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Experiments reported by Blake et al. [Phys. Fluids. 11, 1995 (1999)] suggest that the dynamic
contact angle formed between the free surface of a liquid and a moving solid boundary at a fixed
contact-line speed depends on the flow field/geometry near the moving contact line. The present
paper examines quantitatively whether or not it is possible to attribute this effect to bending of the
free surface due to hydrodynamic stresses acting upon it and hence interpret the results in terms of
the so-called “apparent” contact angle. It is shown that this is not the case. Numerical analysis of
the problem demonstrates that, at the spatial resolution reported in the experiments, the variations
of the “apparent” contact angle (defined in two different ways) caused by variations in the flow field,
at a fixed contact-line speed, are too small to account for the observed effect. The results clearly
indicate that the actual (macroscopic) dynamic contact angle, i.e. the one used in fluid mechanics
as a boundary condition for the equation determining the free surface shape, must be regarded as
dependent not only on the contact-line speed but also on the flow field/geometry in the vicinity of
the moving contact line.

PACS numbers: 68.08.Bc, 47.11.-j, 47.10.-g, 83.50.Lh

I. INTRODUCTION

Experiments reported by Blake et al. [1] pose a funda-
mental question for the mathematical modelling of dy-
namic wetting. The essence of the results is that at a
fixed contact-line speed the dynamic contact angle — the
angle at which the free surface meets the moving solid
boundary — depends on the flow field/geometry in the
vicinity of the moving three-phase-contact line. Specif-
ically, it was demonstrated in curtain coating (Fig. 1),
where a liquid sheet falls vertically onto a moving solid
substrate, for a given gas/liquid/solid system and a given
contact-line speed, the measured dynamic contact angle
can be varied by varying the flow rate and/or the curtain
height, that is the other parameters determining the flow
field. A typical dependence of the measured dynamic
contact angle on the flow rate for different contact-line
speeds is given in Fig. 2. This result extended the one
reported earlier [2], where critical conditions for the on-
set of air entrainment were found to be dependent on the
flow field and a term ‘hydrodynamic assist of dynamic
wetting’ was coined to describe this effect.

∗Electronic address: m.wilson@leeds.ac.uk
†Electronic address: yulii@for.mat.bham.ac.uk

The onset of air entrainment is by no means an ar-
tifact of observations, and the effect of ‘hydrodynamic
assist’ is used in applications of curtain coating, for ex-
ample, in manufacturing photographic papers. However,
the situation with the contact-angle behaviour in regu-
lar wetting is more subtle. A question which naturally
arises is whether the observed effect of the contact-angle
dependence on the flow field/geometry can be attributed
to bending of the free surface due to the hydrodynamic
stresses acting upon it, as suggested previously for a num-
ber of low-resolution measurements (see e.g. Ref. [3]). In
the experiments by Blake et al. [1] the spatial resolution
of the contact angle measurements was sufficiently high
for the associated length scale to be small compared with
the characteristic length scale of the flow field variations
due to changes in the flow conditions, and because of that
the authors had to question such an explanation.

The goal of the present work is to check this argument
quantitatively, that is to try to describe the experimen-
tal data presented in Ref. [1], in particular those given in
Fig. 2, within the framework of a conventional approach
to the moving contact-line problem, which is based on
(i) relaxing the no-slip boundary condition at the solid
surface to remove the shear-stress singularity at the con-
tact line and (ii) prescribing the actual contact angle to
be a function of the contact-line speed and parameters
characterizing the material properties of the contacting
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FIG. 1: A definition sketch for curtain coating. θd is the ac-
tual (macroscopic) contact angle, θapp1 and θapp2 are the “ap-
parent” angles defined in different ways. In comparing con-
tinuum theories are with experiments, the length L becomes
associated with the spatial resolution of the measurements.

speed

0 1 2 3 4 5 6
60

80

100

120

140

160

180

plunging
tape

70
60

50
40

30
20

10
5−1 s )

co
nt

ac
t a

ng
le

 (
de

g)

2flow rate (cm −1 s )

190
80(cm

FIG. 2: Map of dynamic contact angle versus flow rate show-
ing coating speed contours from Ref. [1] for curtain coating
with a 3 cm high curtain of 25mPas aqueous glycerol solution
on PET tape. The spatial resolution of the measurements
was less than 20 µm for all curves.

media. The models that use this approach are known
collectively as ‘slip models’.

In the experiments we will be trying to describe, the
capillary and Reynolds numbers are of O(1) so that we
will have to consider slip models without any simplifica-
tions. Our objective is to find numerical solutions to the
mathematical problem describing curtain coating in the
framework of different slip models with all conditions and
parameters coinciding with what was measured in exper-
iments and to use free parameters of the models (such as
the slip length) together with the actual contact angle θd

(see Fig. 1) as adjustable, trying to fit the theory to the
experiments.

