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Abstract

A coherent account of the connections and contrasts between the principles of com-
plementarity and uncertainty is developed starting from a survey of the various
formalizations of these principles. The conceptual analysis is illustrated by means
of a set of experimental schemes based on Mach-Zehnder interferometry. In particu-
lar, path detection via entanglement with a probe system and (quantitative) quan-
tum erasure are exhibited to constitute instances of joint unsharp measurements of
complementary pairs of physical quantities, path and interference observables. The
analysis uses the representation of observables as positive-operator-valued measures
(POVMs). The reconciliation of complementary experimental options in the sense
of simultaneous unsharp preparations and measurements is expressed in terms of
uncertainty relations of different kinds. The feature of complementarity, manifest in
the present examples in the mutual exclusivity of path detection and interference
observation, is recovered as a limit case from the appropriate uncertainty relation. It
is noted that the complementarity and uncertainty principles are neither completely
logically independent nor logical consequences of one another. Since entanglement
is an instance of the uncertainty of quantum properties (of compound systems), it
is moot to play out uncertainty and entanglement against each other as possible
mechanisms enforcing complementarity.
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1 Introduction

Soon after the inception of quantum mechanics, the notions of complementar-
ity and uncertainty were introduced to highlight features of the new theory,
unknown to classical physics, which amounted to limitations of the preparation
and measurement of atomic systems.

Complementarity and uncertainty continue to attract the attention of re-
searchers, inspiring novel experimental tests and demonstrations. One such
experiment was proposed by Scully, Englert and Walther (SEW) [1]. These
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authors described an atom interferometer in which entanglement is utilized
to store information about the path of an atom: we will use the term “path
marking” to refer to this process of path information storage in a probe system
by way of establishing correlations between the atom and the probe. SEW’s
claim is that in their scheme, the standard explanation for the loss of interfer-
ence upon path marking in terms of classical random momentum kicks, and
hence the uncertainty relation, is not applicable.

The fact that in the SEW experiment the interference pattern was wiped out
not by classical kicks, which supposedly could be associated with an indeter-
minate momentum, but by entanglement led to the suggestion that the prin-
ciple of uncertainty is less significant than complementarity: “The principle
of complementarity is manifest although the position-momentum uncertainty
relation plays no role” ([1], p. 111); and in reply to a critique [2], SEW go
further, stating that “the principle of complementarity is much deeper than
the uncertainty relation although it is frequently enforced by δxδp ≥ ~/2” [3].

A path-marking experiment similar to that proposed by SEW was experi-
mentally realized in 1998 by Dürr, Nonn and Rempe [4] and confirmed the
conclusion of SEW, that neither mechanical disturbance nor the position-
momentum uncertainty relation could explain the loss of interference. This,
in turn, caused a controversy and led to grossly misleading articles in popular
science journals, announcing “An end to uncertainty - Wave goodbye to the
Uncertainty Principle, you don’t need it anymore.” (New Scientist 1999) [5]).
Numerous papers appeared with conflicting conclusions as to whether some
forms of random disturbance or uncertainty relations could always be invoked
to explain the loss of interference when path marking was effected via entan-
glement, or whether entanglement was the more fundamental mechanism for
this form of complementarity (e.g. [6–12]).

The main aim of this paper is to study the roles and relative significance of
the uncertainty principle (in an appropriate understanding), “disturbance” in
measurement, and entanglement in the explanation of complementary quan-
tum phenomena, such as the mutual exclusivity of path marking and interfer-
ence detection.

It seems to us that the continuing lack of consensus over these questions is
largely due to persistent differences of general outlook on the principles of
complementarity and uncertainty that are manifest in the development just
reviewed, and due to the fact that these differences are usually not reflected
upon. The two notions are often considered as logically related, and the uncer-
tainty relation is frequently presented as a quantitative expression of comple-
mentarity. By contrast, the work of SEW raised controversy over the question
whether the uncertainty relation is at all relevant to complementarity. In ef-
fect, the considerations of SEW and the conclusions drawn by Dürr et al.
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from their experiment suggest that complementarity and uncertainty refer to
aspects of quantum physics that can be discriminated experimentally.

We therefore find it necessary to develop a coherent account of the notions and
principles of complementarity and uncertainty before we illustrate the mani-
festations of these principles in the analysis of a set of simple interferometric
experiments.

To this end, we will briefly analyze the existing contrasting views on comple-
mentarity and uncertainty, and review the development of various formaliza-
tions of these so-called principles (Section 2). Separating the broader “ideo-
logical” issues from the technical aspects will help to elucidate the interesting
specific physical and conceptual questions indicated above, which can then be
effectively addressed in terms of suitably defined notions of complementarity
and uncertainty.

The analysis of the experimental illustrations of these concepts will be car-
ried out using the general descriptions of observables in terms of positive-
operator-valued measures (POVM). Projection-valued measures (PVMs) are
special cases of POVM and are called sharp observables. POVMs that are
not PVMs are called unsharp observables. Some of the experimental schemes
presented here are instances of joint measurements of an unsharp path and
an unsharp interference observable. The measurement theoretic concepts and
tools required for our analysis will be briefly reviewed in Section 3.

In Section 4, we will discuss a range of atom and Mach-Zehnder interfero-
metric experiments. We will briefly review the type of which-path and erasure
experiments proposed by SEW and carried out by Dürr et al. (subsection 4.1).
This will prepare the definition and study of analogous Mach-Zehnder interfer-
ometric setups in subsection 4.2-4.7. The following experiments are presented
within one common setting and analyzed in detail: use of the interferometer
for path detection; an interference detection setup; introduction of path mark-
ing via entanglement with a probe system, which precedes the interferometer;
quantum erasure; and quantitative quantum erasure.

The language of POVMs proves useful in section 5 for the analysis of the
relationships between specific versions of complementarity and uncertainty as
they manifest themselves in the present group of experiments.

General conclusions are drawn in Section 6. In the presentation of complemen-
tarity and uncertainty developed here, these features are seen to be logically
related within quantum mechanics, although they have their separate identi-
ties and roles. In a nutshell, uncertainty is a direct consequence of the linear
structure of the Hilbert space formalism in that every vector state can be
expressed as a linear combination of eigenvectors of some observable, whose
values are therefore uncertain (or, more precisely, indefinite) in that state. This
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fact may be considered as the broadest formulation of the uncertainty prin-

ciple, which is then usually expressed as a trade-off relation between pairs of
noncommuting observables. The complementarity principle highlights an ex-
treme form of that relation, stating that there are pairs of quantities that are
such that complete determination of one quantity implies maximal uncertainty
about the other (and vice versa). Thus, the formulation of complementarity
presupposes the notion of uncertainty, but the principles of complementarity
and uncertainty cannot be reduced to one another.

Similarly, it is pointed out that entanglement is an instance of uncertainty.
It is therefore pointless to attempt to separate entanglement as a “mecha-
nism” enforcing complementarity in addition to, and independently of, the
uncertainty principle.

We hope that this study helps not only to settle some long-standing foun-
dational issues of quantum mechanics, but also to promote the idea that the
time has come to introduce the concept and application of POVMs in the
undergraduate teaching of quantum mechanics. POVMs are already being
taught as a standard tool in courses on quantum mechanics, quantum compu-
tation and quantum information in a small but growing number of institutions
around the world. The concepts of the underlying modern quantum theory of
measurements are slowly being brought to the attention of teachers of under-
graduate quantum physics. For example, simple implementations of POVMs
for quantum optical experiments were presented by H. Brandt in the Ameri-
can Journal of Physics [13]. There are a number of books giving elementary
demonstrations of the use of POVMs in the analysis of conceptual problems
and quantum experiments, the first being the fine text monograph by the late
Asher Peres [14]. We dedicate this paper to the memory of Asher Peres, friend
and mentor to one of us (PB), and mediator between quantum foundations
and quantum applications.

2 The notions of complementarity and uncertainty

2.1 Bohr, Heisenberg, and the consequences

The principles of complementarity and uncertainty were introduced by Niels
Bohr [15] and Werner Heisenberg [16] some eighty years ago in their efforts
to develop an intuitive understanding of quantum physics. Their concern was
to explain the dramatic deviations of this new theory from classical physics,
which manifested themselves in wave-particle duality and the impossibility of
defining and observing sharp particle trajectories.
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From the beginning there was disagreement over the relative significance and
merits of the notions of complementarity and uncertainty [17]. Bohr considered
complementarity as fundamental for his interpretation of quantum mechanics,
which was to be based on classical concepts and intuitions, rather than math-
ematical formalism. He thought of the uncertainty relation (primarily) as a
formal, quantitative expression of complementarity. By contrast, Heisenberg
seemed to have had little use for the notion of complementarity; he sought to
develop an intuitive understanding of quantum mechanics that derived from
the formalism itself. In his reminiscences, Heisenberg summarized the key that
led him to the discovery of the uncertainty relation in the famous sentence
that he ascribed to Einstein: “it is the theory which decides what can be ob-
served” [18]. It made him realize that there was room in quantum mechanics
for simultaneous approximate values of position and momentum, and thus for
unsharply defined trajectories as they are observed in cloud chambers.

Bohr and Heisenberg eventually reached a compromise on their divergent views
in the terminology of what came to be known as the Copenhagen interpre-
tation of quantum mechanics. However, the fundamental differences in their
philosophical outlooks on quantum mechanics were never resolved, as is mani-
fest from their writings and recorded interviews and discussed, for example, in
the book of Jammer [17]. The appearance of unity maintained nevertheless by
the Copenhagen pioneers has made it difficult to obtain a coherent account of
the so-called Copenhagen interpretation, and there is a vast body of historico-

philosophical literature on this subject with rather divergent conclusions.

Here we are concerned with the reception of the notion of complementarity by
the physics community. A survey of the textbook literature exhibits that three
points of view have evolved concerning the relationship and interplay between
the principles of complementarity and uncertainty. However, it seems to us
that a fairly unambiguous, systematic account of the possible formalizations of
the notion of complementarity within quantum mechanics has been obtained.
We briefly recall the three distinct interpretational stances on the status of
the principle of complementarity, and then review the possible rigorous for-
malizations of the notion of complementarity.

There is one group of authors who reiterate the account that has become part
and parcel of the so-called Copenhagen interpretation: According to this view,
the uncertainty relation constitutes the quantitative expression of the principle
of complementarity (e.g., [19]), and quantum mechanics has been said to be
best understood as the theory of complementarity [15,19–21]. Within this
group, some describe the uncertainty principle as enforcing complementarity,
while others deny the uncertainty relation the status of principle, playing down
its significance in favor of complementarity [20]. (Asher Peres had his own,
characteristically humorous way of doing this: in his textbook [14], the only
occurrence of the term “uncertainty principle” is in the index, with the page
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reference indicating this very index page. On the other hand, the principle
of complementarity is also described only briefly, while there are numerous
occurrences of variants of uncertainty relations.)

A second group of authors (including, e.g., Dirac, von Neumann, Feynman)
avoids carefully any mention of the term complementarity, apparently in accor-
dance with a widespread perception that Bohr’s presentations of this concept
had remained rather obscure. These authors invoke the uncertainty principle
as the reason for the impossibility of making simultaneous path and interfer-
ence observations with arbitrary precision. This approach is consistent with
Heisenberg’s point of view, according to which it is possible but not neces-
sary to refer to complementarity for an intuitive interpretation of quantum
mechanics.

Finally, today there is a widespread sense that complementarity and uncer-
tainty are best regarded as consequences of quantum mechanics which high-
light characteristic features of that theory but need not be held up as inde-
pendent principles.

We will reassess these positions after the following brief review of the evolution
of current formulations of the complementarity and uncertainty principles.

2.2 The notion of complementarity

2.2.1 Complementarity in Bohr’s writings

Bohr introduced the term complementarity in his 1927 lecture in Como: “The
very nature of the quantum theory thus forces us to regard the space-time
co-ordination and the claim of causality, the union of which characterizes the
classical theories, as complementary but exclusive features of the description,
symbolizing the idealization of observation and definition respectively.” ([15],
p. 580).

Complementarity was thus originally conceived as a relationship between pairs
of descriptions, or phenomena, which are mutually exclusive but nevertheless
both required for a complete account of the physical system under consider-
ation. Bohr considered complementarity as a “rational generalization” of the
classical notion of a causal spacetime description of physical phenomena. He
argued that in quantum physics, causality (represented by conservation laws
and deterministic equations of motion) and spacetime description fall apart,
as a consequence of what he called the quantum postulate, according to which
every observation (i.e., measurement) induces an uncontrollable, unavoidable,
and non-negligible change of the phenomenon (i.e., the observed system). In
fact, as Bohr put it, spacetime coordination requires observation and hence
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uncontrollable state changes, whereas a causal account of phenomena requires
the possibility of defining a state and hence precludes interaction, and thus
measurement.

