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Solving Transportation Bi-Level Programs with Differential
Evolution

Andrew Koh, Member, IEEE

Abstract— Bi-level programming problems arise in situations
when the decision maker has to take into account the responses
of the users to his decisions. These problems are recognized as
one of the most difficult and challenging problems in
transportation systems management. Several problems within
the transportation literature can be cast in the bi-level
programming framework. At the same time, significant
advances have been made in the deployment of stochastic
heuristics for function optimization. This paper reports on the
use of Differential Evolution (DE) for solving bi-level
programming problems with applications in the field of
transportation planning. After illustrating our solution
algorithm with some mathematical functions, we then apply
this method to two control problems facing the transportation
network manager. DE is integrated with conventional traffic
assignment techniques to solve the resulting bi-level program.
Numerical computations of this DE based algorithm (known as
DEBLP) are presented and compared with existing results. Qur
numerical results augment the view that DE is a suitable
contender for solving these types of problems.

1. INTRODUCTION

E present an application of the Differential Evolution

heuristic to a class of transportation decision making
problems. Stochastic  optimization techniques are
recognized as useful tools for solving problems where
objective functions do not necessarily satisfy classical
optimization assumptions such as continuity, convexity and
differentiability. Techniques include simulated annealing
(SA) [1] and genetic algorithms (GA) [2], Ant Colony
Optimization (ACO) [3], Particle Swam Optimization (PSO)
[4] and Differential Evolution (DE) [5]. These have been
applied in various ways in solving difficult problems within
transportation (and elsewhere) with a high degree of
success.

In the highway transportation context, the network design
problem was tackled using SA [6], ACO [7] and PSO [8].
GAs have been used in [9] for toll and reserve capacity
optimization while [10, 11, 12] report on the use of GAs for
designing toll pricing cordons.

In this paper, two transportation problems with particular
relevance to policy makers are formulated in a bi-level
programming framework and the Differential Evolution
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Heuristic is applied to solve them. DE is a simple algorithm
that utilizes perturbation and recombination to optimize a
multi-modal function and has already been reported to
perform effectively when applied to practical engineering
problems.

This paper has a further 6 sections. Section 2 outlines the
generic bi-level problem. Section 3 reviews DE and shows
how it can be used to solve bi-level programming problems.
Section 4 applies this method to several mathematical test
problems. Section 5 and 6 applies the DE Heuristic to 2
problems of relevance to transportation regulators. Finally
Section 7 provides some conclusions and directions for
further research.

II. BI-LEVEL PROGRAMMING FRAMEWORK

Bi-level programming has applications in robot motion
planning, chemical engineering, production planning, as
well as in the field of transportation [13-14]. In game
theory, a bi-level programming problem is known as a
Stackleberg or leader-follower game [15] in which the
leader chooses his variables so as to optimize his objective
function, taking into account the response of the follower(s)
who separately optimize their own objectives, treating the
leader’s decisions as exogenous. Denoting x as the leader’s
decision variables, y as the vector of the follower’s decision

variables, the generic bi-level program can be written as
minU(x,y) where yis obtained by solving the lower

level optimization problem (Program L)
min L(x, y)
5

In this framework, the evaluation of the upper-level
objective function requires solving the lower-level problem.
In other words, the leader cannot optimize her objective
without regards to the reactions of the followers. Even when
both the upper level and the lower level consist of convex
programming problems, the resulting bi-level problem itself
may be non-convex [16]. The lower-level problem is an
implicit non-linear constraint on the upper level problem
[17]. Non convexity suggests the possibility of multiple
local optima. This framework has been applied within
transportation to the Network Design Problems [6],
Optimization of signal timings [18], Toll Pricing Problems
[9-12],[19] among others. In this paper, we illustrate,
through numerical examples, that the Differential Evolution
heuristic can be applied in this framework to generate good
solutions to support informed transportation systems
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management. We develop and demonstrate a meta-heuristic
DE algorithm to solve this class of problems, first with
mathematical functions and then specifically with
transportation planning problems.