II. PROBLEM FORMULATION

To model the spreading of a Newtonian liquid over a
solid surface, one has to overcome the well-known ‘mov-
ing contact-line problem’. Mathematically, this com-
prises the following two components:

(i) The problem of removing the stress singularity at
the moving contact line by formulating appropriate
boundary conditions on the interfaces, instead of
the classical ones, to account for the specific physics
of the liquid-fluid displacement;

(ii) The problem of describing the dependence of the
dynamic contact angle θd (Fig. 1), which is a
boundary condition for the equation determining
the free-surface shape, on the material properties of
the contacting media, the contact-line speed and,
possibly, other factors affecting the flow field.

These two aspects of the moving contact-line problem
have been addressed in a number of works in the past
three decades (see Sec. 9 in Ref. [4] for a review). The
conventional approach to problem (i) is to preserve the
classical boundary conditions on the free surface and re-
lax no-slip on the solid boundary. In the literature, one
can find two ways of imposing slip as a boundary con-
dition at the solid surface. The first is to prescribe ex-
plicitly the velocity distribution near the moving contact
line in the form

u = F (x;U, s1, s2, . . .), (1)

where u is the tangential velocity of the liquid on the
solid surface in the coordinate frame moving with the
contact line, U is the (tangential) velocity of the solid
in the same coordinate frame, x is the distance from the
contact line, and si (i = 1, 2, . . .) are constants specific to
the gas/liquid/solid system. To remove the singularity at
the contact line and satisfy the no-slip condition far away
from it, one must have F (0; . . .) = 0 and F (x; . . .) → U as
x → ∞. Particular forms of (1) known in the literature
are the exponential distribution [5–7]

u = U [1 − exp(−
x

s1

)] (2)
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and the algebraical ones [8]

u = U

(

x

s1

)s2

1 +

(

x

s1

)s2
, s2 = 1

2
, 1, 2. (3)

It is worth pointing out, however, that the general con-
dition (1) and its particular forms (2), (3) are motivated
more by their mathematical convenience than by physical
arguments.

The second way of removing the stress singularity is to
replace no-slip by the Navier condition [9], which assumes
the slip velocity on the solid surface to be proportional
to the tangential stress acting between liquid and solid:

µ
∂u

∂y
= β(u − U). (4)

Here µ is the viscosity of the liquid; u and U are, as be-
fore, the tangential components of the velocities of the
liquid and the solid surface, respectively, in a Cartesian
coordinate frame moving with the contact line; y is the
Cartesian coordinate normal to the solid surface; and β is
the so-called ‘coefficient of sliding friction’ [10]. Particu-
lar expressions for β depend on the physical mechanisms
assumed to be responsible for slip in the vicinity of the
contact line, and are different for different models.

The conventional way of resolving problem (ii), com-
mon to all works in the area apart from that described in
Ref. [11], is to assume that the actual dynamic contact
angle θd (Fig. 1) is a function of the contact-line speed
with respect to the solid surface, U , and a number of con-
stants χi (i = 1, 2, . . .), which characterize the material
properties of the contacting media:

θd = f(U,χ1, χ2, χ3, . . .). (5)

The parameters χi (i = 1, 2, . . .) may include the static
contact angle θs, the known physical characteristics of
the liquid and the liquid-gas interface, such as µ and the
surface tension σ, some ‘specific’ material constants pro-
posed to reflect the specific physics of the liquid-gas dis-
placement, as well as empirical constants. In particular,
if f is assumed to be independent of U , then θd becomes
a ‘material property’ of the gas/liquid/solid system, and
Eq. (5) turns into θd ≡ θs. This assumption has been
made in a number of works and its validity is discussed
in Sec. IV. The functional form of Eq. (5) also includes
all empirical correlations (or ‘master curves’) proposed
by different authors and reviewed by Hayes and Ralston
[12].

The Navier-Stokes equations in the bulk together with
the classical boundary conditions on the free surface, con-
ditions (1) or (4) at the solid boundary, and a particu-
lar form of Eq. (5) to specify the dynamic contact an-
gle, provide a well-posed mathematical problem, which
is conventionally used to model coating flows. We will
examine this approach to find out whether or not it al-
lows one to describe the data given in Fig. 2.

It is necessary to emphasize that a number of so-called
‘asymptotic models’ advanced and intensively studied in
the last decade all have the above formulation at their
core. They concentrate on how one can obtain approx-
imate results in the situation where some parameters
(usually the capillary and Reynolds numbers) are asymp-
totically small. Our goal is to test the conventional ap-
proach itself by considering the corresponding models
without any simplifications resulting from any approx-
imate (asymptotic) treatment of the problem and use
precisely the same (finite) values of all parameters as in
the experiments of Blake et al. [1].

III. CONTACT ANGLE

One can see immediately that for a given
gas/liquid/solid system and a given contact-line
speed, all the arguments on the right-hand side of
Eq. (5) become fixed, so that θd ≡ const independently
of the flow field near the contact line. This conclusion
is clearly in conflict with the results of Blake et al.