For Bohr, the definition of a state and its observation constituted idealiza-
tions which were simultaneously applicable to any desired degree of accuracy
in classical physics. According to the quantum postulate, the finite magnitude
of Planck’s quantum of action introduces a limitation to the simultaneous ap-
plicability of these idealizations: the influence of interactions required for an
observation is no longer negligible for atomic systems where the characteris-
tic quantities of the dimension of an action are comparable in magnitude to
Planck’s constant. According to Bohr, such measurement interactions leave
the object and measuring apparatus in a situation that does not allow an in-
dependent description of either system: “Now, the quantum postulate implies
that any observation of atomic phenomena will involve an interaction with
the agency of observation not to be neglected. Accordingly, an independent
reality in the ordinary physical sense can neither be ascribed to the phenom-
ena nor to the agencies of observation” [15]. We agree with D. Howard [22]
that this passage should be read as expressing the entanglement of object and
apparatus after the measurement interaction.

Following Bohr’s own practice, it has become customary to interpret his in-
formal descriptions of complementarity in terms of position and momentum
observables as follows: these observables are complementary in that for a de-
terministic description of the trajectory of a particle, the values of both ob-
servables are required, but according to the quantum mechanical limitations
of preparing and measuring the values of these observables, sharp values can-
not be assigned to them simultaneously. This impossibility of defining sharp
trajectories then gives room for the existence and explanation of interference
phenomena. A lucid account of complementarity along these lines was given
by W. Pauli as early as 1933 [19]. In his reply of 1935 to the famous challenge
of Einstein, Podolsky and Rosen [23], Bohr defines the complementarity of
position and momentum [24] by reference to “the mutual exclusion of any two
experimental procedures, permitting the unambiguous definition of comple-
mentary physical quantities.” Complementarity thus describes, according to
Bohr, the limited way in which classical concepts can be applied in the de-
scription of quantum experiments. Such a limitation is imposed by quantum
mechanics (the quantum postulate), in accordance with the failure of classical
physics to explain atomic phenomena. The importance of complementarity
derives, for Bohr, from the necessity of expressing all physical experience in
classical physical language.
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2.2.2 Complementarity and wave-particle duality

It should be noted that in contrast to the classical exclusivity of wave and
particle theories that gave rise to the quantum puzzle of wave-particle dual-
ity, the concepts of position and momentum are simultaneously applicable in
classical physics but not (without qualification) in quantum mechanics. This
implies that wave-particle duality cannot simply be considered as an instance
of complementarity, as is often suggested. There are pairs of phenomena (and
of related observables) that the same type of system (e.g., electrons) can dis-
play and that are associated with intuitive ideas relating to either particles
or waves. But there are also instances of particle and wave behaviors which
do manifest themselves in the same experimental setup, such as the Compton
scattering of a photon with an electron observed through a γ-ray microscope,
followed by the subsequent wave-like propagation of the light through the mi-
croscope, which accounts for the finite optical resolution. In this and similar
examples, Bohr freely used wave and particle aspects in the analysis of one
and the same phenomenon. Another simple example is the interference ob-
servation in a double slit experiment where the interference is explained by
wave superposition while at the same time the pattern is built up by the suc-
cessive recordings of the photons or electrons through their inelastic collisions
with the molecules in the photographic plate. According to Bohr, the appar-
ent contradiction that lies in the wave-particle duality is resolved through the
realization of the limited simultaneous applicability of classical concepts that
is complementarity.

A dissolution, within quantum theory, of the problem of wave-particle duality
was carried out somewhat differently and more formally by Heisenberg in his
1929 Chicago lectures [25]. He identifies particle and wave pictures with the
quantized theories of particles and fields, and sees the consistency of the two
pictures established by the equivalence of the quantum field theory, restricted
to the subspace of N quanta, with the quantum mechanics of N particles.
On this account, there is no need for a simultaneous application of wave and
particle ideas since both formalisms can be used to give equivalent accounts
of the experiments in question.

These different assessments of the significance of wave-particle duality and of
its resolution in quantum mechanics are one example of the persistent dis-
crepancies between Bohr and Heisenberg. A detailed analysis of Heisenberg’s
account of wave-particle duality, with similar conclusions to ours, has recently
been given by Camilleri [26].
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2.2.3 Modern formulations of complementarity

The complementarity idea was thus gradually transformed into the notion
of complementarity of pairs of physical quantities, with an emphasis on the
negative aspect of mutual exclusiveness of value assignments or experimental
setups (such as path or interference detection). As will become evident from
the discussion of the uncertainty principle below, the positive aspect of mutual

completion, or complementation, that comprises the original meaning of the
term complementarity, has been delegated to the uncertainty principle.

The statement of mutual exclusiveness of experimental setups can be inter-
preted as constituting three distinct forms of complementarity; one that refers
to the possibilities of state preparation, and two that refer to the possibilities of
joint and sequential measurements, respectively. This distinction allows one to
take into account the freedom in placing the Heisenberg cut between prepara-
tion (object system) and measurement (probe system, measuring apparatus),
as well as the fact that often the state-preparing effects of measurements are
utilized. Preparation complementarity is the impossibility of preparing states
in which the two observables in question are simultaneously assigned sharp
values. Measurement complementarity is the impossibility of performing si-
multaneous sharp measurements of these observables, or the impossibility of
performing their measurements in sequence without mutual disturbance. In
these general forms, complementarity applies to practically all pairs of non-
commuting quantities (exceptions are pairs with some common eigenstates).

Complementarity is usually understood to be a more specific relationship that
singles out certain important pairs of observables, including, but not restricted
to, canonically conjugate pairs such as position and momentum, or compo-
nents of angular momentum and their associated angles. A comprehensive
discussion of definitions of preparation and measurement complementarity to-
gether with examples of complementary pairs of observables are given in the
monograph [27] (Sec. IV.2) and the review [28]. We will restrict ourselves here
to a brief summary with sufficient detail for the purposes of our subsequent
analyses.

2.2.4 Preparation complementarity

The most widely adoped form of preparation complementarity (e.g., [20,29,1,12])
is probably the following one that we will refer to as value complementarity

(following [27]): two observables are value complementary if whenever one has
a definite value, the values of the other are maximally uncertain. A value of
observable A is definite if it occurs with probability equal to one in a mea-
surement of A, and the values of observable B are maximally uncertain if they
occur with equal probabilities in a measurement of B.
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Formally, the value complementarity of two observables A,B with discrete
nondegenerate spectra and associated eigenbasis systems {ψk : k = 1, . . . , n},
{φℓ : ℓ = 1, . . . , n} amounts to the statement that any two eigenstates have
constant overlap, that is, the numbers |〈ψk|φℓ〉| are independent of k, ℓ. Pairs of
orthonormal basis systems with this property are called mutually unbiased. It
is well known that any observable A with nondegenerate eigenstates ψ1, . . . , ψn
has at least one partner B with which it forms a value complementary pair; in
fact there are infinitely many such partners: first one can define any B with
orthonormal system of eigenstates φℓ = 1√

n

∑

k e
2πikℓ/nψk, ℓ = 1, . . . , n. It is

easily verified that A,B are value complementary. Note that the eigenvalues of
the observables do not enter the definition of value complementarity. Further
value-complementary partners BU of A are obtained by taking BU := UBU∗,
where U is any unitary operator that commutes with A.

One must note that the notion of value complementarity does not easily extend
to continuous quantities or those with unbounded spectra. For example, in
order to consider position and momentum as value complementary, one must
use their improper eigenstates; one could try to capture the idea of nearly sharp
position values by means of sequences of normalizable states whose position
distributions approach a Dirac distribution. In that sequence, the momentum
distributions become arbitrarily widely spread out, but it is not clear how
to express the idea that these momentum distributions approach a uniform
distribution, which does not exist on the basis of normalizable states.

Similarly, in the case of number and conjugate phase, it is true that for a
number eigenstate, the phase is distributed uniformly, but there are no states
with definite, sharp values of the phase, nor are there states with uniform
number distributions [30]. To maintain the idea of value complementarity, one
would have to allow it to become a nonsymmetric relation.

These limitations do not arise if one adopts a slightly weaker form of prepa-
ration complementarity, known as probabilistic complementarity. Observables
A, B are probabilistically complementary if and only if for their spectral pro-
jections EA(X), EB(Y ) associated with bounded intervals X, Y (such that
the projections EA(X), EB(Y ) are different from the null operator O and
the unit operator I) it is true that whenever the probability tr[ρEA(X)] = 1
then 0 6= tr[ρEB(Y )] 6= 1, and vice versa. This is to say that if the value
of A is definitely in interval X, the value of B is never certain to be in any
interval Y (or its complement). This notion applies without difficulty to the
position-momentum and number-phase pairs; but it also allows any two spin
components of a spin-1

2
system to be complementary.

Probabilistic complementarity is known to be equivalent to the statement
that for all bounded intervals X, Y (such that EA(X), EB(Y ) 6= O, I), the
associated spectral projections of A and B satisfy
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EA(X) ∧ EB(Y ) = O, (1)

EA(X) ∧ EB(R \ Y ) = O, (2)

EA(R \X) ∧ EB(Y ) = O. (3)

Here, P ∧Q denotes the intersection of the projections P and Q, that is, the
projection onto the intersection of their ranges; R\X denotes the complement
of the set X. The equation P ∧Q = O is equivalent to the statement that P
and Q have no common eigenvectors associated with their eigenvalue 1.

2.2.5 Measurement complementarity

Measurement complementarity can be specified in a similar vein to refer to
a pair of observables A,B for which a sharp measurement of one of them
makes any attempt at measuring the other one simultaneously or in imme-
diate succession completely obsolete. The first form of measurement comple-
mentarity, the impossibility of joint measurements, is a special instance of von
Neumann’s theorem [31], according to which two observables are jointly mea-
surable if, and only if, they commute. In a more specific, stronger form, the
measurement complementarity of two observables A,B can be expressed as
an exclusion relation for the quantum operations describing the state changes
due to the measurements of A and B. This characterization was again found
to be equivalent to the relation (1) (see [27, Sec. IV.2.3]), thus demonstrating
the match, stipulated already by Bohr, between the possibilities of preparation
and the possibilities of measurement.

Measurement complementarity in the case of sequential measurements will be
taken to mean that due to the effect of the Ameasurement, theB measurement
will not recover any information whatsoever about B in the (input) state
immediately prior to the Ameasurement. In extreme cases it may happen that,
although the second setup is devised to measure observable B, the statistics
obtained in the presence of the A measurement is independent of the input
state; the observable effectively measured in the second measurement provides
no information about the system state prior to the A measurement. This
is again a special instance of a general theorem in the quantum theory of
measurement (discussed, e.g., in [27, pp. 42-44]), according to which a sequence
of a measurement of observable A followed immediately by a measurement
set up to measure observable B constitutes a joint measurement of A and
some unsharp observable B′ (represented by a POVM) that commutes with
A. If A and B are value complementary observables with mutually unbiased
eigenbases and if A is measured first by a von Neumann measurement, then
the observable B′ actually measured by a subsequent B measurement scheme
is in fact trivial, in that its statistics carries no information about the system
state prior to the A measurement.
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Measurement complementarity is thus seen to reflect the fact that in quan-
tum mechanics, every nontrivial measurement must alter the system’s state,
at least in the case of some input states. There can thus be no information
gain without “disturbance” in quantum mechanics. As will be discussed in the
next subsection, the related issue of a measurement of one variable disturb-
ing the distributions of other, noncommuting variables has been highlighted
by Heisenberg by means of his famous thought experiments illustrating the
uncertainty relation. This feature of quantum mechanics—the fact that mea-
surements necessarily alter the system under investigation, hence the impos-
sibility to “see” the system in its undisturbed form—has impressed the sci-
entifically interested public as being of such fundamental importance that it
is now widely known under the name “Heisenberg effect” or also “observer
effect” (as is quickly confirmed by an internet search). In fact, these terms are
used to denote loosely analogous phenomena in a variety of disciplines, rang-
ing from sociology, political science or market research over anthropology and
population ecology to computer science (where certain forms of programming
errors are called Heisenbugs).

We will see value complementarity and the two versions of measurement com-
plementarity (for joint or sequential measurements) at work in the discussion
of the Mach-Zehnder interferometry experiments; if the path observable is rep-
resented by σz, any of its associated interference observables, represented by
cos ξ σx + sin ξ σy, is a complementary partner.

2.2.6 Complementarity principle

The complementarity principle is the statement that there are pairs of observ-
ables which stand in the relationship of complementarity. As we saw above,
this is satisfied in quantum mechanics for observables the eigenvector basis
systems of which are mutually unbiased. We conclude that the “principle” of
complementarity, as formalized here, is a consequence of the quantum me-
chanical formalism. There seems to be no need to speak of a complementarity
principle, unless one sets out to use such a principle in a more general frame-
work to deduce quantum mechanics. Here we follow the common practice of
speaking of the complementarity principle as a description of a remarkable
feature of quantum mechanics.

2.3 The notion of uncertainty and the uncertainty principle

2.3.1 Origin of the uncertainty principle

The uncertainty principle was introduced in Heisenberg’s seminal paper of
1927 [16]; although he did not speak of a principle, he made it very clear that
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he considered the uncertainty relation as fundamental for an intuitive under-
standing of quantum mechanics. He saw it as an expression of the physical
content of the canonical commutation relations for conjugate pairs of quanti-
ties, and considered that these algebraic relations should form the basis for a
derivation of the formalism of quantum mechanics.