III. DIFFERENTIAL EVOLUTION BASED ALGORITHM

In general, the test problems in the DE literature have
focused on the optimization of multimodal single-level
programs e.g. Rastrigin’s or Ackley’s function etc. The
novelty of our DE application is that we eliminate the bi-
level aspect of the problem by treating the program as a
single level problem BUZ simasltaneously taking into
account the follower’s program (Program L ) in the process
of optimizing the leader’s objective (Program U ). Our
resulting meta-heuristic is called: DEBLP, Differential
Evolution for Bi-Level Programming. In essence, it
combines Differential Evolution manipulation of the
Leader’s variables with classical gradient based algorithms
for optimization for the lower level problem.

Differential Evolution (DE) was devised by Storn and
Price [5] as a direct search algorithm. DE has been applied
to a variety of real-world engineering problems [20-22]. As
far as we are aware, DE has not yet been tested on bi-level
problems.

The pseudo code for DEBLP is given in Table 1. Our
solution method uses DE to generate and modify x, the
leader’s decision variables. At each iteration (“generation”
in DE parlance), DEBLP uses classical gradient based
optimization algorithms to solve Program L to obtainy .

This enables evaluation of theS upper level objective
U(x,y)and determination of the “fitness” of a particular
xvector. DE operations (described herein) are then

performed to generate a new trial population of the leader’s
TABLET
PSEUDOCODE FOR DEBLP

Input MaxG, Q,CR,NP

BeginG=1
Initialization of Leader’s Variables
Evaluation
-solve Follower’s Program for each vector of the Leader’s
Variables using gradient based non-linear optimization
algorithm
-obtain leader’s objective and fitness of Leader’s vector
Do until G=MaxG

Perform Mutation

Perform Crossover

Perform Evaluation
-solve Follower’s Program for each vector of the Leader’s
Variables using gradient based non-linear optimization
algorithm
-obtain leader’s objective and fitness of Leader’s trial
vector

Perform Selection

G=G+1
Repeat
Output: U(x",L(x",y"))
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variables and the process is repeated for a number of user
specified iterations ( MaxG ).

In what follows, we discuss the steps of DEBLP with
reference to Table I and assume minimization of the leader’s
problem. Let the problem dimension be denoted Dim .

A. Initialization
An initial population of size ( NP) of the leader’s decision
variables (x), known as the parent population in DE
parlance, is randomly generated using (1) as follows:
xij,¢ = nd(UB;j— LB;)+ LB; €8
vie{l,2,..,NP},Vj {1,2,..,Dim},rnd [0,1]

B. Evaluation

For each of the leader’s decision variables ( X ), we can
obtain the corresponding follower’s variables ( y ) by using
traditional gradient based optimization methods. Hence we
obtain the value of Program U for each member of this
population; the member that results in the lowest objective
function value for U(x,L(x,y))is denoted the “best

Best

member” of the population (x/") at generation G .

C. Mutation

The mutation process combines different elements of the
parent population heuristically to generate a mutant vector
(mi.c) in accordance with (2):

Bes
m7 ;.6 = xj,ec;[ + Q(xrl,j,G XrZ,j,G)

Vie{l,2,..,NP},Yj {L,2,...,Dim}

@

rl,r2€{l,2,...,NP} are random integer and mutually

different indices and also different from the current running
index i. Q¢€[0,2] is a mutation factor that scales the
impact of the differential variation. The mutation strategy
shown in (2) is one of several variants proposed in [5].

D. Crossover
On this (m‘_/)G)
probabilistically performed to produce a child vector
(wi,j,¢ ) according to (3) as follows:
{mi,j,Gifmde[o,1]< CR Vj
Wi, jG = .
otherwise

mutant  vector crossover is

h 3)
Xij.G

Vie{l,2,..,NP},Vj {1,2,..., Dim}

he{l,2,..,Dim}: a random integer parameter index

chosen to ensure that the child vector will differ from its
parent by at least one parameter. CR is the probability of
Crossover.