[1], in particular with the data in Fig. 2, and we will
examine whether one can get round this contradiction
by considering hydrodynamic effects. The idea, which
goes back to the early seventies [3], is to account for
the fact that in experiments the spatial resolution in
determining the free-surface location is always finite,
so that within the length scale corresponding to this
resolution the free surface can bend under the action of
hydrodynamic stresses, thus leading to the deviation of
the measured contact angle from θd. This idea resulted
in the concept of the so-called “apparent” contact angle,
an ad hoc quantity used to describe or interpret the
experimental results. If in experiments the contact angle
is extracted by indirect measurements [13, 14], then
the spatial resolution of the measurements is in fact an
extra unknown which, being scaled with the slip length,
becomes an adjustable parameter used in fitting the
theory to the data [15–17].

In the case of the data given in Fig. 2, the contact
angle has been measured directly and the accuracy of
measurements was known (less than 20 µm for all curves),
so that we can test the very idea of the apparent contact
angle against the experiments.

First, we have to consider what is seen and measured in
experiments and how the finite resolution of the measure-
ments could be accounted for in a theoretical model. In
experiments, the locations of both interfaces, the free sur-
face and the solid boundary, are determined imprecisely
so that effectively the interfaces are seen as ‘layers’ of a fi-
nite thickness rather than geometrical surfaces. The loca-
tion of the contact line is determined with the same accu-
racy, and instead of the ‘contact line’ one can see a region
where the above-mentioned layers overlap. It is the thick-
ness of the layers representing the interfaces which is re-
ferred to as the nominal ‘resolution’ of the measurements.
The contact angle is determined by fitting approximat-
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ing curves to the experimentally observed shapes of in-
terfaces (typically by eye or by computer assisted im-
age processing) and then measuring the angle between
the tangents to these approximating curves at the point
of their intersection. Thus, the procedure implicitly in-
volves averaging and extrapolation which are likely to
increase considerably the accuracy of the contact-angle
measurements, making the ‘effective’ resolution signifi-
cantly higher (and hence the associated length scale con-
siderably smaller) than the nominal one. However, in
what follows we will neglect this effect and use the nomi-
nal resolution as the characteristic length scale associated
with the measurements, since our approach is to interpret
everything in favour of the idea of the apparent contact
angle. It is clear that the free surface can bend more
within a larger length scale corresponding to the ‘nomi-
nal’ resolution than within a much smaller ‘effective’ one.

Now, when we have an extra length scale, i.e. one asso-
ciated with the accuracy of measurements, we can define
the apparent contact angle in a theoretical (macroscopic)
model, where, of course, the interfaces are described as
geometrical surfaces of zero thickness and their locations
are known precisely. For a given length scale L asso-
ciated with the finite spatial resolution of the measure-
ments (OA, Fig. 1) one can define the apparent contact
angles in the theoretical model in the following two ways.
First, it could be the angle between the solid surface and
a chord connecting the contact line and a point on the
free surface at distance L from the contact line, θapp1

(Fig. 1). This definition reflects the idea that in experi-
ments we always deal with chords rather than tangents,
and the resolution is simply the length of the correspond-
ing chord. The second way to define the apparent contact
angle is to consider the angle between the solid surface
and the tangent to the free surface drawn at distance L
from the contact line, θapp2 (Fig. 1). This definition is
supposed to account for the difficulties in approaching
the contact line experimentally. Just this definition has
been used in a number of theoretical works [15, 16, 18].
Obviously, both θapp1 and θapp2 tend to θd as the ac-
curacy of the contact-angle measurements increases. For
sufficiently high resolutions, θapp1 is always between θapp2

and θd so that, strictly speaking, we could consider θapp2

only. However, we will look at the behaviour of θapp1 as
well since it is θapp1 that mimics the experimental proce-
dure of determining the contact angle [1]. The question
we will try to answer in the following section is whether
for the given spatial resolution the variation of θapp1 or
θapp2 with flow rate is sufficient to account for the ob-
served effect.

IV. METHODOLOGY

The procedure of comparing the numerical solutions
obtained in the framework of the models sketched in
Sec. II with the data given in Fig. 2 is as follows. First, we
choose one of the conditions (2), (3) or (4) to remove the

stress singularity and set its parameters. Those param-
eters are supposed to be material constants and hence
independent of the flow rate. Then we choose the defi-
nition of the apparent contact angle, θapp1 or θapp2; the
spatial resolution OA (Fig. 1) is known from the exper-
iments (for the data given in Fig. 2 a conservative esti-
mate for the spatial resolution gives L = 20 µm). After
that we can specify the value of θd, which, according to
Eq. (5), must be independent of the flow rate as well. We
will set the value of θd to make the chosen apparent con-
tact angle equal to the measured one at one point of the
angle-versus-flow rate experimental curve (Fig. 2). It is
convenient to choose a point corresponding to a high flow
rate, where the experimentally measured contact angle
approaches the one measured in the standard plunging-
tape experiment for the same contact-line speed [1]. Now,
all the parameters of the model are set and we can vary
the flow rate and follow the evolution of the theoretically
calculated apparent contact angle. This will give us a
theoretical curve to compare with the corresponding ex-
perimental one from Fig. 2. Then the procedure can be
repeated for other values of parameters in the slip model,
for another slip model, and for the other way of defining
the apparent contact angle. We emphasize that for a
given model after setting the values of all parameters in
the way described above we vary only the flow rate while
keeping the contact-line speed fixed.

