operator T acting

on B is called cyclic if there is a vector x ∈ B such that the linear span generated

by its orbit {x, Tx, T 2x, · · · } is dense in B. In such a case, the vector x is called

cyclic. If the orbit itself is dense, then T is called hypercyclic and x a hypercyclic

vector for T . In what follows, HC(T ) will denote the set of hypercyclic vectors for

T .

Hypercyclic operators and hypercyclic vectors have attracted the attention of

many authors in the last decades (see [10] and [11] for a good source of references

and results). Let us just mention that the first example of a hypercyclic operator on

the Banach space setting was given by Rolewicz [14] in the sixties. If B denotes the

unilateral backward shift B acting on the sequence space ℓp, 1 ≤ p < ∞, Rolewicz’s

Theorem states that λB is hypercyclic on ℓp, 1 ≤ p < ∞ for any complex number

λ with |λ| > 1.

More recently, questions related to the size of the set of hypercyclic vectors for

a family of operators have engaged the attention of many experts in the area. In

this sense, it is a well known fact that HC(T ) is a Gδ dense set whenever it is

non-empty. Hence, as an application of Baire’s Theorem, any countable family of

hypercyclic operators has a Gδ dense set of common hypercyclic vectors.

Of course, the question of common hypercyclic vectors for an uncountable family

of hypercyclic operators is not so straightforward. In this respect, Abakumov and
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2 EVA A. GALLARDO-GUTIÉRREZ AND JONATHAN R. PARTINGTON

Gordon [1], answering a question posed by Salas [15], have shown the existence of

common hypercyclic vectors in ℓ2 for the family {λB : |λ| > 1}.

Bayart [2, Cor. 3], extending Abakumov and Gordon’s techniques, has proved

that {λT : |λ| > 1}, has a common hypercyclic vector, where T = M∗

φ is the adjoint

of a multiplication operator on the Hardy space H2(D) by an inner function φ.

In fact, Bayart’s result could be seen as a first step towards solving a general

question posed by Godefroy and Shapiro [9, Rem. 4.10, Rem. 5.5] in the nineties,

which asks if the scalar multiples of the adjoints of the multipliers which are hyper-

cyclic on a functional Hilbert space have a common hypercyclic vector. We point

out that a scalar multiple of the adjoint of a multiplier is hypercyclic if and only if

its spectrum meets the unit circle T (see [9]). Moreover, the family of the adjoints

of the multipliers on a functional Hilbert space that are not scalar multiples of the

identity, has a common cyclic vector (see Bourdon and Shapiro’s work [5]).

A preliminary approach to Godefroy and Shapiro’s question is the following

question raised in the recent paper by Bayart and Grivaux [4, Question 3.3], which

still remains open:

Let ϕ ∈ H∞(D) be a multiplier on the Hardy space H2(D) and

define the set Λ as Λ = {λ ∈ C : λϕ(D) ∩ T 6= ∅}. Does the family

{λM⋆
ϕ : λ ∈ Λ} have a common hypercyclic vector?

In this note, we prove a result (Theorem 3.1) which subsumes the Bayart,

Abakumov–Gordon and Rolewicz theorems, and which in particular yields a posi-

tive answer to Bayart and Grivaux’s question whenever we suppose that the mul-

tiplier ϕ has a nontrivial inner factor and is bounded below on the unit circle T.

To show Theorem 3.1, we prove a criterion to get common hypercyclic vectors

for an uncountable family of hypercyclic operators on a separable Banach space B.

Though our criterion is a variant on that one proved by Costakis and Sambarino

[7, Theorem 12], we point out that the hypotheses of Costakis and Sambarino’s

Theorem are not well-adapted to constructing hypercyclic vectors for multiples of

an adjoint multiplier. Hence, we first provide in Section 2 an alternative version

which is powerful enough for our needs.

In Section 3 we give the application to adjoint multipliers. Another class of

operators to which the criterion applies is that of the adjoints of strictly causal

multipliers on weighted ℓ2 spaces. These include certain multipliers on Bergman

and Dirichlet spaces. A similar result holds for certain convolution operators on

weighted L2(0,∞) spaces.

We end Section 3 dealing with the class of composition operators. In this sense,

Bayart [2] has shown that the family of all invertible composition operators on the

Hardy space H2(D) does not admit a common hypercyclic vector. Here, we will

present a family of multiples of adjoints of some composition operators for which

it is possible to construct common hypercyclic vectors on the Hardy space.
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2. Common hypercyclic vectors criterion

In [7, Thm. 12], Costakis and Sambarino proved the following result, which they

applied to constructing common hypercyclic vectors for certain families of operators.