Crossover can produce child vectors that lie out of the
bounds of the original problem specification. There are
several ways to ensure satisfaction of these constraints [23-
24]. One could set the parameter equal to the limit it
exceeded. Alternatively, as outlined in [23], out of bound
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values can be reset to a point half way between its pre- TABLE Il CONT’D

mutation value and the bound violated using (4). TEST PROBLEMS FOR BI-LEVEL PROGRAMMING
Xi 6t LB; ifuij ¢<LB; (4) # Problem
5
P35 minUG,Lee ) =" +(y 10"
_ X6 tUB; )
W=y 5! ui,j.6 > UB; st. <x+y 0,0 x 15
WG minL(x,3) =(x+2y 30)°
1,], . y
otherwise st x&9<20,0 y 20
Vie{l,2,..NB}, j {1,2,..,Dim} P4 minUQeL(x, ) # (=5 +@2y 1)
st. x>0
E. Selection min L(x5y) = (y = )’ L5xy
The fitness of each child vector is compared against that - st -3x+y 3,
of the parent. This means that comparison is against the x—05y<4,
same " (Vie{l,2,.., NP}) vector parent on the basis of x2y<7,y 0
whichever of the two gives a lower value (assuming P5 mxin U, L)) =(x-3)" (v 2)
minimization) for ProgramU . The one that produces a st 2x—y> 1,
lower value survives to become a parent in the next
X+2y>2,

generation as shown in (5).

wi if Ui L(wigo 1) <Uxig > Lxig»») ()
Ye = XiG otherwise

=<2y 140 x 8
min L(x,y) = (y =5)’
Po minU(x,L(x39) =(x-3)* (v 27

Vie{l,2,.., NP} st. 0<x<8
These steps are repeated for a maximum number of user min L(x,y) =(y-5)°
defined iterations ( MaxG ). Our description of DE is based st. 2x—y> 1,
on the variant known as “DE/best/1/bin” scheme. Though at x+2032
. . Y2,
least many as 10 different variants have been proposed [5, -2y 14

23], we utilized this variant in the work reported here.

P7 i - —
In the following section, we test DEBLP on several minUoL0eyp=20+2% =3y 3y, 60

mathematical bi-level functions from the literature. We st<xq+x,+y 2y, 40 0
subsequently apply DEBLP to two specific bi-level 0<x,x, <50
problems from the transportation literature. minkgx,y)=(y,—x, 207 (y, x, 20y
¥y
IV. BI-LEVEL FUNCTION OPTIMIZATION st 2%sS%+10 0, 2y, x 10 0,
. . <0<y,y, 20
In this section, we apply DEBLP to test problems taken
from the literature [25-30]. The 7 test problems used are TABLE 11
shown mn Ta‘t?le II. Table III compares the optima reported REPORTED GLOBAL OPTIMA SOLUTIONS VS SOLUTIONS FOUND BY
with the solutions found by DEBLP. DEBLP FOR TEST PROBLEMS
Percentage
TABLE 11 4 Reported Optimal Solution with Optima
TEST PROBLEMS FOR BI-LEVEL PROGRAMMING Solution/ [Source] DEBLP Ogt(f;lined in
runs
# Problem Pl U* =81.33 ; As per literature 100%
L* = 0.34; /[25]
Pl minU(x,L0osw) = (x—-1)* (v 1) P2 U* =-1;L*=0;  As per literature 100%
. 1[26-27)
min L(x,y) = 0.5y +500y 50xy P3 U* =100; L* =0;  As per literature 100%
i /[13,28]
P4 U* =17, L* =1, As per literature 100%
P2 minUG Lo =x -2 & 2v ) ¥ /[28-29]
P5 U* =9;L*=0; As per literature 100%
st. 0<x,x,<2 /[29-30]

m\l:nLeC#y):(ylfxl)z (yZ Xl)z
st =@25—(y, -1 0,i 1,2
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TABLE III CONT’D
REPORTED GLOBAL OPTIMA SOLUTIONS VS SOLUTIONS FOUND BY
DEBLP FOR TEST PROBLEMS