Heisenberg introduced quantum mechanical uncertainty with the following
words: “It is shown that canonically conjugate quantities can be determined
simultaneously only with a characteristic inaccuracy,” and “. . . the more pre-
cisely the position is determined the less precisely the momentum is known
and conversely.”

Often the uncertainty principle is reduced to the idea, referred to above as the
Heisenberg effect, that any measurement “disturbs” the system in question.
In the case of the canonically conjugate position and momentum observables
of a particle, this “disturbance” is often identified with a momentum kick im-
parted on the particle during the measurement. If taken as generally valid,
the explanation of the uncertainty principle in terms of momentum kicks is an
incorrect conflation whose origin must be seen in Heisenberg’s discussion of a
position measurement with a γ-ray microscope. Heisenberg pointed out that
the higher the accuracy of the position determination was, the shorter the
wavelength of the photon, and therefore the larger the momentum exchange
with the observed particle. In a “note added” at the end of his 1927 paper, he
credits Bohr for the correction that the magnitude of the momentum transfer
did not constitute a cause for the particle’s momentum to become indetermi-
nate. Bohr’s explanation of the necessary momentum uncertainty was based
on the dual nature of the light used in the observation: the particle aspect
of the photon accounts for the momentum exchange resulting from Compton
scattering, while the wave aspect gives rise to an uncertainty in the momen-
tum inference due to the finite aperture of the microscope. Thus one could say
that according to Bohr it is the quantum nature of the probe system utilized
in a measurement that enforces the necessary uncertainty trade-off.

2.3.2 Three varieties of uncertainty relations

A careful reading of Heisenberg’s 1927 paper and his 1930 Chicago lecture
notes [25] shows that he has in fact distinguished three variants of uncertainty
relations. It is evident that Heisenberg considered measurements to produce
(approximate) eigenstates of the measured observable, corresponding to the
measured value. Thus he describes the outcome of an attempted joint mea-
surement of position and momentum in terms of the standard deviations of
position and momentum observables in a Gaussian wave function centered at
the measured values. The position and momentum uncertainties in this con-
ditional final state are then taken to represent the inaccuracies of the joint
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measurement.

Here Heisenberg brings together two versions of uncertainty relations: the
uncertainty relation

∆(Q,ψ) · ∆(P, ψ) ≥ ~

2
(4)

for state preparations, according to which separate measurements of position
and momentum in a (vector) state ψ have distributions with widths (standard
deviations) satisfying this uncertainty relation; and a trade-off relation

δq · δp ≥ ~

2
(5)

for the inaccuracies of joint measurements of these noncommuting observables.

Heisenberg did not have at his disposal a precise quantum-mechanical notion
of joint measurement of noncommuting observables. Such a notion was de-
veloped only several decades later, after POVMs had been introduced and
made available to describe unsharp or approximate measurements. Heisen-
berg does grapple with the notion of joint unsharp measurement and comes
close to a solution by considering sequences of measurements. For example,
he considers the diffraction of a matter wave at a slit and shows that if the
particle’s momentum was initially sharp, this precision in the definition of
momentum becomes degraded during the passage through the slit which ef-
fects an approximate localization of the particle. Considered as a sequence
of a sharp momentum measurement followed immediately by an approximate
position measurement, the outcome of the sharp momentum determination
is thus seen to be modified into an unsharp momentum determination, due
to the “disturbing” influence of the approximate position determination. The
resulting inaccuracies in the definitions of position and momentum are shown
to satisfy an uncertainty relation. Indeed, the variance ∆(P, ψ) of momentum
after passage through the slit can be taken to represent both the accuracy δp
of the momentum determination in the combined measurement scheme and a
measure of the disturbance Dp of the (initially sharp) momentum through the
unsharp position determination: ∆(P, ψ) = δp = Dp. Likewise, the position
uncertainty ∆(Q,ψ) upon passage through the slit reflects the accuracy δq of
the position measurement. We thus have:

δq ·Dp ≥ ~

2
. (6)

This version of uncertainty relation constitutes an accuracy-disturbance trade-
off relation for sequences of measurements. It has been carefully discussed in
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the context of interference experiments by Pauli in his 1933 review [19]. In the
form described here, the disturbance of the distribution of an observable B
through a measurement of A is measured in terms of the variance of B in the
state immediately after the selective A measurement operation, which is to be
compared to the (near) zero variance of B in an initial (near) eigenstate. In
this formulation, the accuracy-disturbance relation follows from the prepara-
tion uncertainty relation. In a more general approach, the disturbance of the
distribution of B during a measurement of A should be described by some
measure of the difference between the distributions of B before and after the
nonselective A measurement, and it should depend on the accuracy of the A
measurement. Interestingly, rigorous and general formulations of such distur-
bance uncertainty relations have been investigated only rather recently (e.g.,
[29,32,33]). A review of rigorous formulations of all three types of uncertainty
relations for position and momentum is given in [34].

2.3.3 Uncertainty principle

We propose that the term uncertainty principle refers to the broad statement
that there are pairs of observables for which there is a trade-off relationship
in the degrees of sharpness of the preparation or measurement of their values,
such that a simultaneous or sequential determination of the values requires
a nonzero amount of unsharpness (latitude, inaccuracy, disturbance). This
comprises the above three versions of uncertainty relations. There are a variety
of measures of uncertainty, inaccuracy, and disturbance with which such trade-
off relations can be formulated, usually in the form of inequalities.

The term “principle” refers here to the fact that the uncertainty relations
highlight an important nonclassical feature of quantum mechanics. They are
a formal consequence of the noncommutativity of the observables in question.
Being inequalities, the uncertainty relations can hardly be considered adequate
as postulates from which to derive quantum mechanics; however, they have
been used to rule out the field of real numbers in favor of the complex numbers
as the underlying field for the Hilbert space formulation of quantum mechanics
[35].

2.3.4 Uncertainty or indeterminacy?

A discussion of the uncertainty principle would not be complete without a
comment on the nature of quantum mechanical uncertainty. The fact that
many observables do not have definite values even in pure states, which repre-
sent maximal available information about the physical system under consid-
eration, stands in strong contrast to the situation in classical physics. If in a
pure state ψ the probability for a property represented by a projection P is
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neither one nor zero, the value of any physical quantity represented by that
projection must be considered to be objectively indeterminate, or indefinite,
rather than only subjectively unknown, or uncertain. According to the Kochen-
Specker theorem (discovered by Kochen and Specker [36] and independently
by Bell [37]), any attempt at hypothetically assigning definite values to sets of
non-commuting observables leads to contradictions even in the case of rather
small, finite sets of such observables. (Asher Peres was one of the champions
in finding smaller and smaller sets of observables with Kochen-Specker contra-
dictions; see his book [14].) The assignment of definite values to the position
and momentum of a particle in the Bohm interpretation is no exception to
this conclusion since these value attributions are contextual, that is, they are
different for different measurement setups. The conclusion is that the term
indeterminacy principle appears to be more appropriate. However, “uncer-

tainty principle” has become the standard name and shall be used here, with
the proviso that one should beware the misleading connotation of subjective
ignorance that it carries.

2.4 Complementarity vs. uncertainty?

The above review shows that the concepts of complementarity and uncertainty
highlight two aspects of one and the same feature of quantum mechanics:

(I) the impossibility of assigning simultaneously sharp values to certain pairs
of noncommuting observables, be it by preparation or measurement;

(P) the possibility of simultaneously assigning unsharp values to such observ-
ables by preparation of measurement.

One may say that in contrast to Bohr, who emphasized the negative aspect
of complementarity in the sense of (I), Heisenberg moved further to make
a positive statement in the form of uncertainty relations which, if satisfied,
enabled the option (P). We believe that this account is endorsed by Bohr who
occasionally refers to the uncertainty relation as expressing complementarity,
in the sense of (I), as well as (P). This seems evident from the following passage
in the published version of the Como lecture which we quote in full length:

In the language of the relativity theory, the content of the relations (2) [the
uncertainty relations] may be summarized in the statement that according
to the quantum theory a general reciprocal relation exists between the max-
imum sharpness of definition of the space-time and energy-momentum vec-
tors associated with the individuals. This circumstance may be regarded as
a simple symbolical expression for the complementary nature of the space-
time description and claims of causality. At the same time, however, the
general character of this relation makes it possible to a certain extent to
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reconcile the conservation laws with the space-time co-ordination of ob-
servations, the idea of a coincidence of well-defined events in a space-time
point being replaced by that of unsharply defined individuals within finite
space-time regions. (Bohr 1928 [15, Sec. 2])

For Bohr, the “mutual completion” part of complementarity refers to the ne-
cessity of making use of the exclusive descriptions (or observables) in different
experimental contexts that cannot be created simultaneously. Incidentally, the
above quote seems to constitute the first occurrence of the term “unsharp”
in connection with the question of simultaneous preparation or measurement
of position and momentum, which today is formalized in terms of unsharp
observables, that is, POVMs.

It seems largely a matter of terminological or interpretational preference which
aspects of the two statements (I) and (P) are to be subsumed under the com-
plementarity principle or the uncertainty principle. However, the formaliza-
tions of the features (I) and (P) reviewed in the preceding subsections, which
are those most commonly used in the recent research literature, have clearly
identified (I) as an expression of the idea of complementarity and (P) as the
essence of the uncertainty principle. This constitutes a break with two older
traditions which gave preference either to the complementarity principle or
the uncertainty principle. It appears to us that with this terminological shift,
a more balanced assessment has been achieved: compared to the view that
emphasized complementarity over uncertainty, the positive role of the uncer-
tainty relations as enabling joint determinations and joint measurements is
now highlighted more prominently; and even though it is true (as we show
later) that the uncertainty statement (P) entails (I) in a suitable limit sense,
it is still appropriate to point out the strict mutual exclusivity of sharp value
assignments which, after all, is the reason for the quest for an approximate
reconciliation in the form of simultaneous but unsharp value assignments.

Irrespective of the particular terminological or interpretational preference, for-
malizing the respective statements (I) and (P) has opened up new and inter-
esting questions: (I) and (P) have become claims that can or cannot be proven
as consequences of the theory, and it becomes possible to study the logical re-
lationships between these statements. Questions like these will be studied in
the remaining part of this paper with respect to Mach-Zehnder interferometric
or, more generally, qubit observables.

3 Interlude: measurement theoretic concepts and tools

In this section we review the representation of observables as positive oper-
ator valued measures (POVMs), their use in the definition of joint unsharp
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measurement of noncommuting observables, and the measurement theoretic
implementation of a POVM. We restrict ourselves to observables with finitely
many values and some examples in the context of qubit observables, as they
will be used in the following sections.

3.1 Effects and POVMs

The standard representation of observables in quantum mechanics uses self-
adjoint operators, or equivalently, the associated spectral measures, acting in
the Hilbert space H associated with the physical system under consideration.
For example, a standard observable A with discrete spectrum {a1, a2, . . . , an}
has a spectral representation of the form A =

n
∑

k=1
akPk. The eigenvalues ak and

the associated mutually orthogonal spectral projections Pk define the spectral
measure

P : ak 7→ Pk, (7)

which satisfies the normalization condition

∑

k

Pk = I. (8)

A projection-valued map of the form (7) with the property (8) is also called a
projection-valued measure (PVM). The probabilities for the outcomes (eigen-
values) am in a measurement of A on state ψ are given by

〈ψ|Pm|ψ〉 =: 〈Pm〉ψ = 〈Pm〉. (9)

The normalization of probabilities for all unit vectors ψ is ensured by the
normalization condition (8). Standard observable A and PVM P : ak 7→ Pk
will also be referred to as sharp observable.

In generalizing the formalism to include positive-operator-valued measures
(POVMs) as representations of imperfect or inaccurate measurements, it is
noted that probabilities can generally be represented by expectation values of
positive operators that are not necessarily projection operators nor necessarily
commuting. Such operators are called effects. Hence, a measurement with
outcomes {λ1, λ2, . . . , λm} is represented by a POVM

E : λℓ 7→ Eℓ, (10)
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with a unique collection of effects E1, E2, . . . , Em. The normalization condition

∑

ℓ

Eℓ = I (11)

is required to ensure the normalization of the probability distributions λℓ 7→
〈ψ|Eℓ|ψ〉 for each vector state ψ. Often we will simply denote a POVM E in
terms of the set of its effects {E1, . . . , Em}. A POVM which is not a PVM will
be called unsharp observable.

A POVM λℓ 7→ Eℓ is taken to represent a coarse grained, or smeared version of
a sharp observable (7) if there is a stochastic matrix (wℓk) (wℓk ≥ 0,

∑

ℓwℓk =
1) such that Eℓ :=

∑

k wℓkPk. Such a POVM, which is always commutative,
represents an approximate measurement of the sharp observable.

For example, the spectral representation of the Pauli spin-1/2 operator σx in
H = C

2 has the form,

σx = a1P1 + a2P2 = 1
2
(I + σx) − 1

2
(I − σx), (12)

with eigenvalues a1 = 1, a2 = −1 and spectral projections P1 = 1
2
(I + σx),

P2 = 1
2
(I − σx).