Theorem (Costakis and Sambarino). Let B be a separable Banach space and

I an open interval of the positive real line. Let {Tn,λ : n ∈ N, λ ∈ I} be a family of

operators acting on B such that for each fixed n the mapping λ 7→ Tn,λ is continuous.

Assume that there is a dense set {xj : j ≥ 0} of vectors in B and a family of

operators {Sn,λ : n ∈ N, λ ∈ I} such that Tn,λSn,λ = Id and

(1) Given xj and a compact set K ⊂ I there is a sequence of positive numbers

(ck) such that

(a)
∑

k ck < ∞,

(b) ‖Tn+k,λSn,α(xj)‖ ≤ ck for all n ≥ 0, k > 0 and λ, α ∈ K with λ ≥ α,

(c) ‖Tn,λSn+k,α(xj)‖ ≤ ck for all n ≥ 0, k > 0 and λ, α ∈ K with λ ≤ α,

(2) Given ǫ > 0, xj and a compact set K ⊂ I there exists 0 < C(ǫ) < 1 such

that, for λ, α ∈ K the following holds:

if 1 ≥ λ/α > C(ǫ)1/n, then ‖Tn,λSn,α(xj) − xj‖ < ǫ.

Then there is a residual set G of vectors of B such that for every λ ∈ I and

x ∈ G the set {Tn,λ(x) : n ≥ 0} is dense in B.

Assumption 1(b) is stated in [7] as holding for all λ and α in K; this is not

necessary, as the proof uses only the case λ ≥ α. In [4], Bayart and Grivaux quoted

the result with this weaker assumption.

We shall often be interested in the case Tn,λ = (λT )n, where T is a fixed operator;

in that case G consists of vectors that are hypercyclic for each λT . By [7, Theorem

16], it is sufficient to consider real positive λ as if x is hypercyclic for λT then it is

hypercyclic for λe2πitT for any t ∈ [0, 1].

As mentioned in the introduction, the hypotheses of Costakis and Sambarino’s

Theorem are not well-adapted to constructing hypercyclic vectors for multiples

of an adjoint multiplier, and our first step is to provide the following alternative

version of the theorem

Theorem 2.1. The conclusions of Costakis and Sambarino’s Theorem remain true

if we replace hypothesis (1)(b) by:

(1)(b′) There is an integer kj such that, whenever k ≥ kj, one has Tk,λ(xj) = 0

and also, for all n ≥ 0 and λ, α ∈ K with λ ≥ α, one has Tn+k,λSn,α(xj) = 0.

Note that conditions (b) and (b′) are in general inequivalent, but that (b′) is often

satisfied in applications to specific operators, and that (b) is almost never satisfied

if we have Tn,λ = (λT )n.

Proof: The proof is a modification of the proof of Theorem 12 of [7], and we

highlight the changes needed when we assume (1)(b′) rather than (1)(b). With
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K = [λ1, λ2] ⊂ I we define

EK(s, j, m) = {x ∈ B : ∀λ ∈ K ∃n = n(λ) ≤ m such that ‖Tn,λ(x) − xj‖ < 1/s}.

As in [7] the sets EK(s, j, m) are open and therefore, it is only necessary to show

that
⋃

m EK(s, j, m) is dense.

Let w = xp for some p ∈ N and δ > 0. Then Tn,λw = 0 for n ≥ k = kp and for

every λ ∈ K. Define

y = w + Sk,α0
(xj) + S2k,α1

(xj) + . . . + S(l+1)k,αl
(xj),

where λ1 = α0 < α1 < . . . < αl = λ2 is a partition of [λ1, λ2].

Now, ‖y − w‖ < ck + c2k + . . . < δ, for k sufficiently large, and for λ with

αi−1 < λ ≤ αi, we have

T(i+1)k,λ(y) − xj = a + b + c + d, where

a = T(i+1)k,λ(w),

b = T(i+1)k,λSk,α0
(xj) + . . . + T(i+1)k,λSik,αi−1

(xj),

c = T(i+1)k,λS(i+1)k,αi
(xj) − xj , and

d = T(i+1)k,λS(i+2)k,αi+1
(xj) + . . . + T(i+1)k,λS(l+1)k,αl

(xj).

By choosing k sufficiently large we have that a = b = 0, by (1)(b′), and ‖d‖ <

ck + c2k + . . . < 1
2s by (1)(c). We also have ‖c‖ < 1

2s using (2), provided that the

partition is sufficiently fine.

We conclude that for these choices we have ‖y − w‖ < δ and

‖T(i+1)k,λ(y) − xj‖ < 1/s,

as required. Hence, the statement of Theorem 2.1 follows. �

Remark 2.1. Note that, as in the Hypercyclicity Criterion (see [9, Corollary 1.5],

for instance) the proof of Costakis and Sambarino’s Theorem still works if it is not

assumed that the maps Sn,λ, with n ∈ N and λ ∈ I, are linear or continuous (or

even defined everywhere).