Percentage
" Reported Optimal Solution with Optima
Solution/ [Source] DEBLP Obtained in
30 runs
P6 U* =5;L*=4; U* =2;L*=4 100%
/[29-30] (x=4,y=3)
P7 U* =0; U* =0; L*=100  100%
L*=200; /[28] (x1=0,x2=30;
yl1 =10, y2 =-10).

With NP= 20, 0= 0.8, CR= 0.8 and MaxG =40,

DEBLP found the optimal solution to each of these
problems which were each run 30 times. The lower level
program was solved using the finincon routine (a gradient
based sequential quadratic programming algorithm) from
MATLAB’s optimization toolbox, integrating that routine
into DEBLP at the evaluation phase. Table III also shows
that in all 30 runs, DEBLP obtained/bettered the best
reported optimal solution. For all 7 problems, DEBLP
consistently ~ obtained to the global  optimum
reported/discovered by the 30" generation.

Keeping in mind that all 7 test problems are minimization
problems, Table III shows that we found better solutions for
two problems: P6 and P7. For P6, the best reported optima
was U* = 5; L* = 4 but DEBLP found a lower objective U*
=2 with the same L* = 4.

For P7, the best reported optima was U* = 0; L* = 200
but DEBLP found U* = 0 as in [28] but L* = 100 which is
lower than the best solution found for the lower level
program.

P3, P5 and P7 had linear inequalities as constraints in the
upper level problem. These were handled by degrading the
fitness of the trial values, in the evaluation phase, if the trial
values produced did not satisfy the constraints, by using a
fixed penalty method. Specifically, we added a random
number between 5,000 and 10,000 to degrade the fitness
produced by trial vectors that did not satisfy these
constraints.

Note that it is also possible to apply DEBLP to linear bi-
level programs (i.e. bi-level problems that are linear in both
the upper and lower hierarchy). In that case, the well known
simplex algorithm for linear programming [13] can be used
for solving the lower level program.

One obvious limitation of these examples is that the
leader’s vector consists of at most 2 dimensions. This is
because the known global optima for such problems éveft

with such small dimensions are difficult to obtain with ¢

traditional algorithms and the task will be made more
difficult with increased dimensions. However, in further
examples that focus on transportation management
problems, we will demonstrate that DEBLP can be applied
to problems with larger dimensions with encouraging
success.
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In the next two sections we consider two practical
problems encountered in the transportation literature that can
be cast in the bi-level programming framework. We then
apply DEBLP to these problems and compare with the
results reported in the literature.

V. CoNTINUOUS OPTIMAL TOLL PROBLEM (COTP)

The continuous optimal toll problem involves selecting an
optimal toll level for each predefined tolled link in the
network [11]. Many transportation authorities around the
world are interested in setting tolls to control congestion
(e.g. Singapore, London). In view of this, the COTP
provides a practical application of DEBLP.

A. Model Formulation

Consider a transportation network with N nodes and 4
links, let:

R : the set of all routes in the network

H : the set of all Origin Destination (OD) pairs in the
network

R, : the set of routes between OD pair h(h e H)

D, : the demand between each OD pair h(he H)

£, : the flow on route »(r € R)

v: the vector of link flows, v =[v,] (a € 4)

t,(v,) :the travel time on the link @, as a function of link
flow v, on that link only.

o, : 1 if the route r(reR) uses link a(ae 4), 0
otherwise

T : the set of links that are tolled (T < A)

7 : the vector of tolls 7 =[z,], (aeT)

gmx omin - the upper and lower bounds of toll charge
(aeT)

