
This is a repository copy of Kinematic dynamo action in a sphere. II. Symmetry selection.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/362/

Article:

Gubbins, D., Barber, C.N., Gibbons, S. et al. (1 more author) (2000) Kinematic dynamo 
action in a sphere. II. Symmetry selection. Proceedings of the Royal Society Series A: 
Mathematical Physical and Engineering Sciences, 456 (1999). pp. 1669-1683. ISSN 
1471-2946 

https://doi.org/10.1098/rspa.2000.0581

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

See Attached 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


10.1098/rspa.2000.0581

Kinematic dynamo action in a sphere

II. Symmetry selection

By David Gubbins, C. N. Barb er, S. Gibbonsy a nd J. J. Love

Department of Earth Sciences, University of Leeds, Leeds LS2 9JT, UK

Received 16 July 1999; revised 8 November 1999; accepted 18 November 1999

The magnetic elds of the planets are generated by dynamo action in their electrically
conducting interiors. The Earth possesses an axial dipole magnetic eld but other
planets have other congurations: Uranus has an equatorial dipole for example. In
a previous paper we explored a two-parameter class of ®ows, comprising convection
rolls, di¬erential rotation (D) and meridional circulation (M ), for dynamo genera-
tion of steady elds with axial dipole symmetry by solving the kinematic dynamo
equations. In this paper we explore generation of the remaining three allowed sym-
metries: axial quadrupole, equatorial dipole and equatorial quadrupole. The results
have implications for the fully nonlinear dynamical dynamo because the ®ows qual-
itatively resemble those driven by thermal convection in a rotating sphere, and the
symmetries dene separable solutions of the nonlinear equations.

Axial dipole solutions are generally preferred (they have lower critical magnetic
Reynolds number) for D > 0, corresponding to westward surface drift. Axial quad-
rupoles are preferred for D < 0, and equatorial dipoles for convection with little
D or M . No equatorial quadrupole solutions have been found. Symmetry selection
can be understood if one assumes that the ®ow concentrates ®ux in certain places
without reference to sign. Fields with dipole symmetry must change sign across the
Equator; if ®ux is concentrated at the Equator, as tends to be the case for D < 0,
they have a small length-scale and consequent high dissipation, making them harder
to generate than axial quadrupoles. If ®ux is concentrated nearer the poles (D > 0),
axial dipoles are preferred. The equatorial dipole must change sign between east and
west hemispheres, and is not favoured by any elongation of the ®ux in longitude
(caused by D) or polar concentrations (caused by M ): they are preferred for small
D and M . Polar and equatorial concentrations can be related to dynamo waves and
the sign of Parker’s dynamo number. For the three-dimensional ®ow considered here,
the sign of the dynamo number is related to the sense of spiralling of the convection
rolls, which must be the same as the surface drift.

Keywords: kinematic dynamo; geomagnetism; symmetry

1. Introduction

Planetary magnetic elds are generated by dynamo action in their ®uid electrically
conducting interiors (Jacobs 1987; Proctor & Gilbert 1994; Proctor et al . 1993;
Hollerbach 1996; Fearn 1998). In the kinematic dynamo problem the ®uid ®ow is
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1670 D. Gubbins, C. N. Barber, S. Gibbons and J. J. Love

xed and Maxwell’s equations are solved for a growing magnetic eld (Mo¬att 1978).
Numerical solutions in a sphere can be used to test a ®ow for dynamo action and to
relate the morphology of the generated magnetic eld to the ®uid ®ow. Two impor-
tant questions can therefore be addressed by the kinematics: (a) what aspects of
the ®ow cause eld generation? and (b) what causes the eld to have its observed
character?

The Earth has possessed a magnetic eld approximating an axial dipole for most
of its history; Mercury, Jupiter and Saturn have axial dipole magnetic elds today,
while Uranus and Neptune have non-axial congurations. In its most basic form,
question (b) amounts to determining the preferred symmetry of solutions to the
kinematic dynamo problem. In a previous paper (Gubbins et al . 2000, hereafter
referred to as paper I) we explored generation of axial dipole magnetic elds by a
two-parameter class of ®ows. In this paper we explore generation of the remaining
three possible symmetries by the same class of ®ows.