A smeared version of this spectral measure is obtained by applying a stochastic
matrix

(fjk) :=
1

2







1 + f 1 − f

1 − f 1 + f





 − 1 ≤ f ≤ 1. (13)

The smeared version of the spectral measure of σx is F = {F1, F2} where

Fℓ :=
2
∑

k=1
fℓkPk. This gives,

F1 = 1
2
(I + fσx), F2 = 1

2
(I − fσx) (14)

Similarly, a smeared version of σz, G = {G1, G2} can be defined as,

G1 = 1
2
(I + gσz), G2 = 1

2
(I − gσz) (15)

where −1 ≤ g ≤ 1.

In this example, we see that the class of POVMs is wide enough to include
trivial POVMs: these are composed of effects which are all multiples of the
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unit operator I. The above POVM F becomes trivial if we put f = 0. Trivial
POVMs give probabilities that do not depend on the state; they provide no
information at all. We have already found it convenient to make reference to
observables represented as trivial POVMs in the preceding section.

3.2 Joint measurability

In a joint measurement of two observables F and G, one sets out to infer
the values of these observables from the output readings. Thus for every pair
of values of F and G there has to be a pointer value and the statistics of
these pointer values should reproduce the probabilities for the values of F
and G in the object’s input state. Thus, there should be a POVM, E, whose
probabilities are the joint probabilities for the outcomes of F and G. This
means that the probability distributions of F and G should be obtained as
marginal distributions of the probability distributions of E.

Such a POVM, E, is called a joint observable of F and G; observables F and
G are the marginals of E.

According to a theorem of von Neumann [31, Sec. III.3] two sharp observables
have a (sharp) joint observable exactly when they commute. Thus two non-
commuting observables cannot be sharply measured together. However, it has
been found that smeared versions of two noncommuting sharp observables
may have a joint observable. The pair F = {1

2
(I ± fσz)}, G = {1

2
(I ± gσz)}

are known [38] to have a joint observable exactly when,

f 2 + g2 ≤ 1. (16)

Thus for two POVMs to be jointly measurable their degrees of unsharpness
|f |, |g| must be limited by this trade-off inequality. In this case it is straight-
forward to give an example of a joint observable E, assuming for simplicity
0 ≤ f, g ≤ 1,

E11 = 1
4
(I + fσx + gσz) E21 = 1

4
(I − fσx + gσz) (17)

E12 = 1
4
(I + fσx − gσz) E22 = 1

4
(I − fσx − gσz). (18)

Each operator Ekℓ is positive because the eigenvalues are 1
4
(1 ± |(f, g)|) =

1
4
(1 ±

√
f 2 + g2) ≥ 0 due to (16). Moreover, the marginality relations are

fulfilled:

E11 + E12 = F1 E21 + E22 = F2 (19)

E11 + E21 = G1 E12 + E22 = G2. (20)
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In sections 4.5 to 4.7 we will give measurement implementations of similar
joint observables.

3.3 Measurement implementation of a POVM

Next we give a brief explanation of how a POVM can be implemented in a
suitable measurement scheme.

In a measurement a probe is coupled with the object system by a unitary
evolution after which the probe pointer is read. In addition, if the object
system is still available after the measurement interaction has ceased, one
may also perform another measurement on it.

The following situation is encountered in sections 4.5 to 4.7: a photon gets
entangled with a probe system and then passes through a Mach-Zehnder in-
terferometer. Finally, a joint measurement is made of a probe observable and a
detector observable. The purpose of this joint measurement is to obtain infor-
mation about the photon state immediately prior to the interaction with the
probe and subsequent passage through the interferometer. Such information
is available in the form of the output probabilities if these can be expressed
in terms of the photon’s input state.

Given that the initial state of the probe and the interferometer settings are
fixed in each run, it follows that the output probabilities are indeed the ex-
pectation values of a POVM for the photon input state.

Let ψi = α|1〉 + β|2〉 (|α|2 + β|2 = 1) denote the input state of the photon,
|p0〉 the initial probe state, U the unitary evolution operator representing the
probe and the passage through the interferometer. Then the final state of the
combined system is Ψf = Uψi ⊗ |p0〉. On this the sharp output observable
with projections Mkℓ = |k〉〈k| ⊗ |rℓ〉〈rℓ| is measured. Here |k〉, k = 1, 2, are
the eigenstates of an object observable measured after the interaction with
the probe, and |rℓ〉, ℓ = 1, 2, are eigenstates of a pointer or output observable
of the probe. (In sections 4.6 and 4.7, different choices will be made for the
|rℓ〉.) The output probabilities are then

〈Ψf |Mkℓ|Ψf〉 = 〈p0|〈ψi|U∗MkℓU |ψi〉|p0〉
= |α|2〈p0|〈1|U∗MkℓU |1〉|p0〉 + α∗β〈p0|〈1|U∗MkℓU |2〉|p0〉
+ β∗α〈p0|〈2|U∗MkℓU |1〉|p0〉 + |β|2〈p0|〈2|U∗MkℓU |2〉|p0〉.

(21)
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These can be written as

〈Ψf |Mkℓ|Ψf〉 = |α|2E11
kℓ + α∗βE12

kℓ + β∗αE21
kℓ + |β|2E22

kℓ . (22)

Being probabilities, these numbers are non-negative and hence the expression
(22) is a quadratic form for the variables α and β. That is to say, for each k, ℓ,
the matrix (Eij

kℓ)i,j=1,2 is positive semi-definite; thus. it represents a positive
operator Ekℓ defined in the Hilbert space of the photon. Hence,

〈Ψf |Mkℓ|Ψf〉 = 〈ψi|Ekℓ|ψi〉 (23)

for all ψi. Normalization of the output probability entails
∑

kℓ
Ekℓ = 1. Thus

(k, ℓ) 7→ Ekℓ is a POVM, which represents the (input) observable of the object
system measured by the measurement scheme using the output observable
(k, ℓ) 7→Mkℓ. Formula (23) is the basis for the analysis of all the measurement
schemes discussed in the coming sections.

The above consideration illustrates a general theorem that states that every
measurement scheme defines a POVM for the object system. The converse
statement is also true: every POVM admits an implementation in terms of
a measurement scheme. For a general introduction to these results and for
original references, the reader may wish to consult [39]. To our knowledge,
the first proposals of realistic models of joint measurements of unsharp qubit
observables were developed in [40]. Further detailed examples of measurement
implementations of POVMs are given, for instance, in the monograph [27] and
in the book of de Muynck [41].

4 Path marking and erasure in an atom and Mach-Zehnder inter-

ferometry

4.1 The atom-interferometric experiment of SEW

In a two slit atom interferometer [1] each atom is prepared in a superposition

ψ0(r) = 1√
2
[ψ1(r) + ψ2(r)] (24)

of path states ψ1(r) and ψ2(r) which represent the passage through the two
slits. On the far capture screen (position coordinate R) an interference pattern
will be observed according to

P0(R) = |ψ0(R)|2 = 1
2
[|ψ1|2 + |ψ2|2 + ψ∗

1ψ2 + ψ∗
2ψ1]. (25)
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SEW consider the situation in which atoms, prepared in an excited internal
state |a〉 and propagating in a superposition of states corresponding to two
collimated beam paths, arrive singly at micro-maser cavities preceding each of
the double slits [1, Fig. 3]. Once in the cavity, the atoms will make a transition
|a〉 → |b〉, spontaneously emitting a microwave photon. The state of atom plus
field changes from

Ψ0(r) = 1√
2
[ψ1(r) + ψ2(r)] |a〉 |0102〉 (26)

to the entangled state

Ψ(r) = 1√
2
[ψ1(r) |b〉 |1102〉 + ψ2(r) |b〉 |0112〉], (27)

where |1102〉 and |0112〉 represent the field states corresponding to one photon
in cavity 1 and none in cavity 2 and vice versa. Thus, the micro-maser cavities
act as which-way detectors only if a photon left in the cavity changes the
electromagnetic field in a detectable way.

The probability density on the capture screen is given by

P (R) = 1
2
[|ψ1|2 + |ψ2|2 + ψ∗

1ψ2〈1102|0112〉 + ψ∗
2ψ1〈0112|1102〉]

= 1
2
[|ψ1|2 + |ψ2|2]. (28)

The interference (cross) terms vanish because the field states |1102〉 and |0112〉
are orthogonal.

SEW also consider the possibility of recovering coherence and thus the in-
terference pattern by deleting or “erasing” the path information left in the
microwave cavity detectors [1, Refs. 26-31].

To model this they consider a new arrangement whereby the two cavities are
separated by a shutter-detector combination [1, Fig. 5a]. This allows for the
radiation either to be confined to the upper or lower cavity when the shutters
are closed or for the radiation to be absorbed by a detector behind each shutter
when it is opened. In the latter case the path marking information can be said
to be erased. This will be explained presently.

In the erasure experiment one makes use of the fact that the state (27) has
the equivalent form

Ψ(r) = 1√
2
[ψ+(r) |b〉 |+〉 + ψ−(r) |b〉 |−〉], (29)
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where

ψ± = 1√
2
[ψ1(r) ± ψ2(r)], |±〉 = 1√

2
[|1102〉 ± |0112〉]. (30)

To display the effects of the erasure, the experimental procedure is described
as follows: after an atom arrives on the far screen, the shutters are opened
and the state of the detector behind the shutters, which may have changed
from its initial state |d〉 to a new state |e〉 orthogonal to |d〉, is recorded. The
possible transitions are as follows, reflecting the sensitivity of the detector to
the field state |+〉 rather than |−〉:

|+〉 |d〉 → |00〉 |e〉, |−〉 |d〉 → |−〉 |d〉. (31)

In half the observations the detector will be found in an excited state indicating
that there had been a photon in one of the cavities which has been absorbed.
In the remaining cases there is no detection. Thus, the total state makes the
following transition:

1√
2
[ψ+ |b〉 |+〉 + ψ− |b〉 |−〉]|d〉 → 1√

2
[ψ+ |b〉 |0102〉 |e〉 + ψ− |b〉 |−〉 |d〉]. (32)

As seen in Eq. (29) the symmetric atom state ψ+ is coupled with the symmetric
cavity field state; thus the state of the atom arriving at the screen selected
if the detector is found in state |e〉 is ψ+. The probability density of those
atoms will show the maxima and minima (fringes) of an interference pattern,
P+(R) = |ψ+(R)|2 = P0(R) (Eq. (25)).

Atoms arriving at the screen for which there is no corresponding signal from
the erasure detector (i.e., the detector is found in |d〉) will display “anti-
fringes”, P−(R) = |ψ−(R)|2, corresponding to the selected state ψ−.

If all the events are counted, irrespective of the erasure detector state, the
distribution is,

1
2
P+(R) + 1

2
P−(R) = 1

2
[|ψ1|2 + |ψ2|2] = P (R). (33)

The maxima of one pattern coincide with the minima of the other one, washing
out the fringes.

This consideration shows that in the entangled state, Ψ(r) (Eq. (27)), the
information about path as well as interference is fully available. Choosing
to measure the path marking basis states, |1102〉, |0112〉, of the probe yields
which way information. Measuring instead the field states |+〉, |−〉 allows the
recovery of interference fringes or anti-fringes, respectively. The two options
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are mutually exclusive; in the first case it is the interference information which
is lost whereas in the second case it is path information which is lost.

It should be noted that this situation is related to the Einstein, Podolsky,
Rosen (EPR) experiment (in Bohm’s version for spin 1/2 pairs) which also
makes use of an entangled state with more than one biorthogonal decomposi-
tion as in Eqs. (27) and (29).

4.2 Mach-Zehnder interferometer: basic setup

Consider a special case of the Mach-Zehnder interferometer in Fig. 1 with no
path marking and no phaseshifter. The two possible input states from I1, I2
will be represented by orthogonal unit vectors |1〉, |2〉, of a two dimensional
Hilbert space, H = C

2. When a photon entering via I1 (represented by a “path”
state |1〉) arrives at the beam splitter BS1 its state is changed to an equally
weighted superposition, with appropriate phase shift by π/2 upon reflection;
and similarly for an input state |2〉:

|1〉 → 1√
2
[|1〉 + i|2〉], |2〉 → 1√

2
[i|1〉 + |2〉]. (34)

Arriving at detector D1 will be a component via the path I1BS1M1 reflected
by BS2 carrying a total phase shift of π/2 from M1 plus π/2 from BS2, and
a component via the path I1BS1M2 transmitted by BS2 also carrying a total
phase shift of π/2 from BS1 plus π/2 from M2. Hence, detector D1 will register
an output as these two components are in phase and interfere constructively.

Arriving at detector D2 will be a component via the path I1BS1M1 transmitted
by BS2 carrying a total phase shift of π/2 from M1, and a component via the
path I1BS1M2 reflected by BS2 carrying a total phase shift of π/2 from BS1

plus π/2 from M2 plus π/2 from BS2. Hence, detector D2 will register no output
as these two components are out of phase by π and interfere destructively.