System cost, conventionally measured as the sum product
of the travel times and traffic flows on all links in the
network, may be interpreted as the social cost of the
transport sector and proxies the resource cost to the
economy of the highway system. The objective of the
decision maker in the COTP is to minimize this given by (6)

by charging tolls:
ProgramU :
Min U(v) = Z v, (D)1,(v, (7)) ©
Vaed
Subject to:
"<, < 0™ Va T M
7.=0 Va T

where v is obtained by solving the lower level program
(Program L)
®)
Min L= I (t.(2).7,)dz
v Va ¢
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Subject to:

> f,=D, heH ©)
reRy
v, =Zf,§w, ,Va A (10)
reR
€f,20,Vr R. (11)

B. The Lower Level Program in Transportation

In the transportation literature, Program L has a special
interpretation in that it is the mathematical formulation for
representing the follower’s (road user’s) route choice [31],
often referred to as the Traffic Assignment Problem (TAP).
The basic behavioral premise employed in Traffic
Assignment is that the route choice is governed by
Wardrop’s user equilibrium principle [32] where user
equilibrium is attained when no user can decrease his travel
costs (with or without tolls) by unilaterally changing routes.
The solution to the TAP is the equilibrium link flow vector
(v). It is known that a traffic assignment algorithm (e.g.
those in [33]) can be used to be used to solve Program L .

In the COTP as formulated, the leaders variables “ x” is
analogous to the toll vector 7 . Within DEBLP, solving the
lower level program is equivalent therefore to solving a TAP
for each toll vector generated by DE.

C. Previous Work on the COTP

Various solution algorithms have been proposed for the
COTP. Yang and Lam proposed a linearization based
method that wuses derivative information to form
approximations to the upper level objective [19]. Another
derivative-based method was derived from constraint
accumulation [34]. Preliminary tests by the author and
colleagues on this latter method have shown that it is very
sensitive to the starting point [35]. A comprehensive review
of these and other algorithms for the COTP are found in
[11].

D. Example

We illustrate the use of DEBLP to solve the COTP with a
small example from [19]. Fig. 1 shows the network which
has 6 nodes and 7 links. Link numbers are written above the
links and node numbers are indicated accordingly. There are
two OD pairs between nodes 1 and 3 and between 2 and 4 of
30 trips each. The rest of the nodes represent
junction/intersections of the road network and travel is in the
direction indicated by the arrows.

1

1

2

Fig. 1. Network for COTP Example
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The link travel times take the explicit function forms as
given by:
(12)

Vﬂ

t,(v)=t"(1+0.15=2)")

a

where £ is as the free flow travel time on the link and C,

is the link capacity. The parameter details for the network
and the upper bound on tolls are given in Table IV. Note
that ;™" =0,VaeT.

TABLE IV
NETWORK PARAMETERS FOR COTP EXAMPLE

Link £ C, e
1 8 20 5
2 9 20 5
3 2 20 2
4 6 40 2
5 3 20 2
6 3 25 2
7 4 25 2

For this example, NP=20,=7, 0= 0.8, CR= 0.9 and
MaxG = 50. Table V compares the results of DEBLP with
that of two deterministic algorithms (direct from [19] and
our implementation of the algorithm of [34]) together with a
Genetic Algorithm based method from [9]. UPO refers to
the upper level objective in (6). It can be seen from Table V
that the four different algorithms provided different tolls.
However the upper level objective function values are the
same in all cases.