Kumar & Roberts (1975) studied ®ows dened by the equation

v = °0t
0

1
+ °1s

0

2
+ °2s

2c
2

+ °3s
2s
2

; (1.1)

where tm
l

, sm
l

are toroidal and poloidal vector spherical harmonics. The rst har-
monic represents di¬erential rotation, the second meridional circulation, and the
last two represent convective overturn, all of which are likely to occur in a convect-
ing rotating sphere. In paper I we scaled the ®ow to unit energy, set °2 = °3 and
parametrized the ®ow with the fraction of energy in the meridional circulation, M ,
and in di¬erential rotation, D; these dene a diamond jD + M j < 1 in parameter
space. Kumar & Roberts (1975) restricted their study close to the point D = 1,
where the induction equation can be approximated by a mean eld equation derived
originally by Braginsky (1964). We refer to the points D = §1 as Braginsky limit
points, where many solutions have been found.

The magnetic eld satises the induction equation:

@B

@t
= Rm r £ (v £ B) + r2

B; (1.2)

where Rm is the dimensionless magnetic Reynolds number, and the solenoidal con-
dition

r B = 0: (1.3)

Solutions have the form B = B̂ exp(¼ + i!)t. B̂ satises the eigenvalue equation

(¼ + i!)B̂ = Rm r £ (v £ B̂) + r2
B̂: (1.4)

Dynamo action is said to occur when a growing solution exists with ¼ > 0; the crit-
ical magnetic Reynolds number Rc

m
is the value corresponding to marginal stability

or overstability with ¼ = 0. When more than one solution is found, the one with
smaller Rc

m
is the most unstable and is usually referred to as physically realizable.

However, the solution to the corresponding nonlinear problem may relate to several
linear modes, making them all physically interesting (Jennings & Weiss (1991) and
Grote et al . (2000), for example, both nd nonlinear solutions with mixed dipole{
quadrupole symmetry, but in the linear kinematic problem these symmetries are
linearly independent). Equation (1.4) is solved numerically in a sphere subject to
insulating boundary conditions using the numerical procedure detailed in paper I.

Proc. R. Soc. Lond. A (2000)



Kinematic dynamo action in a sphere. II 1671

The ®ow dened by equation (1.1) is invariant under re®ection in the equatorial
plane (E) and rotation by an angle º about the polar axis (P ), which follows because
v contains only azimuthal modes eim¿ with m = 0 and 2. v forms a coe¯cient in
equation (1.4), which is linear in B, and therefore solutions decouple into four sets
in which B remains invariant or changes sign under transformations E and P . The
Earth’s magnetic eld exhibits both these symmetries to some extent: the dipole
and some smaller features are antisymmetric about the Equator, while departures
from axial symmetry tend to lie on the same longitudes 120{180¯ apart (Bloxham &
Gubbins 1985). The four possible symmetries are EAP S ; E S P S ; E S P A and EAP A,
where S; A refer to symmetric, antisymmetric. We adopt Holme’s (1997) more concise
notation Da; Qa; De; Qe where D; Q denote dipole, quadrupole, and subscripts a; e
denote axial, equatorial. The symmetry properties arise ultimately because of the
geometry of a rotating sphere and rotational invariance of Maxwell’s equations and
the Lorentz transformation in the non-relativistic limit (Gubbins & Zhang 1993).
Equation (1.2) is linear in B and solutions with di¬erent symmetries are independent.
However, these solutions are also separable for the full nonlinear dynamo problem;
the kinematic results are therefore relevant for dynamical studies.