So, if I1BS1M1BS2D1 is the path represented by |1〉, any measurement of the
output of D1 has associated with it projector |1〉〈1| representing one of the
eigenstates of the measured input observable according to Eq. (23) (which
defines the measured POVM). We identify this with the spectral projection of
the Pauli operator σz associated with the eigenvalue 1, |1〉〈1| = 1

2
(I + σz).

Similarly, I2BS1M2BS2D2 corresponds to |2〉 and any measurement of the out-
put of D2 has associated with it the input projector |2〉〈2| = 1

2
(I − σz).

We are now in a position to consider a Mach-Zehnder interferometer with
path marking before the beam splitter BS1. This will be implemented by
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Fig. 1. A Mach-Zehnder interferometer with path marking and phase shifter.

introducing a probe system which interacts with the photon. The probe is
represented by a two dimensional Hilbert space, H = C

2, with path marking
(“pointer”) states |p1〉 and |p2〉. The interaction between the photon and the
probe is to be arranged in such a way that |p1〉 becomes correlated with |1〉
and |p2〉 with |2〉, so that registration of these pointer states allows one to
infer that the photon was in the corresponding path eigenstate (see Eq. (38)
below). A phase shifter, δ in one path after BS1 completes the analogy with
the SEW experiment.

A general input from I1, I2 without the path marking interaction switched on
(object in input state ψi and probe remaining in a neutral state |p0〉) can be
represented by

ψi ⊗ |p0〉 = (α|1〉 + β|2〉) ⊗ |p0〉 (35)

Taking into account the phase shift in path 1 (see Fig. 1), the photon in-
put states |1〉, |2〉 undergo the following evolution upon passage through the
interferometer and before entering one of the detectors D1, D2:

|1〉→ 1
2
[(−eiδ − 1)|1〉 + i(eiδ − 1)|2〉], (36)

|2〉 → 1
2
[i(−eiδ + 1)|1〉 − (1 + eiδ)|2〉]. (37)
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When the path marking is turned on the total state after the path marking
interaction has ceased and before the photon enters BS1 is

Ψe = α|1〉 ⊗ |p1〉 + β|2〉 ⊗ |p2〉 (38)

The photon states |1〉, |2〉 evolve according to (36); this leads to the total final
(output) state after the photon passes through beam splitter BS2 as

Ψδ
f = 1

2
α[(−eiδ − 1)|1〉 + i(eiδ − 1)|2〉] ⊗ |p1〉 (39)

+1
2
β[i(−eiδ + 1)|1〉 − (1 + eiδ)|2〉] ⊗ |p2〉 . (40)

We are now ready to discuss a variety of possible experiments.

4.3 Path detection in outputs D1, D2

The simplest case of this Mach-Zehnder interferometer is with no path mark-
ing, |p1〉 = |p2〉 = |p0〉 and no phase shift, δ = 0, analogous to a double slit
interferometer (SEW) with no path marking and the far field detector placed
centrally; the output state is,

Ψo
f = −(α|1〉 + β|2〉) ⊗ |p0〉 (41)

Observing the output of detectors D1, D2 with no path marking is represented
by the projections M1 = |1〉〈1| ⊗ I, M2 = |2〉〈2| ⊗ I.

The probabilities for an output at D1 and D2 are,

〈Ψo
f |M1|Ψo

f〉= 〈ψi|1〉〈1|ψi〉 = |α|2 (42)

〈Ψo
f |M2|Ψo

f〉= 〈ψi|2〉〈2|ψi〉 = |β|2. (43)

The input observable measured by this experiment is the POVM E0 = {E0
1 ,

E0
2} defined by

〈Ψo
f |Mk|Ψo

f〉 = 〈ψi|Eo
k|ψi〉 (44)

for all ψi and k = 1, 2 It follows that E0 is a PVM with projections

E0
1 = 1

2
(I + σz), E0

2 = 1
2
(I − σz). (45)

This reproduces the discussion of path detection connected with Fig. 1: If
ψi = |1〉, then the probabilities of a detection at D1 and D2 are 〈1|E0

1 |1〉 = 1
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and 〈1|E0
2 |1〉 = 0, respectively. A similar consideration applies to an input

state ψi = |2〉. Thus, the measured observable is the path observable σz.

4.4 Interference detection at D1, D2

We now consider the use of the Mach-Zehnder interferometer for an interfer-
ence measurement. In a double slit interferometer both slits would be open
and a detector placed at the first minimum. Here we choose δ = −π/2; then
the output state is,

Ψ
−π/2
f = −(1−i)√

2

[

α 1√
2
(|1〉 − |2〉) + β 1√

2
(|1〉 + |2〉)

]

⊗ |p0〉. (46)

If a measurement of Mk = |k〉〈k|⊗ I, k = 1, 2 is now applied by observing the
outputs of Dk the associated probabilities are

〈Ψ−π/2
f |M1|Ψ−π/2

f 〉 = 1
2
(|α+ β|2) = 〈ψi|E−π/2

1 |ψi〉 (47)

〈Ψ−π/2
f |M2|Ψ−π/2

f 〉= 1
2
(|α− β|2) = 〈ψi|E−π/2

2 |ψi〉, (48)

from which E
−π/2
1 and E

−π/2
1 are extracted:

E
−π/2
1 = 1

2
(I + σx), E

−π/2
2 = 1

2
(I − σx). (49)

Following customary practice we consider an interference observable one with
the form cos δ σx+sin δ σy, 0 ≤ δ < π, given that the path is represented by σz.
Interference observables are singled out by the condition that the interference
contrast can assume its maximum possible value. In this case their eigenstates
give equal probabilities of 1/2 to the path projections |1〉〈1|, |2〉〈2|.

In the present experiment, the measured input observable is defined by the
projections of Eq. (49); these are the spectral projections of the operator σx,
which is indeed an interference observable.

4.5 The path-marking setup

Now consider the case where |p1〉 and |p2〉 are mutually orthogonal , 〈p1|p2〉 =
0. This is an analog of SEW’s path-marking experiment. We can find the
influence of the path marking on the outputs of the detectors using each of

29



the four measurement projections of path |k〉 jointly with marker |pℓ〉, M ′
kℓ =

|k〉〈k| ⊗ |pℓ〉〈pℓ|, k, ℓ = 1, 2, e.g.

〈Ψδ
f |M ′

11|Ψδ
f〉 = |1

2
α(eiδ + 1)|2 = 1

4
|α|2(1 + cos δ). (50)

The input POVM, the measured observable is again defined by Eq. (23),

〈Ψδ
f |M ′

kℓ|Ψδ
f〉 = 〈ψi|E ′

kℓ|ψi〉, (51)

and we obtain

E ′
11 = 1

2
(I + σz) cos2 δ

2
E ′

21 = 1
2
(I + σz) sin2 δ

2
(52)

E ′
12 = 1

2
(I − σz) sin2 δ

2
E ′

22 = 1
2
(I − σz) cos2 δ

2
. (53)

These effects are all fractions of a path projection.

We now give the marginal input POVM associated with the detectors D1, D2,

F ′
1 = E ′

11 + E ′
12 = 1

2
(I + cos δ σz), (54)

F ′
2 = E ′

22 + E ′
21 = 1

2
(I − cos δ σz). (55)

This POVM represents a path observable smeared by cos δ. The unsharpness
inherent in the detector marginal is reflected in the non-zero probability of the
marker indicating path 1 but detector D2 firing even if the input state is a path
eigenstate |1〉. Here we see the effect of the perfect path-marking interaction:
irrespective of the phase parameter value, the Mach-Zehnder interferometer
does not detect any interference effects. When δ = 0, the POVM {F ′

1, F
′
2}

becomes a sharp path observable and when the interferometer is set to observe
interference, δ = π

2
, this POVM is reduced to being trivial, F ′

1 = 1
2
I = F ′

2,
giving no path nor interference information. This is in line with the prediction
of SEW: path marking results in the interference pattern being washed out.
After the path marking interaction, all the detectors are able to “see” is a
“shadow” of the path information provided by the path marker: indeed, the
marginal POVM measured by the path marker is given by the effects

G′
1 = E ′

11 + E ′
21 = 1

2
(I + σz), (56)

G′
2 = E ′

22 + E ′
12 = 1

2
(I − σz). (57)

These represent a sharp path observable irrespective of the value of δ.

It is possible to define a third ‘marginal’,
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H ′
1 = E ′

11 + E ′
22 = cos2 δ

2
I, (58)

H ′
2 = E ′

12 + E ′
21 = sin2 δ

2
I, (59)

which in the present experiment also turns out to be trivial.

4.6 Quantum erasure

In the previous experiment, each path was correlated with one of two orthog-
onal marker states. We can now consider a new set of pointer states, which
are superpositions of the two orthogonal path-marker states,

|q1〉 = 1√
2
(|p1〉 + eiγ|p2〉), |q2〉 = 1√

2
(|p1〉 − eiγ|p2〉) . (60)

Observing these symmetric states involves outputs for which both |p1〉 and
|p2〉 are equally likely, so no information about the path is recorded.

The final state (39) in terms of the new pointer states is

Ψδ,γ
f = 1

2
√

2

[(

−α(1 + eiδ) + ie−iγβ(1 − eiδ)
)

|1〉
+
(

−iα(1 − eiδ) − e−iγβ(1 + eiδ)
)

|2〉
]

⊗ |q1〉
+ 1

2
√

2

[(

−α(1 + eiδ) − ie−iγβ(1 − eiδ)
)

|1〉 (61)

+
(

−iα(1 − eiδ) + e−iγβ(1 + eiδ)
)

|2〉
]

⊗ |q2〉.

As before we can find the four joint probabilities for the marker and detector
outputs, defined as the expectations of the projections M ′′

kℓ = |k〉〈k|⊗ |qℓ〉〈qℓ|,
k, ℓ = 1, 2.

The associated input POVM E ′′ is determined via the relation

〈Ψδ,γ
f |M ′′

kℓ|Ψδ,γ
f 〉 = 〈ψi|E ′′

kℓ|ψi〉. (62)

We obtain:

E ′′
11 = 1

4
(I − sin δ cos γ σx − sin δ sin γ σy + cos δ σz) = 1

4
(I − n′′ · σ) , (63)

E ′′
21 = 1

4
(I + sin δ cos γ σx + sin δ sin γ σy − cos δ σz) = 1

4
(I + n′′ · σ) , (64)

E ′′
12 = 1

4
(I + sin δ cos γ σx + sin δ sin γ σy + cos δ σz) = 1

4
(I + m′′ · σ) , (65)

E ′′
22 = 1

4
(I − sin δ cos γ σx − sin δ sin γ σy − cos δ σz) = 1

4
(I − m′′ · σ) . (66)
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Here we have introduced the unit vectors

n′′ = (sin δ cos γ, sin δ sin γ,− cos δ), m′′ = (sin δ cos γ, sin δ sin γ, cos δ).(67)

The marginal POVM associated with the detector outputs is obtained by
summing over both probe outputs:

F ′′
1 = E ′′

11 + E ′′
12 = 1

2
(I + cos δ σz), F

′′
2 = E ′′

21 + E ′′
22 = 1

2
(I − cos δ σz).(68)

This is a smeared path observable. The marginal POVM associated with the
probe outputs is obtained by summing over both detection outputs:

G′′
1 = E ′′

11 + E ′′
21 = 1

2
I, G′′

2 = E ′′
12 + E ′′

22 = 1
2
I. (69)

This is a trivial observable, it provides no information about the input state
ψi.

The fact that the detector POVM is a smeared path observable and the probe
POVM is trivial can be understood as follows. The entanglement between
probe and photon is devised to establish a strict correlation between the path
states |1〉, |2〉 and the pointer states |p1〉, |p2〉, for any photon input state ψi.
This correlation information is not accessible by measuring a probe observable
with the eigenstates |q1〉, |q2〉 because these are equal weight superpositions
of the path marker states. Further, the reduced state of the photon after the
coupling has been established is a mixture of the path states, so that any
phase relation between these states has been erased. Accordingly, the detec-
tor outputs cannot detect any interference indicative of coherence between
the path input states, and the only information left about the input is path
information.