TABLEV
COMPARISON OF EXISTING AND DE BASED RESULTS FOR COTP
EXAMPLE
Tolls [19] 34] [9] DEBLP
Link 1 3.820 2.667 4324 3.824
Link 2 4265 3.548 4.976 3.920
Link 3 0.472 0.038 0.035 0.564
Link 4 0.476 0.154 1.759 0.462
Link 5 0.294 0.116 0.016 0.145
Link 6 0.472 0.038 0.127 0.396
Link 7 0.294 0.116 0.013 0.111
UPO 628.60 628.60 628.60 628.60

VI. CONTINUOUS NETWORK DESIGN PROBLEM (CNDP)

The continuous network design problem (CNDP)
involves determination of capacity enhancements of existing
facilities of a network in such a way that the decision is
regarded as optimal [6]. Care has to be taken when solving
the CNDP because additional capacity can unproductively
increase the total network travel time and this is a
phenomenon known as Braess’s paradox. Braess’s paradox
has been known to occur in transportation [36] and
telecommunication networks [37].
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A. Model Formulation

To proceed with this example, we introduce additional
notation as follows (others as previously defined):
K : the set of links that have their individual capacities

enhanced (K < A).
B the
B=[B (aekK).
B, B the upper and lower bounds of capacity

vector of  capacity  enhancements

enhancements (a € K).
d . : the monetary cost of capacity increments per unit of
enhancement (a € K) .
C?: existing capacity of link a (Vae 4)
@: conversion factor from monetary investment costs to
travel times.
The CNDP seeks a K dimension vector of capacity
enhancements optimal to the following bi-level program:
The Upper level problem (Program U ) is described as:
i - 13
MinU(v. )= 3 v, (B, ). )+ Y 0dup, (19

VaeA Vealk

subject to:
SVpE I 0 K (14)
B.,=0 Va K

where vis obtained by solving a lower level problem
(Program L ) similar to that previously defined in the
equation set (8-11).

In the CNDP, the regulator aims to minimize the sum of
the system cost and the investment cost given by (13) with
constraints on the amount of capacity additions (14) while
Program L determines the user’s route choice, for a
given £, once again based on Wardrop’s principle of route

choice as mentioned previously.
The leaders variables “ x” is analogous to the vector of
capacity enhancements, £ . Within DEBLP, solving the

lower level program is equivalent therefore to solving a TAP
for each capacity enhancement vector generated by DE.

B. Previous Work on CNDP

The CNDP has been investigated by many researchers
and various solution algorithms have so far been proposed.
Meng et al transformed the bi-level program into a single
level continuously differentiable problem using the marginal
function method and solved the resulting problem with
Augmented Lagragian method [38]. Chiou investigated
several variants of the descent based Karush-Khun-Tucker
approaches [39]. Stochastic optimization techniques have
also been used; GAs were applied in [40] and the use of SA
has been reported in [6].

C. Example 1: Hypothetical Network

The network for the first example is taken from [40] and
reproduced in Fig. 2. This network has 6 nodes and 2 OD

pairs; the first between 1 and 6 of 10 trips and the second,
between nodes 6 and 1 of 20 trips.

15

Fig. 2. Network for CNDP- Example 1

The travel times adopt the following form as given by

15
). (15)

V[I

t (v.)=t"(1+0.15
) =1,( (Ci’+ﬂu

TABLE VI
NETWORK PARAMETERS FOR CNDP EXAMPLE 1

Link ¢ c da
1 1 3 2
2 2 10 3
3 3 9 5
4 4 4 4
5 5 3 9
6 2 2 1
7 1 1 4
8 1 10 3
9 2 45 2
10 3 3 5
11 9 2 6
12 4 6 8
13 4 44 5
14 2 20 3
15 5 1 6
16 6 45 1

Table VI gives details regarding the free flow travel
times, initial link capacities and the cost of capacity

expansion.  Note that g™ =0 and p"™=
20,Vae K,K < A4 as in [40].
For this example, we assumed NP= 20, 0= 0.9, CR=

0.99 and MaxG =150. Table VII summarizes the results that
have been reported previously and compares it with the
results reported in our paper. UPO is the upper level
objective in (13), NFE is the number of function evaluations
(number of lower level programs solved equal to
(NP * MaxG)) and SD is the standard deviation over 30
runs. Our results from DEBLP are based on the mean of
these 30 runs.