The adjoint to the induction equation is formed by changing the sign of Rm and the
boundary conditions (Gibson & Roberts 1966; Kono & Roberts 1991). Eigensolutions
to the adjoint equation have the same critical magnetic Reynolds number (eigenvalue)
but di¬erent symmetry (Proctor 1977b). This property can help us nd new dynamo
solutions: having found a dynamo at Rm we can search for another at ¡Rm with
di¬erent symmetry. The boundary conditions of the adjoint problem are unphysical,
but for some ®ows the boundary conditions are rather unimportant and may be
replaced by the physical boundary conditions (Proctor 1977a). Hutcheson & Gubbins
(1994) found numerical demonstrations of the adjoint symmetry by surrounding the
spherical dynamo region by a large sphere of stagnant ®uid, thus approximating
boundaries at innity. Then, by reducing the size of the surrounding shell, they
found numerical solutions to the physical problem with opposite symmetry near
¡Rm . Changing the sign of Rm is equivalent to changing the signs of both D and
M , or inversion through the origin of parameter space. For example, if boundary
conditions were completely unimportant the plot of Rc

m
for the axial quadrupole

solutions would appear as the plot of Rc
m

for the axial dipole solutions inverted
through the origin.

Sarson & Gubbins (1996) found Qa solutions near the Braginsky limit D ! ¡1,
corresponding to quadrupole solutions of the mean eld equations. Holme (1997)
reported a De solution for M = D = 0. These are the only dynamos found so far for
elds with De or Q symmetry. Holme (1997) searched mainly for De solutions on the
boundary of our square jD + M j = 1, where the ®ow is axisymmetric and solutions
proportional to exp(im¿) separate. He found none, and we have not searched the
boundary (he did succeed in nding De solutions on the boundary, and a single Qa

solution, with a slight modication of the ®ow).

2. Steady solutions

(a) Axial quadrupole solutions

We have examined ®ows on a 0:05£0:05 grid in D; M parameter space. Most dynamos
were found to be steady, as was the case for the axial dipole solutions. We found

Proc. R. Soc. Lond. A (2000)
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Figure 1. Rc
m for °ows generating (a) axial dipole ¯elds, from paper I, and

(b) axial quadrupole ¯elds. Logarithmic scale.

145 grid squares dening velocities that generate Qa elds, representing ca. 19% of
all possible ®ows. The critical magnetic Reynolds numbers are plotted in gure 1
alongside the Da solutions from paper I. Dynamo action occurs in discrete zones of
parameter space separated by regions where no dynamo action appears to occur, as
for the Da solutions. Zones A, B, C of the quadrupole solutions correspond roughly
to A, B, C of the dipole solutions, as anticipated from the adjoint symmetry. The
other zones are too dissimilar to make any such association. Rc

m
is smallest in zone C

and the lower part of zone A; the range is broadly similar to that for the axial dipole
solutions.

Figure 2a shows the ohmic heating normalized to unit energy. It is an alternative
gauge of the e¯ciency of the dynamo, a low value indicating low dissipation. The
plot is similar to that for Rc

m
except for the Braginsky limit points, where a large Rc

m

is required to generate a large-scale toroidal eld with relatively little dissipation.
As for the Da solutions, di¬erential rotation promotes toroidal eld and meridional

Proc. R. Soc. Lond. A (2000)
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Figure 2. Physical properties of the axial quadrupole solutions: (a) ohmic heating divided by
magnetic energy (this is a thermodynamic measure of the `e±ciency’ of the dynamo); (b) per-
centage energy in the poloidal ¯eld; (c) percentage energy in the axisymmetric part of the ¯eld;
(d) percentage of poloidal energy that is axisymmetric.

circulation promotes poloidal eld; both tend to promote axisymmetric elds. Fig-
ure 2b shows the percentage of energy in the poloidal magnetic eld. Regions A and
B are dominated by toroidal energy; there is a roughly equal partition of poloidal and
toroidal energy near the centre of the diamond; and the maximum poloidal energy
occurs in region C with weak di¬erential rotation. Figure 2c shows the percentage
of axisymmetric energy, which generally increases with both jDj and jM j. Figure 2d

shows the percentage of axisymmetric energy in the poloidal eld; the Braginsky limit
points are low because the poloidal non-axisymmetric eld dominates in the limit.