A third ‘marginal’ input POVM is defined as follows:

H ′′
1 = E ′′

11 + E ′′
22 = 1

2
(I − sin δ(cos γ σx − sin γ σy))

H ′′
2 = E ′′

12 + E ′′
21 = 1

2
(I + sin δ(cos γσx + sin γ σy)) . (70)

This is a smeared interference observable, the unsharpness being determined
by the term sin δ and the direction of the associated Poincaré sphere vec-
tor being given by ±(cos γ, sin γ, 0). By varying γ from 0 to 2π, all possible
interference observables can be realized. The erasure scheme presented here
constitutes a joint unsharp measurement of path and interference observables
as represented by the marginal POVMs {F ′′

1 , F
′′
2 } and {H ′′

1 , H
′′
2}.
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We also see that for δ = −π/2, all four effects Ekℓ are fractions of spectral
projections of a sharp interference observable; the marginal {H ′′

1 , H
′′
2} becomes

a sharp interference observable and the marginal {F ′′
1 , F

′′
2 } becomes a trivial

observable. Here we have recovered the observation of SEW, that the detector
statistics conditional on the probe output readings display perfect interference
with perfect visibility. In fact, we have found somewhat more: independently
of the photon input state, the conditional probabilities for detections at D1,
D2 given a probe recording of |q1〉 (say) are

prob(D1|q1) =
〈ψi|E ′′

11ψi〉
〈ψi|G′′

1ψi〉
= 〈ψi|12(I + cos γ σx + sin γ σy)ψi〉, (71)

prob(D2|q1) =
〈ψi|E ′′

21ψi〉
〈ψi|G′′

1ψi〉
= 〈ψi|12(I − cos γ σx − sin γ σy)ψi〉. (72)

For γ = 0 and the input state ψi = 1√
2
(|1〉+|2〉), this gives prob(D1|q1) = 1 and

prob(D2|q1) = 0. This corresponds to the case of perfect interference fringes.
Similarly, for the detector probabilities conditional on |q2〉 and the above input
eigenstate of σx, we obtain probabilities 0 and 1 for D1 and D2, respectively,
which are characteristic of interference antifringes.

This situation is a consequence of the fact that for the above input and δ =
−π/2, γ = 0, the state Ψe and also the total output state Ψ

−π/2
f is an EPR

state, analogous to the state described in the SEW erasure setup of subsection
4.1:

Ψ
−π/2
f = −(1−i)√

2

[

1√
2
(|1〉 − |2〉) ⊗ |p1〉 + 1√

2
(|1〉 + |2〉) ⊗ |p2〉

]

= −(1−i)√
2

1√
2
[|1〉 ⊗ |q1〉 + |2〉 ⊗ |q2〉] . (73)

4.7 Quantitative erasure

The two possible experimental options discussed in the preceding subsections,
of path marking and erasure are mutually exclusive in that they require set-
tings and operations that cannot be performed at the same time: for path
determination, the probe eigenstates |p1〉, |p2〉 must be read out, while for the
recovery of interference it is necessary to record the detector outputs condi-
tional on the probe output states |q1〉, |q2〉. Erasure was achieved by choosing
δ = π

2
, which led to the POVM {E ′′

kℓ} being constituted of (fractions of) spec-
tral projections of an interference observable. Accordingly, the only non-trivial
marginal is the sharp interference observable {H ′′

1 , H
′′
2}.

If, however, the interferometric parameter δ is varied between 0 and π
2
, then

the POVM {E ′′
kℓ} is a joint observable for an unsharp path and an unsharp
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interference observable. In this case the experiment provides simultaneous
information about these noncommuting quantities. In the limit of δ = 0,
the interference marginal {H ′′

1 , H
′′
2} becomes trivial and the path marginal

{F ′′
1 , F

′′
2 } becomes sharp.

The possibility of obtaining some joint information about both observables,
path and interference, can also be achieved by modifying the path marking
coupling in such a way that the correlation between the paths and the probe
indicator observable is not perfect. This has been described as quantitative

erasure (e.g., [42]). We show here that quantitative erasure is again an instance
of a joint unsharp measurement.

We take the path-marking interaction to be of the same form as before,
Eq. (39), but now we specify the marker states |p1〉, |p2〉 to be nonorthogo-
nal. Their associated Poincaré sphere vectors will be chosen to be tilted by an
angle θ away from the ±z axis towards the positive x axis. As pointer states
we choose |q1〉, |q2〉 equal to the up and down eigenstates of σz. Thus we define

|p1〉 = cos θ
2
|q1〉 + sin θ

2
|q2〉, |p2〉 = sin θ

2
|q1〉 + cos θ

2
|q2〉. (74)

The final state after the path-marking interaction is

Ψδ,θ
f =

[(

−α
2

cos θ
2
(1 + eiδ) + iβ

2
sin θ

2
(1 − eiδ)

)

|1〉
+
(

−iα
2

cos θ
2
(1 − eiδ) − β

2
sin θ

2
(1 + eiδ)

)

|2〉
]

⊗ |q1〉
+
[(

−α
2

sin θ
2
(1 + eiδ) + iβ

2
cos θ

2
(1 − eiδ)

)

|1〉 (75)

+
(

−iα
2

sin θ
2
(1 − eiδ) − β

2
cos θ

2
(1 + eiδ)

)

|2〉
]

⊗ |q2〉.

Now we determine the input effects E ′′′
kℓ associated with the output projections

M ′′′
kℓ = |k〉〈k| ⊗ |qℓ〉〈qℓ| via 〈Ψδ,θ

f |M ′′′
kℓ|Ψδ,θ

f 〉 = 〈ψi|E ′′′
kℓ|ψi〉,

E ′′′
11 = 1

4
[I(1 + cos θ cos δ) − sin δ sin θ σx + (cos δ + cos θ)σz]

= 1
4
[I(1 + cos θ cos δ) + m′′′ · σ]

E ′′′
21 = 1

4
[I(1 − cos θ cos δ) + sin δ sin θ σx − (cos δ − cos θ)σz]

= 1
4
[I(1 − cos θ cos δ) − n′′′ · σ] (76)

E ′′′
12 = 1

4
[I(1 − cos θ cos δ) − sin δ sin θ σx + (cos δ − cos θ)σz]

= 1
4
[I(− cos θ cos δ) + n′′′ · σ]

E ′′′
22 = 1

4
[I(1 + cos θ cos δ) + sin δ sin θ σx − (cos δ + cos θ)σz]

= 1
4
[I(1 + cos θ cos δ) − m′′′ · σ],

where
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m′′′ = (− sin δ sin θ, 0, (cos δ + cos θ)),

n′′′ = (− sin δ sin θ, 0, (cos δ − cos θ)). (77)

The three marginal POVMs are determined as before:

F ′′′
1 =E ′′′

11 + E ′′′
12 = 1

2
(I − sin δ sin θ σx + cos δ σz)

F ′′′
2 =E ′′′

22 + E ′′′
21 = 1

2
(I + sin δ sin θ σx − cos δ σz)

G′′′
1 =E ′′′

11 + E ′′′
21 = 1

2
(I + cos θ σz)

G′′′
2 =E ′′′

22 + E ′′′
12 = 1

2
(I − cos θ σz) (78)

H ′′′
1 =E ′′′

11 + E ′′′
22 = 1

2
I(1 + cos θ cos δ)

H ′′′
2 =E ′′′

12 + E ′′′
21 = 1

2
I(1 − cos θ cos δ).

For δ = −π/2, the first marginal POVM (corresponding to the detector statis-
tics) becomes an unsharp interference observable, while the second marginal
POVM (corresponding to the probe output statistics) is an unsharp path ob-
servable. In both cases the unsharpness is determined by the parameter θ.

We note for later reference that instead of the choice of pointer states |q1〉, |q2〉,
one could have measured any pair of orthogonal probe states |r1〉, |r2〉. It is
straightforward to show that the marker marginal is always an unsharp path
observable.

5 Complementarity and uncertainty in Mach-Zehnder interferom-

etry

5.1 Manifestations of complementarity in Mach-Zehnder interferometry

The sequence of experiments in section 4 is a demonstration of complemen-
tarity in different guises. In the first two experiments path detection (4.3)
and interference detection (4.4) are mutually exclusive because this requires
settings of the parameter δ which cannot be realized in the same experiment,
namely, δ = 0 for path (σz) measurement and δ = −π/2 for interference (σx)
measurement, respectively. Here we have an instance of the complementarity
of measurement setups or measurement complementarity: these two noncom-
muting sharp observables do not admit any joint measurement.

These experiments can also be used to confirm preparation complementarity.
We recall that sending a path eigenstate |1〉 or |2〉 into the Mach-Zehnder inter-

ferometric setup to observe interference leads to the probability 〈1|E−π/2
1 |1〉 =

〈1|E−π/2
2 |1〉 = 1/2, interference is completely uncertain. And, if we feed an in-
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terference eigenstate, | ± x〉, into the interferometer to measure path (δ = 0),
the path observable is uncertain 〈±x|E0

1 | ± x〉 = 〈±x|E0
2 | ± x〉 = 1/2.

Value complementarity can indeed be used to explain the disappearance of
interference fringes resulting from path marking. Once perfect correlation be-
tween the path states and the marker states is established in the entangled
state (39), the reduced state of the photon is a mixture of the path eigenstates
|1〉 and |2〉. In each of these, the path is definite, and therefore, in accordance
with value complementarity, the outcomes of a subsequent interference mea-
surement are equally probable. No interference fringes show up. Indeed this
remains true for any mixture of path eigenstates.

This account in terms of preparation complementarity views the path marking
interaction as part of a preparation process. An alternative explanation is
possible in terms of measurement complementarity as follows.

In the experiment of section 4.5, where sharp path marking is followed by the
interference setup with δ = −π/2, it was found that the path measurement
interaction leads to a complete loss of interference information detectable in
D1, D2. All that the detectors can “see” is path information, irrespective of
the value of δ (Eq. (54)).

If the sharp path marking is relaxed into unsharp path marking, section 4.7,
setting the interferometer with δ = −π/2 defines an unsharp interference
observable, which is jointly measured with the path that can be recorded at
the path marker.

It is found that the less accurate the path marking is set by making cos θ in
G′′′

1,2 = 1
2
(I±cos θ σz) smaller, the sharper will be the interference measurement

as sin θ in F ′′′
1,2 = 1

2
(I ∓ sin θ σx) becomes larger.

We see here that measurement complementarity follows in the limits of making
the path marginal or the interference marginal perfectly sharp, rendering the
other trivial.

A similar analysis applies to the erasure setup (Sec. 4.6): if 0 < δ < π/2, this
setup realizes a joint measurement of the POVMs {F ′′

1,, F
′′
2 } and {H ′′

1,, H
′′
2}

which are unsharp path and interference observables.

Consider the case of δ = π/2, where F ′′
1,2 = 1

2
I and H ′′

1,2 = 1
2
(I ∓ cos γσx ∓

sin γσy). Here we have a sharp interference measurement and no path mea-
surement. With δ = 0, F ′′

1,2 = 1
2
(I ± σz) and H ′′

1 = 1
2
I, so that we have a

sharp path measurement and no interference. These two limit cases of a joint
measurement scheme illustrate once more measurement complementarity.
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5.2 Value complementarity from preparation uncertainty relations

We recall that a pair of value complementary observables A,B is character-
ized by the condition that in each of the eigenstates of A, all eigenvalues
of B are equally likely to occur as outcomes of a B measurement; and vice
versa. We now show that for qubit observables such as those occurring in the
Mach-Zehnder interferometry measurements discussed here, the value comple-
mentarity property can always be obtained as a consequence of some suitable
uncertainty relation for the observables in question.

In what follows we allow general states represented as density operators ρ =
1
2
(I + r ·σ), |r| ≤ 1. For the observables represented by σx, σy and σz, we then

have

〈σk〉 = r2
k, k = 1, 2, 3, (79)

and the variances, defined as Var(A) ≡ Var(A, ρ) = 〈A2〉− 〈A〉2 (where 〈A〉 =
tr[Aρ], etc., tr[·] denoting the trace operation), are

Var(σk) = 1 − 〈σk〉2 = 1 − r2
k, k = 1, 2, 3. (80)

With these expressions it is straightforward to confirm the general uncertainty
relation for variances, with the commutator and covariance terms contributing
the the lower bound:

Var(σx)Var(σz) ≥ 1
4
|〈[σx, σz]〉|2 + 1

4
[〈σxσz + σzσx〉 − 2〈σx〉〈σz〉]2. (81)

It is easy to verify that the pair σx, σz is value complementary: in an eigenstate
of σz, we have r2

1 = 1 and so r2 = 0. So, probability 1 for a value of σz goes
along with probability 1/2 for the values of σx; and vice versa.

However, when it comes to deciding whether the statement of value comple-
mentarity can be inferred from the uncertainty principle, one should look at
the uncertainty relation (81) alone, rather than using the explicit values of
its terms. But using solely the above variance inequality one cannot recover
value complementarity without further information on the terms of the left
hand side. Still it suffices to use the algebraic and spectral properties of the
Pauli operators (we imagine that we are given only this information but not
the explicit expression of the probabilities or expectations): then one finds the
right hand side of Eq. (81) to be equal to 〈σy〉2+〈σx〉2〈σz〉2, and one can argue
as follows: if the path is definite, that is, if ρ = |ψ〉〈ψ| with ψ an eigenstate
of σz, the left hand side of the uncertainty relation (81) is zero, and therefore
the terms on the right hand side must vanish, too. Thus as 〈σz〉 = 1, then
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〈σx〉 = 〈σy〉 = 0. Since the eigenvalues of these quantities are ±1, it follows
that these observables are uniformly distributed in ψ. By symmetry, σz is uni-
formly distributed if σx has a definite value. (Note that we did not have to use
the full explicit expressions for the expectation values, which would of course
make this consideration entirely trivial.)

