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ABSTRACT 23 
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Partial EVPI calculations can quantify the value of learning about particular subsets of uncertain 

parameters in decision models.  Published case studies have used different computational approaches. 

This paper examines the computation of partial EVPI estimates via Monte-Carlo sampling algorithms. 

Our mathematical definition shows two nested expectations, which must be evaluated separately because 

of the need to compute a maximum between them. A generalised Monte-Carlo sampling algorithm uses 

nested simulation with an outer loop to sample parameters of interest and, conditional upon these, an 

inner loop to sample remaining uncertain parameters.  Alternative computation methods and ‘shortcut’ 

algorithms are discussed and mathematical conditions for their use are considered.  Maxima of Monte-

Carlo estimates of expectations are biased upwards, and we demonstrate that using small samples results 

in biased EVPI estimates.  Three case studies illustrate (i) the bias due to maximisation, and also the 

inaccuracy of shortcut algorithms (ii) when correlated variables are present and (iii) when there is non-

linearity in net-benefit functions.  If relatively small correlation or non-linearity is present, then the 

‘shortcut’ algorithm can be substantially inaccurate.  Empirical investigation of the numbers of Monte-

Carlo samples suggest that fewer samples on the outer level and more on the inner level could be 

efficient and that relatively small numbers of samples can sometimes be used. Several remaining areas 

for methodological development are set out.  Wider application of partial EVPI is recommended both for 

greater understanding of decision uncertainty and for analysing research priorities.   
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Quantifying expected value of perfect information (EVPI) is important for developers and users of 

decision models.  Many guidelines for cost-effectiveness analysis now recommend probabilistic 

sensitivity analysis (PSA)
1,2

 and EVPI is seen as a natural and coherent methodological extension
3,4

.  

Partial EVPI calculations are used to quantify uncertainty, identify key uncertain parameters, and inform 

the planning and prioritising of future research
5
.  Many recent papers recommend partial EVPI, for 

sensitivity analysis rather than alternative ‘importance’ measures
6, , ,7 8 9

, or for valuing research studies in 

preference to ‘payback’ methods5, but do not discuss computation methods in any detail.  Some of the 

few published EVPI case studies have used slightly different computational approaches
10

 and many 

analysts, who confidently undertake PSA to calculate cost-effectiveness acceptability curves, still do not 

use EVPI. 

 

The concepts of EVPI are concerned with policy decisions under uncertainty.  A decision maker’s 

‘adoption decision’ should be that policy which has the greatest expected pay-off given current 

information
11

.  In healthcare, we use monetary valuation of health (λ) to calculate a single expected 

payoff e.g. expected net benefit E(NB) = λ * E(QALYs) – E(Costs).  Expected value of information 

(EVI) is a Bayesian
12

 approach that works by taking current knowledge (a prior probability distribution), 

adding in proposed information to be collected (data) and producing a posterior (synthesised probability 

distribution) based on all available information.  The value of the additional information is the difference 

between the expected payoff that would be achieved under posterior knowledge and the expected payoff 

under current (prior) knowledge.  ‘Perfect’ information means perfectly accurate knowledge i.e. absolute 

certainty about the values of parameters, and can be conceptualised as obtaining an infinite sample size, 

producing a posterior probability distribution that is a single point, or alternatively, as ‘clairvoyance’ – 

suddenly learning the true values of the parameters.  For some values of the parameters the adoption 

decision would be revised, for others we would stick with our baseline adoption decision policy.  By 
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investigating the pay-offs associated with different possible parameter values, and averaging these 

results, the ‘expected’ value of perfect information is quantified.  Obtaining perfect information on all 

the uncertain parameters gives ‘overall EVPI’, whereas ‘Partial EVPI’ is the expected value of learning 

the true value(s) of an individual or subset of parameters.  Calculations are often done per patient, and 

then multiplied by the number of patients affected over the lifetime of the decision to quantify 