The ®ow D = ¡0:50, M = ¡0:05 in zone A generates a fairly simple eld shown
in gure 3a. The surface ®ux is concentrated at the poles and in two patches on the
Equator; large departures from axial symmetry in the poloidal eld make S2

2
the

dominant harmonic, as it is for most Qa dynamos. The toroidal eld comprises equa-
torial rings (gure 3b), with dominant harmonic T 0

1
. Solutions throughout zone A

Proc. R. Soc. Lond. A (2000)
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(a)

(c)

(b)

(d )

Figure 3. Qa magnetic ¯eld generated by °ow in zone A of ¯gure 1b, showing change of ¯eld with
change of sign of M : (a) D = ¡0:50, M = ¡0:05, Rc

m = 78, Br on surface; (b) B¿ in meridian
section, ¿ = 0; (c) D = ¡0:50, M = 0:05, Rc

m = 270, Br on surface; (d) B¿ in meridian section,
¿ = 0.

can be understood in terms of the e¬ects of D and M on this solution. Increasing
M to zero and positive values eliminates the polar ®ux and concentrates the equa-
torial spots (gure 3c). Decreasing D towards the Braginsky limit D = ¡1 increases
the toroidal eld; with M < 0 it eliminates the equatorial poloidal spots and with
M 0 elongates them in longitude (see gure 9c). At the other Braginsky limit
(D = 1 in zone B) the poloidal eld is also concentrated onto the Equator but with
some latitudinal structure; the dominant toroidal harmonic is T 0

3
.

Zone C is the largest and contains the dynamos with smallest Rc
m

. Solutions for
D < 0 and moderate M resemble those in neighbouring zone A; the dominant har-
monics are S2

2
and T 0

1
. The solution for D = ¡0:10, M = ¡0:55 has one of the small-

est values of Rc
m

; the eld is shown in gures 4a; b. Throughout this zone meridional
circulation sweeps surface ®ux towards the poles, promoting axisymmetric elds,
and internal toroidal ®ux towards the Equator. Solutions with D 0 are somewhat
di¬erent in having toroidal eld distributed throughout the sphere (gure 4c); the
dominant harmonic is T 0

3
(as is found throughout neighbouring zone B).

Zones D and F have low Rc
m

but strong departures from axial symmetry. The
surface eld alternates in sign around the Equator (gure 4d). The remaining small
zones have large Rc

m
and small-scale magnetic elds.

(b) Equatorial dipole solutions

Equatorial dipole solutions, De, have been found in 68 grid squares or 9% of the
®ows. Like the two previous symmetries, they lie in discrete zones in parameter space,

Proc. R. Soc. Lond. A (2000)
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(a)

(c)

(b)

(d )

Figure 4. Magnetic ¯eld generated by °ow in zone C: (a) D = ¡0:10, M = ¡0:55, Rc
m = 54, Br

on surface; (b) B¿ in meridian section, ¿ = 0; (c) D = 0:00, M = ¡0:10, B¿ , zone C showing
toroidal °ux distributed throughout the sphere; (d) D = 0:20, M = 0:45, zone D, Br at surface.

labelled A{E in gure 5a. The leading harmonics in the spherical harmonic expansion
of this symmetry are S1

1
and T 1

2
, and these generally contain the most energy. The

main zones, A and B, have the lowest Rc
m

and simplest eld congurations; Rc
m

is
much higher in the three smaller zones. The poloidal energy (gure 5b) is highest in
region B and near the centre of the plot. As expected, M generally promotes poloidal
eld while D promotes toroidal eld. Zone D is an exception, being dominated by
toroidal ®ux with harmonic T 1

4
. The ohmic heating (gure 5c) follows the plot of Rc

m

as expected. It is generally higher than for either axial symmetry.
The solution at the very centre of the sphere was found by Holme (1997). The

eld is shown in gure 6; it is large scale and dominated by an equatorial dipole.
The eld generated by neighbouring ®ows in zone B is simpler still, with slightly
smaller Rc

m
. Increasingly negative D stretches the regions of ®ux in longitude; M

spreads them in latitude. Fields in zone A are similar, but increasing M squashes
the ®ux onto the Equator. Zone C has eld concentrated into very small patches on
the Equator. Zone D is similar, but the surface ®ux has a positive and negative series
of ®ux patches around the Equator, rather like the Qa solutions in zones D and F
(see gure 4d). Zone E has surface ®ux elongated in latitude and a very complex
small scale B¿.