Though the standard deviation of the GA method used in
[40] is much lower, the authors also reported using a local
search method to aid the search process.

2007 IEEE Congress on Evolutionary Computation (CEC 2007)



TABLE VII
RESULTS FOR CNDP EXAMPLE 1

Method DETERMINISTIC STOCHASTIC
Source [39] [38] [6] [40] DEBLP
UPO 5340 53271 528.49 519.03 522.71
NFE 29 4,000 24,300 10,000 3,000
SO - Not Reported------------ 0.403 1.34

D. Example 2: Sioux Falls Test Network

The second example is the CNDP for the Sioux Falls
network with 24 nodes, 76 links and 552 OD pairs. This is
the network of a real city of Sioux Falls, South Dakota in the
USA. Due to space constraints, please refer to [38] for the
network parameters and OD details. Only 10 links out of the
76 are subject to improvements.

While this network is clearly larger and arguably more
realistic, the problem dimension (number of variables
simultaneously optimized) is smaller than in the previous
network used, since 10 links are subject to improvement
compared to 16 links previously. This could explain why the
number of function evaluations reported in all studies
compared is less than for the first example. Furthermore,
our literature review does not indicate that GA has been
used for this particular problem. The results are compared in
Table VIII. Our results from DEBLP are again based on the
mean of 30 runs.

TABLE VIII
RESULTS FOR CNDP EXAMPLE 2

Method DETERMINISTIC STOCHASTIC
Source [39] [38] [6] DEBLP
UPO 82.57 81.75 80.87 80.74
NFE 10 2,000 3,900 1,600
SD s Not Reported--------=-==-==-=---- 0.002

From Table VIII, DEBLP is able to locate the global
optimum; again with a lesser number of iterations than the
SA method in [6] or the deterministic method in [38]. The
standard deviation is also very low which suggests that this
heuristic is reasonably robust as well.

VII. CONCLUSIONS

The purpose of this paper was to assess the ability of a
simple meta-heuristic, DEBLP which combined both DE
manipulation with traditional optimization algorithms to
solve bi-level programming problems. In particular, bi-level
programming problems are important for transportation
analysts intending to use policy variables (such as capacity
and tolls) to optimize their network.

Through simple numerical bi-level function optimization
examples as well as specific applications in transportation,

2007 IEEE Congress on Evolutionary Computation (CEC 2007)

we have demonstrated that DE can be integrated within the
bi-level programming framework to provide good solutions.
In the numerical function optimization examples, DEBLP
not only found all the global optima that have been reported
for 5 test functions but also provided better solutions to two
other examples than previously reported in the literature.

Our specific examples from transportation network
analysis subsequently demonstrated that DEBLP can
outperform some deterministic (locally optimal) convergent
algorithms with an approximately equivalent number of
function evaluations and can perform as well, if not
outperform established stochastic optimization techniques.

One concern with DE, as with most evolutionary
algorithms, is that it potentially suffers from the “curse of
dimensionality” [41]. This is illustrated by the fact that the
number of lower level program evaluations required for
CNDP Example 1 and its standard deviation are both higher
than for CNDP Example 2 partially due to the larger
dimensions of the former problem. More investigation into
this is clearly required.

Our simple examples also ignored complementary or
competing objectives and trade off decisions. In our
formulation of the bi-level program, we assumed that the
objective of decision maker was only singly defined e.g.
minimize system cost only. However, she might be
envisaged to have other objectives e.g. maximizing revenue
in the case of toll pricing while simultaneously minimizing
system cost. A possible extension of this work would be to
extend the bi-level formulation within a multi-objective
optimization framework such as those proposed in [42].

It is interesting that DE’s simplistic perturbation and
recombination scheme can result in a reasonably efficient
optimization heuristic. The performance of the DE heuristic
and its comparison to other techniques, particularly
pertaining to the optimization of bi-level programs, would
constitute a challenging and fruitful area for further
research.
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