‘population EVPI’.   
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Reviews show that several methods have been used to compute EVPI5.  The earliest healthcare 

literature
13

 used simple decision problems and simplifying assumptions, such as normally distributed net 

benefit, to calculate overall EVPI analytically via standard ‘unit normal loss integral’ statistical tables
14

, 

but gave no analytic calculation method for partial EVPI.  In 19984 and 2003
15

, Felli and Hazen gave a 

fuller exposition of EVPI method, with a suggested general Monte-Carlo random sampling procedure for 

partial EVPI calculation and a ‘shortcut’ simulation procedure for use in certain defined circumstances.  

We review these procedures in detail in the next section.  In the late 1990s, some UK case studies 

employed different algorithms to attempt to compute partial EVPI
16, ,17 18

, but these algorithms actually 

computed “expected opportunity loss remaining” given perfect information on a subset of parameters, 

which is not the same as partial EVPI and can give substantially different results
10,19

.  In 2002, a UK 

event helped to produce work resulting in a series of papers providing guidance on EVI method
10,19,20

.  

UK case studies since that time have used the two level Monte-Carlo sampling approach we examine in 

detail here
21,22

.  Coyle at al. have used a similar approach
23

, though sometimes using quadrature (taking 

samples at particular percentiles of the distribution) rather than random Monte-Carlo sampling to speed 

up the calculation of partial EVPI for a single parameter7.  Development of the approach to calculate 

expected value of sample information (EVSI) is also ongoing
20,24, ,25 26

.   

 

The EVPI literature is not confined to health economic policy analysis.  A separate literature examines 

information gathering as the actual intervention e.g. a diagnostic or screening test that gathers 
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information to inform decisions on individual patients
27,28

.  Risk analysis is the other most common 

application area. Readers with a wider interest are directed to a recent review of risk analysis 

applications
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29
, which showed, for example, Hammitt and Shlyakhter

30
 building on previous authors’ 

work,
31,32,33,34

 setting out similar mathematics to Felli and Hazen, and using elicitation techniques to 

specify prior probability distributions when data are sparse.   

 

The objective of this paper is to examine the computation of partial EVPI estimates via Monte-Carlo 

sampling algorithms.  In the next section, we define partial EVPI mathematically using expected value 

notation.  We then present a generally applicable nested 2 level Monte-Carlo sampling algorithm 

followed by some variants which are valuable in certain circumstances.  The impact of sampling error on 

these estimates is covered including a bias caused by maximisation within nested loops.  We lay out the 

mathematical conditions when a ‘short-cut’ 1 level algorithm may be used.  Three case studies are 

presented to illustrate (i) the bias due to maximisation, (ii) the accuracy or otherwise of the shortcut 

algorithm when correlated variables are present and (iii) the impact of increasingly non-linear net-

benefit functions.  Finally, we present some empirical investigations of the required numbers of Monte-

Carlo samples and the implications for accuracy of estimates when relatively small numbers of samples 

are used.  We conclude with the implications of our work and some final remarks concerning 

implementation. 

 

MATHEMATICAL FORMULATION  

 

Overall EVPI  

We begin with some notation. Let, 

θ     be the vector of parameters in the model with joint probability distribution p(θ). 

d     denote an option out of the set of possible decisions; typically, d is the decision to adopt  

or reimburse one treatment in preference to the others. 

 6



Brennan et al. Calculating Partial Expected Value Of Perfect Information Via Monte-Carlo Sampling Algorithms. 