3. Overlapping solutions

Many ®ows sustain dynamos with two or even three symmetries (table 1). The solu-
tion with lowest Rc

m
is displayed in gure 7; these are the physically realizable solu-

Proc. R. Soc. Lond. A (2000)
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Figure 5. Physical properties of the equatorial dipole solutions: (a) critical magnetic Reynolds
numbers of the equatorial dipole solutions in distinct regions A{E; (b) percentage energy in the
poloidal ¯eld, equatorial dipole solutions; (c) ohmic heating divided by magnetic energy of the
equatorial dipole solutions.

tions. The amount of overlap can be judged by comparing the separate diamonds for
each symmetry (gures 1a; b and 5a).

The most striking result is the preference for Da solutions when D > 0, Qa solu-
tions when D < 0 and De solutions near the centre of the diamond when DM > 0.

Rc
m

on two squares in gure 7, D = ¡0:90; ¡0:95, M = 0:00, are radically di¬erent
to what one would expect. This is because the Qa solutions are oscillatory there (see
Sarson & Gubbins (1996) for other examples) and the steady Da solution, which has
smaller Rc

m
, is represented. The oscillatory solutions are conned to a very narrow

Proc. R. Soc. Lond. A (2000)
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(a)

(b) (c)

Figure 6. Equatorial dipole magnetic ¯eld generated by °ow D = 0:00, M = 0:00, Rc
m = 41,

typical of zones A and B: (a) Br on surface; (b) Br in meridian section, ¿ = 0; (c) B¿ in
equatorial section.

Table 1. Statistics of solutions of the three symmetries found

(The second column gives the percentage of squares where only that combination of solutions is
found; the third column gives the percentage generating at least those symmetries.)

exclusive total lowest
solutions (%) (%) Rc

m (%)

Da 20.2 36.0 27.7

Qa 4.5 19.1 12.1

Da + Qa 13.5 14.2

De 6.4 9.1 8.0

Da + De 1.6 3.8

Qa + De 0.4 1.1

Da + Qa + De 0.7 0.7

range of M and the vast majority of Qa solutions in this region are steady with
much lower Rc

m
than the Da solutions. Similar behaviour occurs near the other

Braginsky limit point D = 1, where preferred dipole solutions become oscillatory.
The oscillatory solutions will be discussed in a third paper of this series.

Proc. R. Soc. Lond. A (2000)
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Figure 7. Symmetry of solution with the lowest Rc
m . Some °ows generate more than one sym-

metry (cf. ¯gures 1, 5a). Da and Qa solutions have the same Rc
m along the boundary indicated;

this does not happen on other boundaries.

(a)

(c)

(b)

(d)

Figure 8. Magnetic ¯eld solutions for D = ¡0:15, M = ¡0:50: (a) Br at surface, Da solution
(Rc

m = 50); (b) B¿ in meridian section, ¿ = 0, Da ; (c) Br , Qa solution (Rc
m = 51); (d) B¿ , Qa .

Proc. R. Soc. Lond. A (2000)
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(a)

(c)

(b)

(d )

Figure 9. Magnetic ¯eld solutions for D = ¡0:85, M = 0:00: (a) Br , Da solution (Rc
m = 812);

(b) B¿ , Da ; (c) Br , Qa solution (Rc
m = 801); (d) B¿ , Qa .