There are other forms of uncertainty relations which yield the statement of
value complementarity without recourse to specific properties of the Pauli
operators. Here we only mention the entropic uncertainty for two observables
A,B with spectral representations A =

∑2
i=1 aiPi, B =

∑2
k=1 bkQk. The (Shan-

non) entropy of A in a state ψ is defined as

H(A,ψ) = −
2
∑

i=1

〈ψ|Pi|ψ〉 log2〈ψ|Pi|ψ〉. (82)

This quantity is a measure of uncertainty concerning the value of A as encoded
in the probability distribution of A in the given state: note that 0 ≤ H(A,ψ) ≤
log2 2 = 1, where the lower bound is assumed for any eigenstate of A and the
upper bound arises for any state which assigns equal probability 1/2 to all
eigenvalues. The following additive trade-off relation then holds [43]:

H(A,ψ) +H(B,ψ) ≥ −2 log2

(

max
i,k

|〈ψ|PiQk|ψ〉|
‖Piψ‖ ‖Qkψ‖

)

. (83)

If A,B are a pair of value complementary observables, so that any pair of
eigenstates ψi of A and φk of B have overlap given by |〈ψi|φk〉| = 1/

√
2, it

follows that the lower bound on the right hand side is log2 2. Thus, for A = σz,
B = σx, one obtains [44]:

H(σz, ψ) +H(σx, ψ) ≥ 1. (84)

The combined lack of information about σz and σx is never less than one bit.
Now, it is easily seen from this inequality alone that if one observable has a
definite value, e.g., H(σz, ψ) = 1 (which happens in the eigenstates of σz),
then the other observable is maximally uncertain, it is uniformly distributed
since H(σx, ψ) = 1.

We note that the explicit expressions for the probabilities have gone into the
derivation of this entropic inequality. But all that is needed to recover the
property of value complementarity is contained in this inequality.

The inequality (84) is indeed easily verified by using the expressions 1
2
(1±rz),

1
2
(1± rx) for the probabilities and applying calculus to determine the minima.
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It is similarly straightforward to verify the following triple uncertainty relation:

H(σx, ψ) +H(σy, ψ) +H(σz, ψ) ≥ 2. (85)

5.3 Quantitative duality relations are uncertainty relations

In the debates of the 1990s over complementarity in the context of interfer-
ometry and which-path experiments, the meaning of the term wave parti-
cle duality has gradually shifted away from a relation of strict exclusion of
path determination and interference observation (in the same setup) to the
broader idea of a continuous trade-off between approximate path determi-
nation and approximate interference determination. These discussions were
eventually linked with earlier theoretical and experimental work of the 1980s
on simultaneous but imperfect path determination and interference observa-
tion (e.g., [45,46,40,47]), as reviewed in [11]. The original intuitive ideas of the
pioneers on an approximate reconciliation of complementary operational op-
tions (cf. Sec. 2) have thus been turned into precise trade-off relations which
are being tested experimentally.

Trade-off relations of the form P 2+V 2 ≤ 1 were derived as characterizations of
the duality between path predictability and interference visibility [48–50]. (In
[50], a stronger result, P 2+V 2 = 1, was shown to hold for certain experimental
situation.) Soon afterwards, similar relations were formulated for quantum
erasure (for a lucid and comprehensive review, see [42]). Vivid debates took
place over the question whether the associated quantities are connected with
uncertainties, and it has been shown that the respective trade-off relations are
related in various ways to some forms of uncertainty relations. In the context
of the Mach-Zehnder interferometer, we refer, in particular, to the work of
Björk et al. [9], Dürr and Rempe [11], and Luis [12].

Using familiar measures of uncertainty, we give a simple demonstration that in
the context of Mach-Zehnder interferometry experiments, quantitative duality
relations are indeed equivalent to the uncertainty relation for an appropriate
pair of associated observables.

Any state ρ can be represented by a matrix of the following form in the basis
of eigenvectors of σz:

ρ =







w+ re−iθ

reiθ w−





 , where

{

w± ≥ 0, w+ + w− = 1,

0 ≤ r ≤ √
w+w−, 0 ≤ θ < 2π.

(86)
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We define the path contrast of ρ as

CP = CP (ρ) := |prob(σz = +1, ρ) − prob(σz = −1, ρ)| = |w+ − w−|. (87)

This is identical to the predictability P entering the duality relation P 2+V 2 ≤
1. Similarly we define the interference contrast of ρ as

CI = CI(ρ) = |prob(σx = +1, ρ) − prob(σx = −1, ρ)| = 2r cos θ. (88)

With the specification θ = 0, or with an alternative choice of interference
observable, this reduces to the visibility V := (Imax−Imin)/(Imax+Imin) = 2r
(where Imax, Imin denote the maximal and minimal intensities of the measured
interference pattern, obtained by variation of the interference observables).
Using r2 ≤ w+w−, the following duality relation is easily verified:

C2
P + C2

I = w2
+ + w2

− − 2w+w− + 4r2 cos2 θ ≤ 1. (89)

Now we observe that

C2
P = 〈σz〉2 = 1 − Var(σz), C2

I = 〈σx〉2 = 1 − Var(σx). (90)

Therefore, the above duality inequality can be equivalently expressed as

Var(σz) + Var(σx) = 2 − (C2
P + C2

I ) ≥ 1. (91)

Thus, our duality relation is equivalent to a form of uncertainty trade-off
relation. As before, value complementarity is again entailed as a limit case.

We now show that this last inequality is actually a direct consequence of the
uncertainty relation (81). Using Eq. (79), that relation is readily found to be
equivalent to

〈σx〉2 + 〈σy〉2 + 〈σz〉2 ≤ 1, (92)

which expresses the positivity of the state ρ. Using Eq. (80), we thus see that
the uncertainty relation (81) is indeed equivalent to the following inequality:

Var(σx) + Var(σy) + Var(σz) ≥ 2. (93)

We note that besides σx, the operator σy also constitutes an interference ob-
servable with respect to the path σz. Thus, substituting Var(σz) = 1 − C2

P ,
Var(σx) = 1−C2

I ≡ 1−C2
I,x, and a similar termVar(σy) = 1−C2

I,y, we obtain
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a generalized and sharpened duality relation which involves one path and two
complementary interference observables:

C2
P + C2

I,x + C2
I,y ≤ 1. (94)

Thus the full uncertainty relation for σx, σz, including the commutator and
covariance terms, is equivalent to the additive triple trade-off relation for the
variances of σx, σy, σz as well as this new trade-off relation for three mutually
complementary observables.

5.4 Measurement complementarity from measurement inaccuracy relations

The measurement schemes of subsections 4.6 and 4.7 were found to constitute
joint measurements of unsharp path and interference observables of the form
F = {F1,2 = 1

2
(I ± fσx} and G = {G1,2 = 1

2
(I ± gσz). For instance, in

equation (78), setting δ = −π/2, we have f = sin θ and g = cos θ, so that we
have f 2 + g2 = 1. This is an instance of the criterion (16) which ensures the
joint measurability of the POVMs F,G.

For a general state ρ = 1
2
(I + r · σ), |r| ≤ 1, we define the contrasts of the

distributions of F and G,

CF (ρ) = |tr[ρF1] − tr[ρF2])| = |fr1|,
CG(ρ) = |tr[ρG1] − tr[ρG2]| = |gr3|. (95)

The contrasts of the POVMs F,G are the respective maximal contrasts over
all states ρ:

CF = |f |, CG = |g|. (96)

These quantities measure the degrees of unsharpness,

UF := 1 − C2
F = 1 − f 2, UG := 1 − C2

G = 1 − g2, (97)

in the POVMs F,G. The unsharpness of F can also be defined as the minimum
variance of the distribution of F for all states ρ. Indeed, it is not hard to verify
that

Varρ(F ) = 1 − f 2r2
1 = 1 − f 2 + f 2(1 − r2

1)

=UF + (1 − UF )Varρ(σx) ≥ UF . (98)
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Taking the minimum over all ρ gives

Varmin(F ) = UF . (99)

The above joint measurability criterion can be written in terms of the degrees
of unsharpness:

UF + UG ≥ 1. (100)

This inequality is an uncertainty trade-off relation which must be satisfied if
the two noncommuting unsharp path and interference observables F and G
are to be jointly measurable. We have here an instance of Heisenberg’s un-
certainty principle for the inaccuracies which are necessarily present in joint
measurements. As far as we are aware, this is one [38] of two cases in which an
inaccuracy relation has been proven as a necessary condition for joint measur-
ability. The other example is the case of position and momentum [51,33], and
the corresponding uncertainty relation for joint measurements is reviewed in
[34].

Finally we note that the variances of the marginals F,G in a joint measurement
satisfy the uncertainty relation

Varρ(F ) + Varρ(G) ≥ UF + UG ≥ 1. (101)

Measurement complementarity is obtained as a limiting case for a pair F,G
which are jointly measurable: if it is stipulated that one marginal, say F ,
becomes sharp, UF = 0, or |f | = 1, then the other marginal, G, becomes a
trivial POVM, g = 0, G1,2 = 1

2
I. Thus, if the path F is measured sharply, any

attempt at obtaining information on interference will fail as the only unsharp
interference observable G that can be measured jointly with F is trivial.

5.5 Disturbance versus accuracy

The setup discussed in Subsection 4.7 corresponds to a sequence of measure-
ments where first path marking and registration can be achieved and then an
interferometric measurement is carried out. As was observed in Subsection 5.1,
if the path marking correlation is perfect, all the interferometric detectors can
“see” is unsharp path information. If the setting is δ = π/2, then the input
observable indicated by the detectors is trivial: no interference information
whatsoever about the input state is observed. If the path marking is unsharp,
due to imperfect correlations or nonorthogonal path marker states |p1〉, |p2〉,
then some interference information about the input state can pass through the
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path marking interaction. Here we will give a quantitative expression of this
trade-off between the “disturbance” of the interference information through
(imperfect) path marking and the accuracy of this path-marking process.

The path-marking interaction transforms the initial state (α|1〉+β|2〉)|p0〉 into

Ψe := α|1〉|p1〉 + β|2〉|p2〉. (102)

This state has reduced photon-state operator

ρe = |α|2|1〉〈1| + |β|2|2〉〈2| + αβ∗〈p2|p1〉|1〉〈2| + α∗β〈p1|p2〉|2〉〈1|. (103)

In what follows we want to express the necessary “disturbance” of the in-
terference detection due to the path-marking entanglement. We start with a
situation where |p1〉, |p2〉 are not necessarily orthogonal, but arranged as de-
scribed in subsection 4.7. We also allow a general set of orthogonal pointer
states |r1〉, |r2〉.

The quality of the path marking can be determined by following the entangling
interaction with a path detection at D1, D2, where δ = 0. If a reading r1 (r2)
is taken to infer the path to be path 1 (path 2), then the subsequent path
detection in the interferometer can be used to verify this inference. Thus, a
joint measurement is made of the PVM with projections Mkℓ = |k〉〈k|⊗ |ℓ〉〈ℓ|,
with probabilities

pkℓ = 〈Ψ0
f |Mkℓ|Ψ0

f〉 = |〈k|〈ℓ|Ψe〉|2. (104)

The probability prob(corr) of a correct inference is given as the sum of the
probabilities of the corresponding coincident outputs:

prob(corr) = p11 + p22 = 〈ψi|H0
1 |ψi〉 = |α|2|〈r1|p1〉|2 + |β|2|〈r2|p2〉|2.(105)

Similarly, the probability prob(err) of error is given by the non-coincident
combinations:

prob(err) = p12 + p21 = 〈ψi|H0
2 |ψi〉 = |α|2|〈r2|p1〉|2 + |β|2|〈r1|p2〉|2. (106)

Here we have introduced the input marginal H0 = {H0
1 , H

0
2} which represents

the coincidence events in this joint measurement:

H0
1 = |1〉〈1||〈r1|p1〉|2 + |2〉〈2||〈r2|p2〉|2,

H0
2 = |1〉〈1||〈r2|p1〉|2 + |2〉〈2||〈r1|p2〉|2. (107)
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On writing |rm〉〈rm| = 1
2
(I+rm ·σ), r1 = r, r2 = −r, and |pℓ〉〈pℓ| = 1

2
(I+pℓ ·σ),

we obtain the following forms for H0
1 , H

0
2 :

H0
1 = 1

2

(

I(1 + 1
2
r · (p1 − p2)) + 1

2
r · (p1 + p2)σz

)

, (108)

H0
2 = 1

2

(

I(1 − 1
2
r · (p1 − p2)) − 1

2
r · (p1 + p2)σz

)

. (109)

in this notation the probability prob(corr) becomes

prob(corr) = 1
2
(1 + r · (|α|2p1 − |β|2p2)) . (110)

In order to determine the maximum quality path determination available
by a suitable choice of the path marker output observable (with eigenstates
|r1〉, |r2〉), we maximize the probability prob(corr) of correct inferences on the
path from the registrations of r1, r2. The maximum probmax(corr) is obained
at

r = r0 =
|α|2p1 − |β|2p2

||α|2p1 − |β|2p2|
, (111)

and its value is

probmax(corr) = 1
2
(1 + ||α|2p1 − |β|2p2|) =: L. (112)

The (path) distinguishability is defined as D = 2L− 1 [49]. We obtain:

D =
∣

∣

∣|α|2p1 − |β|2p2

∣

∣

∣ =
√

1 − 4|α|2|β|2|〈p1|p2〉|2. (113)

We note that the probabilities for correct and wrong inferences can be ex-
pressed in terms of the coincidence POVM H0 = {H0

1 , H
0
2}: noting that

Probmin(err) = 1 − probmax(corr) = 1 − L, we have

D =
[

〈ψi|H0
1 |ψi〉 − 〈ψi|H0

2 |ψi〉
]

r=r
0
. (114)

We calculate the variance of the distribution of H0 in the state ψi, using

t̄ =
∫

t d〈ψi|H0
t |ψi〉 = 〈ψi|H0

1 |ψi〉 − 〈ψi|H0
2 |ψi〉, (115)

we obtain

Var(H,ψi) =
∫

(t− t̄)2 d〈ψi|H0
t |ψi〉 = 1 −

[

〈ψi|H0
1 |ψi〉 − 〈ψi|H0

2 |ψi〉
]2
.(116)
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Thus we obtain that

D2 = 1 − Var(H0, ψi)|r=r0
. (117)

The distinguishability is thus found to be directly related to the uncertainty
of the coincidence observable. It gives a measure of the accuracy of the path
determination, and it is dependent on the degree of entanglement between
the photon and the marker system, which may be quantified by the overlap
quantity |〈p1|p2〉|.