NB(d,θ)    be the net benefit function for decision d for parameters values θ. 131 

132 

133 

134 

135 

]

Overall EVPI is the value of finding out the true value of the currently uncertain θ.  If we are not able to 

learn the value of θ, and must instead make a decision now, then we would evaluate each strategy in turn 

and choose the baseline adoption decision with the maximum expected net benefit, which we denote 

ENB0.  ENB0, the expected net benefit given no additional information, is given by  

ENB0 = }{[ )NB(d,max θθE
d

    (1) 136 

137 

138 

139 

140 

141 

Eθ denotes an expectation over the full joint distribution of θ, that is in integral notation: 

∫=
θ

θ θθθθ dpffE )()()]([  

 

Now consider the situation where we might conduct some experiment or gain clairvoyance to learn the 

true values of the full vector of model parameters θ. Then, since we now know everything, we can 

choose with certainty the decision that maximises net benefit i.e. }{ )NB(d,max trueθ
d

.  This naturally 

depends on θ

142 

143 

144 

true, which is unknown before the experiment, but we can consider the expectation of this 

net benefit by integrating over the uncertain θ.   

Expected net benefit given perfect information  = [ ]( ))NB(d,max θθ
d

E     (2) 145 

146 The overall EVPI is the difference between these two (2)-(1),  

EVPI = [ ]( ) }{[ )NB(d,max)NB(d,max ]θθ θθ EE
dd

−   (3) 147 

148 

149 

150 

151 

152 

153 

It can be shown that this is always positive.  

 

Partial EVPI  

 

Now suppose that θ is divided into two subsets, θi
 and its complement θc

, and we wish to know the 

expected value of perfect information about θi
.  If we have to make a decision now, then the expected 
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net benefit is ENB0 again, but now consider the situation where we have conducted some experiment to 

learn the true values of the components of θ

154 

155 

156 

157 

i
 = θi

true. Now θc
 is still uncertain, and that uncertainty is 

described by its conditional distribution, conditional on the value of θi
true. So we would now make the 

decision that maximises the expectation of net benefit over that distribution. This is therefore ENB(θi
true) 

= }{ ⎥⎦
⎤

⎢⎣
⎡ )NB(d,max θ

θθ trued
icE .  Again, this depends on θi

true, which is unknown before the experiment, but 

we can consider the expectation of this net benefit by integrating over the uncertain θ

158 

159 
i
.  

Expected Net benefit given perfect info only on θi
 = }{ ⎟

⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡ )NB(d,max θ

θθθ ici EE
d

 (4). 160 

161 Hence, the partial EVPI for θi
 is the difference between (4) and ENB0, i.e.  

EVPI(θi
) = }{ }{[ ])NB(d,max)NB(d,max θθ θθθθ

EEE
dd

ici −⎟
⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡    (5)  162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

This is necessarily positive and is also necessarily less than the overall EVPI.   

 

Equation (5) clearly shows two expectations. The inner expectation evaluates the net benefit over the 

remaining uncertain parameters θc
 conditional on θi

.  The outer evaluates the net benefit over the 

parameters of interest θi
.  The conditioning on θi

 in the inner expectation is significant.  In general, we 

expect that learning the true value of θi
 could also provide some information about θc

.  Hence the correct 

distribution to use for the inner expectation is the conditional distribution that represents the remaining 

uncertainty in θc
 after learning θi

.  The exception is when θi
 and θc

 are independent, allowing the 

unconditional (marginal) distribution of θc
 to be used in the inner expectation.  The two nested 

expectations, one with respect to the distribution of θi
 and the other with respect to the distribution of θc

 

given θi
, may seem to involve simply taking an expectation over all the components of θ, but it is very 

important that the two expectations are evaluated separately because of the need to compute a maximum 

between them.  It is this maximisation between the expectations that makes the computation of partial 

EVPI complex. 
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190 
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192 
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194 

195 

COMPUTATION  

 

Three techniques are commonly used in statistics to evaluate expectations.  The first is when there is an 

analytic solution to the integral using mathematics. For instance, if X has a normal distribution with 

mean µ and variance σ2
 then we can analytically evaluate the expectation of functions f(X) = X or X

2
 or 

of exp(X) i.e. E[X] = µ;  E[X
2
] = µ

2
 + σ2

;  E[exp(X)] = exp(µ + σ2
/2). This is the ideal but is all too often 

not possible in practice. For instance, there is no analytical closed-form expression for E[(1 + X
2
)
-1

].  