The above-described procedure has been carried out
using a numerical code based on the finite-element
method. The essential numerical details are given in the
Appendix.

V. RESULTS

The results of the calculations are shown in Figs. 3–6,
where we compare theoretical curves with the experimen-
tal data from Fig. 2 corresponding to U = 70 cm s−1.
For these results, the capillary number Ca ≡ µU/σ =

0.273 and the Reynolds number, Re ≡ Q/ν, varies from
7.11 to 23.7 (here σ is the surface tension, ν the kine-
matic viscosity, and Q the flow rate). The values of θd

prescribed in each case for the apparent contact angle to
match the experimental one at high flow rates are given
in Tables I and II for the slip models (2) and (4), respec-
tively. Comparison with the other experimental curves
from Fig. 2 gives results similar to those shown in Figs. 3–
6.

As is clear from the figures, in all cases the changes in
the apparent contact angle are too small to account for
the experimentally observed effect of the flow field vari-
ation on the contact angle. The discrepancy cannot be
attributed to experimental errors given that, as reported
in Ref. [1], even in a single measurement the typical ac-
curacy of determining the contact angle was about ±5◦,
whereas the data in Fig. 2 obtained after averaging over
multiple measurements was significantly less than that.

Boundary conditions (3) lead to results similar to those
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FIG. 3: Variation of θapp1 with flow rate for the model using
a prescribed (exponential) slip-velocity distribution (2) with
various slip lengths. Curves 1, 2, 3, 4 and 5 correspond to
s1 = 0.01, 0.1, 1, 10, 100 µm, respectively. The experimental
data (+ + +) are taken from Fig. 2, U = 70 cm s−1.

TABLE I: The values of θd required to match the “appar-
ent” contact angles, θapp1 and θapp2, to the experimentally
measured contact angle (175.5◦, flow rate: 5 cm2s−1) for a
slip model with the exponential velocity distribution (2) and
various slip lengths, s1.

s1 (µm) θd for θapp1 θd for θapp2

0.01 166.80 169.18
0.1 170.55 172.15
1.0 173.25 174.15

10.0 174.93 175.37
100.0 175.81 176.31

given in Figs. 3–6. One can also see from Figs. 3–6 that
in all cases the magnitude of the apparent contact angle
variation saturates as the slip length decreases, and the
theoretical curves become practically undistinguishable
from one another at smaller slip lengths. Further reduc-
tion of the slip length reverses the trend and the curves
become more shallow. Thus, for a given distance OA
(Fig. 1), which corresponds to the (known) spatial reso-
lution of the measurements [1], in the whole range of slip
lengths, s1, or the values of the coefficient of sliding fric-
tion, β, neither “apparent” contact angle describes the
behaviour of the experimental data. It should be noted
that there are no more parameters in the slip models
which would allow one to improve the fit.

The same conclusions also follow from an attempt to fit
a theoretical curve to the data using the resolution (the
distance OA, Fig. 1) as an adjustable parameter. Our
calculations show that to make the “apparent” contact
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FIG. 4: Variation of θapp1 with flow rate for the model using
the Navier condition (4) with various coefficients of sliding
friction. Curves 1, 2, 3, 4 and 5 correspond to β = 1000, 100,
10, 1, 0.1 kg/(cm2 s), respectively. The experimental data (+
+ +) are taken from Fig. 2, U = 70 cm s−1.

TABLE II: The values of θd required to match the “appar-
ent” contact angles, θapp1 and θapp2, to the experimentally
measured contact angle (175.5◦, flow rate: 5 cm2s−1) for a
slip model with the Navier condition (4) with various values
of the coefficient of sliding friction, β.

β (kg cm−2 s−1) θd for θapp1 θd for θapp2

1000.0 165.33 167.90
100.0 167.03 169.30
10.0 168.98 170.77
1.0 170.95 172.24
0.1 173.05 173.92

angle variation close to that of the observed contact angle
the resolution has to be about 150 µm, i.e. about half the
curtain thickness. This requirement is clearly beyond any
reasonable interpretation of the measurements, as one
can conclude simply by looking at the photograph of the
curtain coating experiment, Fig. 4 in Ref. [1].

Thus, the simple arguments based on the order-of-
magnitude analysis advanced by Blake et al. [1] are con-
firmed quantitatively, and one can assert that the influ-
ence of the flow field/geometry on the dynamic contact
angle cannot be attributed entirely to bending of the free
surface under the changing hydrodynamic stresses. At a
fixed contact-line speed, the flow field variations caused
by other factors do affect the actual contact angle.