The main overlap is between Da and Qa, and ®ows dened by a line in the diamond
running from about D; M = ¡0:20; ¡0:65 up to ¡0:25; ¡0:40 in gure 7 generate
both Da and Qa elds at the same Rc

m
. Figure 8 shows the elds for the pair of

solutions for one point on this line. The toroidal elds are concentrated near the
Equator; for Qa they are relatively simple, while for Da they are much more com-
plex, partly because the symmetry forces it to change sign across the Equator. This
explains why Qa solutions are preferred to the left of this line: the larger di¬eren-
tial rotation generates a stronger toroidal eld, the smaller scale of the Da solution
involves higher dissipation and therefore needs a higher Rc

m
. Poloidal ®ux is polar;

the Da solution has a simple pair of ®ux concentrations of opposite sign, but the Qa

symmetry forces the eld to reverse elsewhere, giving it a smaller length-scale. The
poloidal eld, therefore, has lower dissipation for the Da mode. This explains why
Da solutions are preferred to the right of this line.

A similar argument applies to solutions near the Braginsky limit points, D = §1,
both of which support both Da and Qa solutions. Near D = ¡1, both poloidal and
toroidal ®ux are concentrated near the Equator, and Qa is preferred (gure 9). Near
D = 1 the solutions have radically di¬erent Rc

m
and magnetic elds, and the Da

solution is preferred.
Da and De solutions have less overlap and the solutions are quite di¬erent. For

example, for purely poloidal ®ows M = ¡0:05 supports Da but not De, while M = 0
supports only De. Both solutions are supported at M = ¡0:02, and we display them
for comparison in gure 10; the ®ux is concentrated onto the Equator, where the Da

solution must change sign and reduce its length-scale relative to De. The De solution
changes sign with longitude, reducing its length-scale relative to Da. Decreasing M

Proc. R. Soc. Lond. A (2000)
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(a)

(c)

(b)

(d)

Figure 10. De (Rc
m = 179) and Da (Rc

m = 131) solutions compared at D = 0:00, M = ¡0:02:
(a) Da , Br in meridian section, ¿ = 90¯; (b) Da , B¿ ; (c) De , Br ; (d) De , B¿ .

moves ®ux towards the poles, promoting axially symmetric eld and favouring the
Da symmetry as observed.

There are only three squares generating both De and Qa elds. As with ®ows
generating both Da and Qa solutions, ®ux tends to be generated in the same place
with the symmetry forcing sign changes, but in this case between east and west
rather than north and south. D = ¡0:40; M = ¡0:10 is a nice example (gure 11)
with poloidal ®ux concentrated at the poles and Equator, and toroidal ®ux at the
Equator only.

A cluster of ®ows around D = ¡0:10, M = ¡0:20 generates all three symmetries
with similar Rc

m
. When all three symmetries are generated the surface Da eld has

the double clover leaf pattern (g. 6a of paper I). Because of their symmetry all
solutions have ®ux that is forced to change sign over a short distance.

4. Discussion

We have established that almost half of the ®ows dened by equation (1.1) generate
a steady magnetic eld with at least one of the possible symmetries. Axial dipoles are
the most commonly excited, followed by axial quadrupoles, then equatorial dipoles,
and no equatorial quadrupoles have been found. Some of this ordering arises from the
spatial complexity, and concomitant ohmic dissipation, of the di¬erent symmetries.
The leading poloidal harmonics are S0

1
for the Da elds and S0

2
for the Qa; Da

Proc. R. Soc. Lond. A (2000)
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(a)

(c)

(b)

(d)

Figure 11. Magnetic ¯eld solutions for D = ¡0:40, M = ¡0:10: (a) Br , Qa solution (Rc
m = 80);

(b) B¿ , Qa ; (c) Br , De solution (Rc
m = 100); (d) B¿ , De .

elds can therefore be expected to have lower dissipation in a dynamo solution.
Furthermore, if the toroidal eld is generated by di¬erential rotation acting on the
poloidal eld, Qa solutions will have a substantial T 0

3
component, which is of higher

degree than the dominant T 0
2

harmonic of the Da elds, even though the leading
harmonic is T 0

1
.