We now determine the visibility Ve of an interference observation available in
the reduced photon state ρe after the entangling interaction. Thus we consider
a joint measurement of the kind studied in subsection 4.7. The usual definition
of visibility in terms of the difference between maximal and minimal proba-
bility of an outcome at D1 (or D2) reduces to

Ve = V (ρe) = |tr(ρe|+,n〉〈+,n|) − tr(ρe|−,n〉〈−,n|)| , (118)

where the interference observable

σn = |+,n〉〈+,n| − |−,n〉〈−,n| = n · σ =







0 e−iδ

eiδ 0





 , (119)

(with n = (cos δ, sin δ, 0)) is chosen such that the above difference becomes
maximal:

Ve = 2|Re(αβ∗〈p2|p1〉 eiδ)|max = 2|α||β||〈p2|p1〉|. (120)

Since Ve = |〈σn〉|, we have

V 2
e = V (ρe) = 1 − Var(σn, ρe), (121)

and finally [50]

V 2
e +D2 = 1. (122)

This is a limiting case of a general inequality V 2
e +D2 ≤ 1, reviewed in [42],

where it is shown that equality arises whenever the total system of photon
plus marker is in a pure state as is the case in the present context.
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The above quantitative erasure duality relation can be written in terms of the
associated uncertainties:

Var(H0, ψi) + Var(σn, ρe) = 1. (123)

This relation shows the trade-off that happens as a result of the path-marking
interaction: the better the path marking is set, the more the interference term
becomes attenuated. This is to be understood as a relation between the accu-
racy of path determination and the “disturbance” of the interference capability
of the quantum state that passes through the path marking interaction. This
can be seen particularly clearly if the input state ψi is chosen to be an interfer-
ence eigenstate, |α| = |β| = 1/

√
2. In this case the distinguishability becomes

minimal among all input states, and the visibility becomes maximal, and both
quantities depend solely on the overlap between the marker states and hence
the degree of entanglement between photon and marker:

D = |p1 − p2| =
√

1 − |〈p1|p2〉|2, Ve = |〈p1|p2〉|. (124)

The deviation of Ve from 1, its original value for the input interference eigen-
state, represents the minimal degradation of the interference capability re-
quired by the gain in path distinguishability. If the path marking is made
perfect, by requiring 〈p1|p2〉 = 0, then D = 1 and Ve = 0, that is, the distur-
bance of the interference observation becomes maximal, no interference can
be detected.

5.6 Uncertainty, disturbance, or entanglement?

We finally turn to the question of whether entanglement provides a more
fundamental or more general explanation of the loss of interference in path-
marking experiments than uncertainty. We think that this question arose from
the erroneous conflation of the uncertainty principle with the idea of classical
random disturbance. The discussion of that conflation has led to some very in-
teresting clarifications and distinctions between classical, random momentum
transfers (or phase kicks) and quantum-mechanical momentum transfers (or
phase shifts) [6,8], with the conclusion that often, if not always, one and the
same experiment may admit explanations of the loss of interference both in
terms of classical random disturbances and in terms of quantum disturbances.

It seems to be a desire for causal explanation that induced the search for
mechanical causes (classical or quantum) enforcing the uncertainty principle.
In the preceding subsection we have seen that the reverse perspective leads to
a satisfactory account of the disturbance of interference through path marking:
this disturbance is expressed by means of an uncertainty relation.
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We have used the term “disturbance” in the operational sense of a change
in the distribution of the values of the interference observable. There was no
question of a (random) mechanical kick. Quite the contrary, the coupling for
the path marking process was arranged so as to constitute a non-demolition

measurement: if the input is a path eigenstate, say |1〉, the total state after
path marking is |1〉|p1〉; that is, the system has remained undisturbed, it is
still in the original path eigenstate.

The magnitude of the loss of interference capability or coherence that arises in
the transition from an interference eigenstate as input to the reduced photon
state ρe after the path marking interaction is determined solely by the overlap
c := |〈p1|p2〉|, Eq. (124). The quantity c describes the degree of correlation
between the path eigenstates and the marker states, as well as the degree of
entanglement in the total state Ψe.

It is evident that in the present quantitative erasure experiment, the explana-
tions of the degradation of coherence either in terms of uncertainties for the
photon system alone (Eq. (123)) or in terms of entanglement draw on the same
crucial entity — the quantity c. The deeper reason for this may be seen in the
fact that entanglement can itself be explained as an instance of uncertainty.
This was made manifest in the papers of Kim and Mahler [10] and Björk et

al. [9], who used uncertainty relations for observables of the entangled object
and probe system to explain the loss of interference.

A pure state of a compound system is entangled if it cannot be represented
as a product state. Product states are also called separable. The (normalized)
state Ψe = α|1〉|p1〉 + β|2〉|p2〉 is entangled exactly when c = |〈p1|p2〉| < 1
and 0 < |α|, |β| < 1. As an entangled state, Ψe possesses a biorthogonal
decomposition Ψe =

√
wψ1⊗φ1+

√
1 − wψ2⊗φ2, where 〈ψ1|ψ2〉 = 0 = 〈φ1|φ2〉.

The only values of the (non-negative) parameter w for which Ψe is separable
are w = 1 or w = 0. Then the state Ψe is separable exactly when the adapted
observable S = |ψ1〉〈ψ1| ⊗ |φ1〉〈φ1| − |ψ2〉〈ψ2| ⊗ |φ2〉〈φ2| has a definite value.
Conversely, the state Ψe is entangled if and only if the outcomes of an S
measurement are uncertain. Seen in this way, entanglement is quite generally
an instance of uncertainty, and like uncertainty, it is rooted in the existence of
states which are superpositions of orthogonal families of states. It is therefore
to be expected that whenever there is an explanation for a loss of interference
due to entanglement, there is also an associated explanation in terms of an
uncertainty relation. Our consideration of the previous subsection shows that
such uncertainty relations can even be formulated without recourse to the
probe system.

It has been argued that in the case of the experiments of SEW and Dürr et al.,
the position-momentum uncertainty relation does not provide an explanation
of the loss of interference, and that no explanation based on another uncer-
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tainty relation has been found [11]. However, the loss of interference capability
in the SEW double-slit experiment, discussed in Section 4.1 above, is due to
the loss of coherence in the transition from ψ0 = 1√

2
[ψ1 +ψ2] to the associated

mixed state,

|ψ0〉〈ψ0| −→ 1
2
|ψ1〉〈ψ1| + 1

2
|ψ2〉〈ψ2|, (125)

which is completely analogous to the transition |ψi〉〈ψi| → ρe of the photon
state in the Mach-Zehnder context. All that matters for the explanation of
the loss of interference is the presence or absence of a definite phase relation
between the path states ψ1 and ψ2 (or |1〉, |2〉). This can be fully described by
analogs of Mach-Zehnder interferometric observables in the two dimensional
subspace spanned by the path states ψ1, ψ2. Thus if the path observable is
represented as

Σz := |ψ1〉〈ψ1| − |ψ2〉〈ψ2|, (126)

then the phase relation between the path states can be tested by a phase
sensitive observable such as

Σx := 1
2
|ψ1 + ψ2〉〈ψ1 + ψ2| − 1

2
|ψ1 − ψ2〉〈ψ1 − ψ2|. (127)

The explanations and formulations of loss of interference in terms of uncer-
tainty relations given in the context of Mach-Zehnder interferometry in the
present section can then be literally transferred to the case of double-slit in-
terference and path-marking experiments.

The same conclusion has been drawn by Luis [12] who based his argument on a
continuous phase POVM conjugate to the path observable (σz), instead of the
phase-sensitive interference observables used in the present paper. Similarly,
Björk et al. [9] and de Muynck and Hendrikx [52] have demonstrated that
analogous atom-interferometric experiments can be interpreted in terms of
joint unsharp measurements of path and interference observables, and that
complementarity emerges as a limiting case of an entropic uncertainty relation
for the accuracies of these joint measurements.

6 Conclusion

We have reviewed the evolution of the understanding and current formaliza-
tions of the concepts of complementarity and uncertainty. In particular, we
exhibited three distinct versions of complementarity and uncertainty relations,
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respectively, referring to the limitations and possibilities of preparing and mea-
suring simultaneously sharp or unsharp values, and to a necessary trade-off
between accuracy and state disturbance.

It was shown that that these formulations can be usefully applied in the con-
text of Mach-Zehnder interferometry, to explain the loss or degradation of
interference due to path marking. In particular, it was found that value com-
plementarity and measurement complementarity can be recovered from appro-
priate uncertainty relations for preparations, joint, and sequential measure-
ments, respectively. Furthermore, duality relations for the trade-off between
partial path determinations and reduced-visibility interference observations
were shown to be expressible as uncertainty relations.

Next, we have noted that entanglement is properly understood as an instance
of uncertainty in the context of the description of compound systems, rather
than a separate feature. It is therefore to be expected that whenever an expla-
nation of the loss of interference can be given in terms of entanglement, this
can be accompanied with an explanation in terms of a form of uncertainty
relation.

We have pointed out that “disturbance” in quantum measurements cannot be
reduced to the naive notion of classical (random) kicks; the generic concept
of disturbance concerns the necessary state change induced by measurements,
which inevitably goes along with the build-up of entanglement between object
system and probe. This applies, in particular, to the non-demolition measure-
ment couplings employed here for path marking, which are exactly of the same
kind as the coupling used in the SEW and Dürr et al. experiments. Such (ap-
proximately) repeatable measurements were also at the heart of Heisenberg’s
thought experiments illustrating the various types of uncertainty relations.
The necessary state change required for the extraction of path information
leads to a disturbance of the distribution of an associated interference observ-
able.

All these notions — uncertainty, complementarity, entanglement, and distur-
bance — are ultimately rooted in the linear structure of quantum mechanics,
with the concomitant noncommutativity of observables.

Taken all this together, it seems indeed moot to try and establish a hierarchy
of principles of uncertainty, complementarity, or entanglement within quan-
tum mechanics. As seen from within this theory, these features are linked
with each other but cannot be claimed to be reducible to one another. They
are not logically independent, nor simply consequences of each other. Such
logical relations can only be analyzed within a framework more general than
quantum mechanics, in which each principle can be introduced as a sepa-
rate postulate. In fact, it has been shown that there are theories in which
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there is an uncertainty principle without a complementarity principle (suit-
ably specified), and theories with complementarity but without a Heisenberg
uncertainty relation [53]. In quantum mechanics, uncertainty and complemen-
tarity are consequences of the formalism which are neither reducible to each
other nor entirely unrelated.

There is thus no need in quantum mechanics to speak of a complementarity
or uncertainty “principle”, unless one uses this term informally as a way of
highlighting these “principal” implications of the theory, fundamental for its
intuitive understanding. If, however, one sets out to use complementarity or
uncertainty as postulates, from which to deduce quantum mechanics in Hilbert
space starting from a more general framework, then it is indeed appropriate
to refer to them as principles. In this spirit, Bohr [15] and Pauli [19] have
referred to quantum mechanics as “the theory of complementarity”, and the
programme implied by this slogan has been carried out in quite different ways
by P. Lahti together with the late S. Bugajski [54] (who use the convexity,
or operational approach) and by J. Schwinger [20] (based on his idea of mea-
surement algebra). Similarly compelling derivations of quantum mechanics
from the uncertainty principle, as envisaged by Heisenberg [16], are still out-
standing. This task seems impossible as long as the uncertainty principle is
expressed only in terms of an inequality; however, if the uncertainty principle
is reinterpreted in the stronger formal sense of the canonical commutation
relations, which represent the characteristic shift covariance properties of lo-
calization observables, then a derivation of quantum mechanics from such an
enhanced postulate becomes possible starting, for example, within a quantum
logical framework [55].
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