This has serious implications for modelling. Indeed,
the flow field is described by a set of partial differen-
tial equations whose solutions are fully determined by
the boundary conditions formulated on all interfaces, in
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FIG. 5: Variation of θapp2 with flow rate for the model using
a prescribed (exponential) slip-velocity distribution (2) with
various slip lengths. Curves 1, 2, 3, 4 and 5 correspond to
s1 = 0.01, 0.1, 1, 10, 100 µm, respectively. The experimental
data (+ + +) are taken from Fig. 2, U = 70 cm s−1.
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FIG. 6: Variation of θapp2 with flow rate for the model using
the Navier condition (4) with various coefficients of sliding
friction. Curves 1, 2, 3, 4 and 5 correspond to β = 1000,
100, 10, 1, 0.1 kg/(cm2 s), respectively. The experimental
data (+ + +) are taken from Fig. 2, U = 70 cm s−1. The
black circles are data obtained in a repetition of the curve 3
calculation made using a mesh approximately twice as dense
as the original.

other words, by a continuous set of data. Therefore, the
description of the flow field cannot in principle be reduced
to a finite (or even countably infinite) number of hydro-
dynamic factors, which could be put as arguments on the
right-hand side of Eq. (5). Thus, the very functional form
of Eq. (5) appears to be inadequate for modelling flows
associated with moving contact lines in a general flow
geometry. For a given liquid-solid system, the contact
angle is not merely a function of the contact-line speed
(and a number of other hydrodynamic factors); it is a
functional of the flow field. In other words, the contact
angle θd must be part of the solution. We will briefly
discuss this issue in the next section.

A conclusion to be drawn from the tables is that in all
cases θd is far from the static contact angle, θs: in the
experiments θs = 67◦. Thus, our results do not support
the assumption that θd ≡ θs when the contact line is
moving, which is used in a number of works [8, 16, 18–
23]. This assumption needed the ad hoc concept of an
“apparent” contact angle to describe the behaviour of
the experimentally observed contact angle with the ra-
tio of the resolution to the slip length as an adjustable
parameter to fit the theory to the data. This approach
was widely used for almost two decades, but gradually
it became clear [5, 17] that even in treating the veloc-
ity dependence of the observed contact angle in standard
pipe-flow experiments the assumption that θd ≡ θs must
be abandoned. The experiments of Blake et al. [1] and
our calculations in the present paper provide a more gen-
eral understanding of the reasons for that. Indeed, it was
shown that θd depends on the flow field and, since the
contact-line speed is the main factor influencing the flow
field near the moving contact line, it will make θd deviate
from θs even for what are, in other respects, similar flow
conditions.

VI. CONCLUSIONS

Our results show the following:

1). Bending of the free surface in the vicinity of the
contact line and the resulting deviation of the so-
called “apparent” contact angle from the actual one
do not describe the effect observed in the experi-
ments [1].

2). Therefore one has to conclude that, for a fixed
contact-line speed, variations of the flow field in
the vicinity of the moving contact line caused, for
example, by other closely located boundaries do
influence the actual dynamic contact angle, that
is the angle which has to be used as a boundary
condition in the fluid dynamical modelling of dy-
namic wetting. This effect cannot be described in
the framework of the conventional approach to the
moving contact line problem summarized in Sec. II.

3). The actual dynamic contact angle is equal neither
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to the static (equilibrium) contact angle θs, as sug-
gested, for example, in [22], nor, as is sometimes
assumed [24, 25], to 180◦.

Thus, it has been shown that the conventional approach
to the moving contact-line problem, which uses the func-
tional form of Eq. (5) to determine the actual contact an-
gle, is irreparably flawed and a different one is required.

At present, the only known theory that makes θd part
of the solution and hence dependent on the bulk flow
is the one developed in [11] and briefly recapitulated in
[1]. This theory considers dynamic wetting as a particu-
lar case of a more general physical phenomenon, i.e. the
fluid motion with formation/disappearance of interfaces.
Since dynamic wetting is, by its very name, the process
of creating a new — ‘wetted’ — solid surface, i.e. a fresh
liquid-solid interface, it is clear that the surface proper-
ties of this interface, such as the surface tension, have
to relax from some dynamic values at the contact line
to their equilibrium values away from it. The surface-
tension-relaxation process depends on the rate at which
the bulk flow creates the free interface and, due to the
resulting surface-tension gradient, has a reverse influence
on the bulk flow. The dynamic surface tensions at the
contact line ‘negotiate’ the appropriate value of θd to sat-
isfy the (dynamic) Young equation, which represents the
balance of forces acting on the contact line and replaces
Eq. (5) one has in the slip models. The contact angle
provides the boundary condition needed to determine the
shape of the free surface and hence has a reverse influence
on the bulk flow. As a result, the bulk flow, distributions
of the surface tensions along the interfaces in the vicinity
of the moving contact line and the value of the contact
angle all become interdependent, and they all have to
be found simultaneously as a solution to the correspond-
ing mathematical problem. This problem is much more
challenging mathematically than the one considered in
the present paper and it will be addressed in a future
work. The main question remains the same: is it possible
to describe the data from [1] quantitatively with realistic
values of the parameters involved? Preliminary estimates
show that the key parameter determining the effect is the
ratio of the length scale over which the surface tension
relaxes to its equilibrium value and the length scale as-
sociated with the Stokes regime near the moving contact
line. However, these qualitative conclusions are yet to be
verified quantitatively.