3. Applications to specific operators

3.1. Adjoint multipliers on Hardy spaces. We apply Theorem 2.1 to prove the

following result on common hypercyclic vectors for the hypercyclic scalar multiples

of the adjoint of a multiplier in the Hardy space H2(D)

Theorem 3.1. Suppose that φ ∈ H∞(D) is bounded below on T but is not an outer

function. Then the set {λM⋆
φ : |λ| > ‖1/φ‖L∞(T)} has a residual set of common

hypercyclic vectors in H2(D).
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Proof: In the notation of Theorem 2.1, we write T = M⋆
φ and Tn,λ = (λT )n.

Let the inner–outer factorization of φ be φ = uθ, where u is outer and invertible in

H∞(D), and θ is inner and non-constant.

Write Kn = H2(D)⊖ θn H2(D). Clearly
⋃

∞

n=1 Kn is a dense subspace of H2(D),

as otherwise there is a non-zero vector v orthogonal to each Kn. That is, v ∈

θnH2(D) for each n, which is impossible. We may therefore take a countable dense

set {xj : j ≥ 0} with each xj lying in some KN(j). Then

〈T Njxj , y〉 = 〈xj , u
NjθNj y〉 = 0,

for each y ∈ H2(D), so that T Njxj = 0.

Define S = M∗

1/uMθ. We deduce that

〈TSx, y〉 = 〈Sx, φy〉 = 〈θx, u−1uθy〉 = 〈x, y〉,

for all x, y ∈ H2 since θ is inner. Write Sn,λ = (λ−1S)n, so that Tn,λSn,λ = Id.

Now given xj ∈ KN(j) and a compact interval K = [a, b] with a > ‖1/φ‖∞ ≥

‖S‖, we clearly have condition (1)(b′), and also

Tn,λSn+k,α(xj) =
λn

αn+k
Skxj ,

so that

‖Tn,λSn+k,α(xj)‖ ≤
‖Skxj‖

|α|k
, (λ, α ∈ K, λ ≤ α),

which gives condition (1)(c) with ck = ‖Sk‖ ‖xj‖/ak, which satisfies (1)(a).

Finally, condition (2) holds since Tn,λSn,α = (λ/α)nId. Hence, by Theorem 2.1,

the set {λT : |λ| > ‖1/φ‖L∞(T)} has a common hypercyclic vector. �

Surprisingly, it is still unknown whether there is a common hypercyclic vector

for the set {λM∗

φ : |λ| > 1/2}, when φ is the outer function z 7→ z + 1. Note that

the operator M∗

φ is simply I + B, where B is the backward shift.

3.2. Adjoint convolution operators. Let w = (wn)∞n=0 be a strictly positive

weight sequence and let ℓ2(w) denote the Hilbert space of complex sequences a =

(an)∞n=0 such that

‖(an)‖2
w :=

∞∑
n=0

|an|
2wn < ∞.

We suppose as usual that supn wn+1/wn < ∞, so that the right shift is a bounded

operator on ℓ2(w). In many cases it is convenient to identify the sequence (an) with

the power series
∑

∞

n=0 anzn, in which case the shift corresponds to multiplication

by the independent variable z. Two cases of particular interest are the sequences

with an = 1/(n + 1) and an = max(1, n), which correspond to the well-known

Bergman and Dirichlet spaces respectively (see, for example [17]). A multiplier T
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on the space ℓ2(w) is a bounded operator that commutes with the right shift, and

it is easily seen to be given by a convolution:

(Ta)n =

n∑
k=0

ckan−k,

for some sequence (ck)∞k=0. Borrowing the language of linear systems, the convolu-

tion operator T is said to be strictly causal if c0 = 0, so that (Ta)n depends only

on (Ta)k for 0 ≤ k < n.

Theorem 3.2. Let T be a strictly causal convolution operator on ℓ2(w), such that

for some β > 0 one has ‖Tx‖ ≥ β‖x‖, for all x ∈ ℓ2(w). Then the set {λT ∗ : |λ| >

β−1} has a residual set of common hypercyclic vectors.

Proof: We write Tn,λ = (λT ∗)n. Since T is bounded below, it has a left inverse

S (i.e., ST is the identity) such that ‖S‖ ≤ β−1; we define Sn,λ = (λ−1S∗)n and

note that for n, k ≥ 0 and α, λ > 0 we have

Tn+kSn,α = λn+kα−n(T ∗)k and Tn,λSn+k,α = λnα−n−k(S∗)k.