This argument does not apply to the De solutions, whose poloidal elds have sim-
ilar complexity to Da. We found that D and M both promote axisymmetric ®ux for
axial solutions, but De has no axisymmetric component: it is therefore not surpris-
ing that the solution with D = M = 0 is lost when these parameters are increased.
Love & Gubbins (1996) attributed failure of the D = M = 0 ®ow to generate Da

elds to uniform distortion of the magnetic eld lines by the axisymmetric helic-
ity, which leads to cancellation rather than reinforcement of the pre-existing eld.
However, the De elds vary with cos ¿ or sin ¿ and the distortion of uniform helicity
will therefore produce a non-axisymmetric eld capable of reinforcement. Dynamo
action is lost when jM j departs slightly from zero, perhaps because of the action of
non-axisymmetric helicity.

The failure of the axisymmetric ®ows on the boundary jD + M j = 1 to generate De

elds is surprising. Holme (1997) attributes this to strong shear near the boundary,
and obtains dynamo action by changing the radial structure of the ®ow slightly. This
modied ®ow might well generate a higher proportion of De elds in the main body
of the diamond.

If one accepts that these ®ows generate elds preferentially in certain places but
without regard to sign, then symmetry selection can be understood in terms of the
spatial structure imposed on the eld. Da elds must change sign across the Equator,

Proc. R. Soc. Lond. A (2000)
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but Qa elds do not. However, the solenoidal condition (1.3) demands sign changes
somewhere: Qa elds change sign away from the Equator, while De elds change sign
in longitude. Thus polar ®ux favours Da and equatorial ®ux Qa or De, depending
on the elongation in longitude. Flux concentration is not always so simple. Some
®ows tend to generate ®ux in two distinct regions, for example at the poles and
the Equator. Others may generate poloidal ®ux in one region and toroidal ®ux in
another. Di¬erent concentrations can favour di¬erent symmetries, making it di¯cult
or impossible to predict a preference. This is the case along the boundary between
Da and Qa solutions in gure 7 (D < 0, M < 0), where a line of ®ows have identical
Rc

m
for the two symmetries.

The previous discussion begs the question of why the ®ow should generate strong
eld in certain places. There is a tendency for the convective part of the ®ow to
generated eld along the boundaries of the cells, particularly radial eld at the sur-
face where ®uid downwells. This could simply be a result of ®ux expulsion from
the core of the convective cell. Parker (1979) explains equatorial or polar concen-
trations of ®ux in steady ¬! dynamos in terms of interference of dynamo waves
that propagate equatorward for positive `dynamo number’ (¬! > 0) in the North-
ern Hemisphere (our point D = ¡1), giving steady dynamos with ®ux concentrated
around the Equator, which would favour Qa steady elds by the argument of the
previous paragraph, and poleward propagation for ¬! < 0 (D = 1) giving polar
®ux and Da steady elds. The sign of Parker’s dynamo number is determined in the
three-dimensional ®ow by the sense of spiralling of the convection cells relative to
the di¬erential rotation. The convection parameters have been chosen so the rolls
spiral towards the west. D > 0 corresponds to westward drift at the surface, the
geophysical case, and negative radial gradient (!0 < 0 in Parker’s notation), and so
axial dipole solutions are preferred when both are in the same sense (both can be
reversed without changing the equations by one of the symmetry conditions given
in paper I). The results given here therefore suggest that a eld with axial dipole
symmetry requires westward spiralling of the rolls. This is opposite to what is found
from non-magnetic rapidly rotating convection (Zhang 1992), where convection rolls
drift prograde (east) and also spiral to the east. However, this is a viscous e¬ect,
and viscosity is negligible in the Earth. Zhang (1995) found that westward spiralling
and westward drift arose in convection with an imposed toroidal magnetic eld. A
proper comparison with Parker’s ideas, which are based on ¬! equations, requires a
comparison of oscillatory solutions, which are the subject of paper III of this series.
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