It should also be mentioned that the experimental ob-
servations reported by Blake et al. [1] have recently been
corroborated independently [26] using an improved ap-
paratus. The key qualitative features that seem to have
led to the observed dependence of the contact angle on
the flow geometry are: (a) a relatively high wetting speed
and (b) a sufficiently small length scale characterizing the
variation of the flow field allowed by the curtain coat-
ing set-up. Recently, it has been shown experimentally
[27] that in another flow configuration, namely that of
an impacting drop, the observed contact angle also de-
pends, besides the contact-line speed, on the flow field

in the vicinity of the contact line. Together with the
results of Refs. [1, 26] this suggests that the nonlocal
hydrodynamic influence on the contact angle is a generic
phenomenon and more research into it is required to in-
vestigate the effect of different fluid/solid combinations
as well as various flow configurations.

APPENDIX A: COMPUTATIONAL DETAILS

The governing equations for the simulations presented
here are the dimensionless Navier-Stokes equations ap-
propriate for an isothermal incompressible Newtonian
liquid of density ρ, viscosity µ, and surface tension σ
experiencing a gravitational acceleration of g:

Reu .∇u = ∇.T + (Bo/Ca)ĝ , (A1)

∇.u = 0, (A2)

where u = (u, v) is velocity, ĝ is a unit vector indicating
the direction of gravity, and T is the stress tensor with
components Tαβ = −pδαβ +∂uα/∂xβ +∂uβ/∂xα (p being
the pressure). The velocity is scaled by the substrate
speed, U , while lengths are scaled by the coated film
thickness, Q/U (where Q is the flow rate), and stresses
are scaled by µU2/Q. The Reynolds, capillary and Bond
numbers are therefore given by Re = ρQ/µ, Ca = µU/σ,
and Bo = ρgQ2/σU2 respectively. The numerical values
of Re and Ca are given in Sec. V; the Bond number varies
from 8.34 × 10−3 to 0.093.

We solved Eqs. (A1) and (A2) numerically using a
Galerkin, weighted residual finite element formulation in
which the domain is tessellated using Taylor-Hood tri-
angular elements featuring six velocity nodes and three
pressure nodes. Such elements satisfy the LBB stability
condition [28] and, with the pressure interpolation one
order lower than that of velocity, no ‘locking’ occurs [29].
The general approach is well-established in the field of
coating flow simulation [30] so only a brief description is
given here.

The algebraic finite element equations are derived in
terms of a right-angled ‘master’ element, which has local
coordinates (ξ, η) as shown in Fig. 7(a). Within this ele-
ment the velocity and pressure are expressed in terms of
their nodal values, ui, pj , by means of biquadratic (Qi)
and bilinear (Lj) interpolation functions:

u(ξ, η) =

6
∑

i=1

uiQi(ξ, η); p(ξ, η) =

3
∑

j=1

pjLj(ξ, η).

(A3)
With reference to Fig. 7(a) it is easy to see that the three
linear functions are given by

L1 = 1 − ξ − η, L2 = ξ, and L3 = η,

and that each function is equal to unity when evaluated
at the vertex to which it belongs and zero at the other
vertices. The six quadratic functions Qi have the same
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FIG. 7: (a) The ‘master’ element, with local coordinates
(ξ, η), which is used to derive the finite element equations.
The numbered black circles represent nodes at which velocity
and pressure values are to be found, while the white circles
are velocity-only nodes. The areas of the subtriangles formed
by connecting point A to the vertices give, when divided by
the total area of the element, the values of the linear inter-
polation functions Lj at point A. (b) A general element in
physical space; the master element is mapped into each phys-
ical element by means of the quadratic transformation (A4).

property with respect to the six velocity nodes. The Qi

are also used to map the master element in local space
into each general curved element in global (x, y) = x

space (Fig. 7b) via the transformation

x (ξ, η) =

6
∑

i=1

xiQi(ξ, η), (A4)

where xi = (xi, yi) are the global coordinates of the ele-
ment’s nodes. The formulation of the weighted residual
equations is completed by substituting Eqs. (A3) into
Eqs. (A1) and (A2), weighting these by Qi and Lj re-
spectively, integrating over the entire domain, Ω, and
requiring the resulting expressions to vanish. After some
manipulation using vector identities and the divergence
theorem, the equations to be solved become

∫

Ω

[QiReu .∇u + ∇Qi.T − Qi(Bo/Ca)ĝ ]dΩ

−

∫

∂Ω

Qin̂ .Tds = 0 (A5)

and
∫

Ω

Lj∇.udΩ = 0, (A6)

where dΩ = dxdy, n̂ is a unit normal to the boundary,
∂Ω, of the domain, and s is arc length along the bound-
ary.

The boundary conditions for the problem are as fol-
lows. On the (stationary) walls of the slot feeding the
curtain (Fig. 1), the no-slip condition is applied. On
the substrate being coated, either the Navier condition,
Eq. (4), or an exponential velocity distribution, Eq. (2),
is applied (see Sec. II) along with the impermeability con-
dition v = 0. On the free surfaces we have the kinematic

condition,

n̂ .u = 0, (A7)

together with (a) the condition of zero tangential stress
(the viscosity of the ambient gas being negligible) and
(b) the balance of normal stress with capillary pressure.
Mathematically, conditions (a) and (b) are encapsulated
in the form [31]

n̂ .T =
1

Ca

d̂t

ds
, (A8)

where t̂ is the unit tangent to the free surface. This can
be inserted directly into Eq. (A5) and, after integrating
by parts, the boundary integral becomes

Qi

Ca
[̂tE − t̂B ] −

1

Ca

∫

∂ΩF S

t̂
dQi

ds
ds, (A9)

where t̂B and t̂E are the unit tangents to the beginning
and end of the free surface respectively, and ∂ΩFS repre-
sents the free surface part of the domain boundary. The
remaining boundary conditions are a parabolic velocity
profile imposed at the top of the feed slot, a uniform ve-
locity profile imposed where the film leaves the domain,
and the condition that the upstream free surface meets
the substrate at an angle equal to θd.