We now take a countable dense set of vectors (xj), each of which has finite

support; thus, since T is strictly causal, for each such j there is an index N(j)

such that 〈xj , T
N(j)y〉 = 0 for all y, and hence (T ∗)N(j)xj = 0. As in the proof of

Theorem 3.1, we see easily that Conditions (1) (a)–(b′)–(c) and (2) of Section 2 are

satisfied, and the result now follows from Theorem 2.1. �

A similar result holds in the weighted Lebesgue space L2((0,∞); w), where now

w is a positive measurable locally bounded function, and the functions in the space

satisfy

‖f‖2
w =

∫
∞

0

|f(t)|2w(t) dt < ∞,

with, as usual, functions identified if they are equal almost everywhere. A strictly

causal convolution operator now has the form

(Tf)(t) =

∫ t

0

f(t − τ) dµ(τ),

for a distribution µ supported on [σ,∞) for some σ > 0. (For example, a right

shift corresponds to a Dirac distribution.) In many cases this corresponds to a

multiplication operator on a space of Laplace transforms: for instance, in the un-

weighted case, the space of transforms is a Hardy space on the right half-plane (see,

for example, [13, Sec. 1.2]).

Theorem 3.3. Let T be a strictly causal convolution operator on L2((0,∞); w),

such that for some β > 0 one has ‖Tx‖ ≥ β‖x‖, for all x ∈ L2((0,∞); w). Then

the set {λT ∗ : |λ| > β−1} has a residual set of common hypercyclic vectors.
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Proof: The proof is similar to that of Theorem 3.2, where now the dense set (xj)

is taken to consist of functions of compact support. �

Remark 3.1. Note that the weight w in both results Theorem 3.2 and 3.3 plays a

role in ensuring that T is bounded as well as bounded below.

3.3. Composition operators. Recall that if φ is an analytic function on the unit

disc D with φ(D) ⊂ D, then the equation

Cφf = f ◦ φ

defines a composition operator Cφ on the space of all holomorphic functions on the

unit disc H(D). Moreover, Littlewood’s Subordination Principle [12] states that Cφ

acts boundedly on the Hardy space H2(D). For more details on the subject, we

refer the reader to [8, 16].

As mentioned in the introduction, Bayart [2] has shown that the family of all in-

vertible composition operators on the Hardy space H2(D) does not admit a common

hypercyclic vector. Nevertheless, in [4] it is shown that the family of composition

operators induced by disc automorphisms having +1 as attractive fixed point has

a residual set of common hypercyclic vectors in H2(D). Here, we present a family

of multiples of adjoints of some composition operators for which it is possible to

construct common hypercyclic vectors on H2(D). In what follows, we denote by

H2
0(D) the reducing subspace H2

0(D) = {f ∈ H2(D) : f(0) = 0}.

Proposition 3.1. Let φ be an inner function such that φ(0) = 0 and φ is not the

identity function. Then the family {λC∗

φ : |λ| > 1} acting on H2
0(D) has a residual

set of common hypercyclic vectors.

Proof: The key point of the proof relies on the fact that Cφ is a unilateral shift of

multiplicity dim(H2
0(D) ⊖ CφH2

0(D)) (see, for example, [6]). Hence, upon applying

Theorem 2.1, it is possible to construct a common hypercyclic vector for all λC∗

φ

with |λ| > 1. �

Remark 3.2. We point out that Bayart’s result [2, Cor. 3] on λM∗

φ , where φ is

inner, is a particular case of Proposition 3.1, since these operators Mφ are also

unitarily equivalent to shifts.

To end the section, we note more generally that if w = (wn)∞n=0 is a strictly

positive weight sequence as in Section 3.2, satisfying also ηN := infn wN+n/wn > 0

for every N ≥ 1, and if H2(w) denotes the functional version of ℓ2(w), that is, the

Hilbert space of analytic functions f =
∑

∞

n=0 anzn, defined on an appropriate disc

RD with 0 < R ≤ 1, such that

‖f‖2
w :=

∞∑
n=0

|an|
2wn < ∞,
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then the composition operator Cφ induced by φ(z) = zN , with N ≥ 1, is bounded

below in H2(w), namely we always have ‖Cφf‖w ≥ η
1/2
N ‖f‖w. Therefore, its adjoint

has a bounded right inverse and as an application of Theorem 2.1 we may deduce

the following:

Proposition 3.2. Let φ(z) = zN with N ≥ 2. Then the family of operators

{λC∗

φ : |λ| > η
−1/2
N } acting on H2

0(w) = {f ∈ H2(w) : f(0) = 0} has a residual set

of common hypercyclic vectors.
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