The free surface parametrization is based on the ‘spine’
approach developed by Kistler and Scriven [31, 32]. The
essence of the method is that each node on a free surface
is constrained to lie along one of a set of conveniently de-
fined lines or curves (known as ‘spines’) which intersect
the free surface. For example, a simple linear spine (num-
bered i, say) is defined by its base point, bi, which may
be fixed or may lie on another spine, and its unit direc-
tion vector, êi. The free-surface node lying on this spine
is then located at x = bi + hiêi, i.e. a distance hi along
the spine from its base point. Between the free-surface
nodes the shape of the free surface is given via the curved
edges of the elements which lie along the surface, i.e. by
Eq. (A4). Hence the free surface is represented by a piece-
wise quadratic curve. Nodes in the interior of the domain
are positioned along the spines according to some suit-
able (often uniform) distribution, e.g. xj = bi + wjhiêi.
The set of all hi then forms a set of parameters which
completely describes the free surfaces and allows the in-
terior mesh to deform in response to deformations of the
free surfaces. The unknown hi are determined by forming
a weighted residual from Eq. (A7), i.e. by solving

∫

∂ΩF S

Qin̂ .uds = 0. (A10)

In the mesh used here, linear spines are used to
parametrize the falling curtain part of the free surfaces,
but in order to achieve a convenient means of refining the
mesh towards the contact line it was more appropriate to
use circular spines in the ‘heel’ region of the domain. The
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FIG. 8: The system of linear and circular spines used to
parametrize the free surfaces. Spine base points are shown
as circles. Regions A and D feature circular spines centered
on the contact line; region B is represented in terms of linear
spines based at two polar origins, Ou and Od, with circular
arcs constructed between the free surfaces; region C’s spines
are linear and horizontal; and region E is the feed slot, where
the mesh is fixed.

complete spine system is illustrated in Fig. 8. The cir-
cular spines are defined by a centre point (in most cases
the contact line), a radius, and a base point; the pa-
rameter hi for these spines is then the angle subtended
at the centre point by the base point and the relevant
free surface node. The most important spine in Fig. 8 is
h0, which tethers the contact line (and indeed the entire
free-surface mesh) to the fixed wall of the feed slot by
defining the location of the vertical baseline shown in the
diagram. The value of h0 (i.e. the length of the spine)
is determined from the condition that the upstream free-
surface must meet the solid substrate at an angle of θd.
Other important quantities upon which mesh regions A,
B and D depend are the angle of the circular spine h1 and
the associated radial distance Rm which together locate
the point on the downstream free surface which is closest
to the contact line. The radii of the circular spines in
regions A and D are given as fractions or multiples of
Rm.

The spine system in Fig. 8 enabled the same mesh
structure to be used under both low and high flow rate
conditions, see Fig. 9. For high flow rates, additional
strips of elements were simply inserted to maintain mesh
quality. Close to the dynamic contact line, the density of
the mesh was chosen so that the large velocity gradients
on the solid surface were sufficiently well-represented.
Hence the size of the elements in the slip region was at
least an order of magnitude smaller than the slip length
scale. Near the contact line the mesh must also be suit-
ably fine in the aziumthal direction in order to capture

(b)

(c)

(a)

FIG. 9: Part of the computational mesh showing the node dis-
tribution for (a) the low flow rate limit, (b) a typical medium
flow rate, and (c) the high flow rate limit. Note that the
meshes are not shown on the same scale.
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FIG. 10: A close-up view of the mesh near the contact line,
formed by magnifying Fig. 9(b) by a factor of 105. The co-
ordinates on the axes are in units of coating film thickness,
which in this case is 428 µm.

the velocity field with sufficient accuracy. A close-up of
the mesh near the contact line is given in Fig. 10. The
density of the rest of the mesh was adequate for further
refinements to produce only negligible changes to the so-
lution. As an illustration of the effect of mesh density,
Fig. 6 includes (as black circles) the results from a re-
peat of the β = 10 kg cm−2 s−1 (curve 3) calculations
made using meshes with approximately twice the node
density of those used to generate curve 3. The results
are indistinguishable on the scale of the graph.

In the slip models that we consider, the pressure be-
comes logarithmically singular as one approaches the con-
tact line. For example, for Eq. (4), to leading order as
the (dimensionless) distance r from the contact line goes
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to zero, one has

p =
βU

θd
ln r + . . . , (A11)

whereas the stream function in local polar coordinates
has the form ψ = Ur2F (θ), where

F (θ) = B1 + B2θ + B3 sin 2θ + B4 cos 2θ,

with

B1 = −B4 = −
βl

4µ
, B2 = −

1

θd
B1, B3 = B1 cot(2θd),

and this generates a regular flow field. (Here r is scaled
as above by Q/U .) Since the pressure singularity in
Eq. (A11) is integrable, it has been ignored in the compu-
tations reported in the literature, and the pressure over
the elements comprising the contact line was approxi-
mated in the same way as in the bulk (described above).
However, the computational mesh necessarily includes a
pressure node located at the contact line. Since the so-
lution cannot return the correct (i.e. negatively infinite)
value of pressure at this node, it is desirable to redefine
the pressure interpolation on the elements touching the
contact line so as to avoid having a finite pressure at this
point and hence to obtain a uniformly valid solution.

Following Suckling [33], to cope with the singular pres-
sure field at the contact line, the linear pressure interpola-
tion functions in the elements adjacent to the contact line
were augmented with logarithmic functions correspond-
ing to Eq. (A11). Consider Fig. 7(a) in the context of
an element adjacent to the contact line. The numbering
system employed in the computational mesh is chosen so
that local node 1 corresponds to the contact line. Using
Eq. (A4), we therefore have

r(ξ, η) = |x − x1| =





(

6
∑

i=1

{xiQi(ξ, η)} − x1

)2

−

(

6
∑

i=1

{yiQi(ξ, η)} − y1

)2




1/2

(A12)

and the logarithmic singularity can be incorporated by
replacing interpolation function L1 by

L∗
1 = L1 ln r = (1 − ξ − η) ln r. (A13)

The pressure is then given by

p(ξ, η) = p1L
∗
1 + p2L2 + p3L3.

Note that L∗
1 vanishes along the element edge opposite

the contact line (between nodes 2 and 3), and therefore
the augmented elements are completely compatible with
the regular elements used in the bulk of the domain.
As node 1 is approached, i.e. as ξ, η → 0 and hence
r → 0, however, L∗

1 provides the correct functional form

(x 10   )

(x
 1

0 
  )
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FIG. 11: Typical dimensionless pressure contours in the vicin-
ity of the dynamic contact line. The field of view covers
the same area as Fig. 10. In this case Q = 3 cm2 s−1 and
θd = 169◦. Note that the contour labels show multiples of
1000.

to match Eq. (A11). Importantly, using this approach,
p1 no longer represents a finite (and therefore incorrect)
value of pressure at the contact line, but instead provides
the coefficient multiplying ln r.

The integration of the residual equations (A5), (A6)
and (A10) is achieved on an element-by-element basis
using the master element and transformation (A4), and
the pressure gradient terms in the Navier-Stokes equa-
tions give rise to integrals over the master element of the
form

∫∫

pjLj(ξ, η)

(

∂Qi

∂ξ

∂y

∂η
−

∂Qi

∂η

∂y

∂ξ

)

dξdη (A14)

and
∫∫

pjLj(ξ, η)

(

∂Qi

∂η

∂x

∂ξ
−

∂Qi

∂ξ

∂x

∂η

)

dξdη, (A15)

where ∂y/∂η etc. are found from Eq. (A4). Away from
the contact line, the integrands are polynomials in ξ and
η (as are those arising from the other terms in the Navier-
Stokes equations) and the integration of all terms is per-
formed numerically by means of Gaussian quadrature.
However, insertion of Eq. (A13) into integrals (A14) and
(A15) — and indeed the continuity equation, where it
also appears — produces integrands which are not regular
polynomials, and therefore standard Gaussian quadra-
ture is not appropriate for calculating these integrals.
Another issue is that Eq. (A13) of course cannot be eval-
uated at the contact line itself. To enable the calcula-
tion of these integrals, a small region of radius ǫ around
node 1 is excluded from the master element, and a re-
cursive adaptive Simpson’s rule quadrature is used to in-
tegrate over the remainder of the element. Suckling [33]
showed that the error in excluding the contact line region
is O(ǫ2 ln ǫ) as ǫ → 0, and tested the quadrature proce-
dure against similar integrals for which exact solutions
are known. We tested our implementation of the method
in the same way, and used the value ǫ = 10−12 in gener-
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ating the results presented in this paper. A plot of the
pressure field close to the contact line is given in Fig. 11.

Note that the singularity in the pressure field also gives
rise to a corresponding integrable singularity in the free-
surface curvature at the contact line, though the con-
tact angle remains well-defined. Unlike the pressure field,
however, the singularity in curvature does not require any
special treatment since the normal and tangential stress
conditions are imposed in integral form, see Eq. (A8), and
therefore the only requirement for a uniformly convergent

solution is that the curvature should be integrable, which
it is. The fact that the free-surface discretization is suf-
ficient is demonstrated by the mesh-independence of the
results (see Fig. 6).

Finally, the residual equations were solved using New-
ton iteration in which the Jacobian at each iteration was
inverted by the frontal method [34]. The iterative pro-
cess was terminated when the L2 norm of the residuals
fell below 10−8; typically 4–8 iterations were needed to
satisfy this criterion.
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