The second common technique is quadrature, also known as numerical integration.  There are many 

alternative methods of quadrature which involve evaluating the value of the function to be integrated at a 

number of points and computing a weighted average of the results
35

.  A very simple example would 

evaluate the net benefit function at particular percentiles of the distribution (e.g. at the 1
st
, 3

rd
 ,5

th
 … 99

th
 

percentile) and average the results.  Quadrature is particularly effective for low-dimensional integrals, 

and therefore for computing expectations with respect to the distribution of a single or a small number of 

uncertain variables. When larger numbers of variables exist, the computational load becomes 

impractical.  The third technique is Monte-Carlo sampling. This is a very popular method, because it is 

very simple to implement in many situations.  To evaluate the expectation of a function f(X) of an 

uncertain quantity X, we randomly sample a large number, say N, of values from the probability 

distribution of X. Denoting these by X1,X2, … ;XN, we then estimate E{f(X)} by the sample mean 

∑
=

=
N

n

nXf
N

XfE
1

)(
1

)}({ˆ .  This estimate is unbiased and its accuracy improves with increasing N.  

Hence, given a large enough sample we can suppose that  is an essentially exact computation 

of E{f(X)}.  It is the Monte-Carlo sampling approach which we now focus upon.  

196 

197 

198 

199 

200 

201 

)}({ˆ XfE

 

Two-level Monte-Carlo computation of partial EVPI 
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Box 1 displays a detailed description of a Monte- Carlo sampling algorithm to evaluate the expectations 

when estimating overall and partial EVPI.  The process involves two nested simulation loops because 

the first term in (5) involves two nested expectations.  The outer loop undertakes K samples of θ

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

i
.  In the 

inner loop it is important that many (J) values of θc
 are sampled from their conditional distribution, 

conditional on the value for θi
 that has been sampled in the outer loop.  If θi

 and θc
 are independent we 

can sample from the unconditional distribution of θc
.  Note that, although the EVPI calculation depends 

on the societal value of health benefits λ, the whole algorithm does not need repeating for different λ 

thresholds.  If the mean cost and mean effectiveness are recorded separately for each strategy at the end 

of each inner loop, then partial EVPI is quick to calculate for any λ.  When evaluating overall EVPI, the 

inner loop is redundant because there are no remaining uncertain parameters and the process is similar to 

producing a cost-effectiveness plane
36

 or a cost-effectiveness acceptability curve
37

.   

 

We can use summation notation to describe these Monte-Carlo estimates. We define the following: 

i

kθ  is the k’th random Monte-Carlo sample of the vector of parameters of interest θi
,  

θc
jk is the jth sample taken from the conditional distribution of θc

 given that θi
 = . i

kθ

nθ  is the vector of the n’th random Monte-Carlo samples of the full set of parameters θ, and 217 

218 D is the number of decision policies.  

Estimated overall EVPI  = ( )[ ] ( ⎥
⎦

⎤
⎢
⎣

⎡
− ∑∑

=== =

L

l

l
toDd

N

n

n
toDd LN 1

1
1

1
)NB(d,

1
max)NB(d,max

1 θθ )219  ,  (3s) 

Estimated partial EVPI = ( )[ ] ( )⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑∑ ∑
=== ==

L

l

l
toDd

K

k

J

j

c

jk

i

k
toDd L

dNB
JK 1

1
1 1

1
)NB(d,

1
max,,

1
max

1 θθθ  , (5s) 220 

221 

222 

223 

224 

where, K is the number of different sampled values of parameters of interest θi
;  J, the number of 

different sampled values for the other parameters θc
 conditional upon each given ;  L, the number of 

different sampled values of all the parameters together when calculating the expected net benefit of the 

baseline adoption decision. 

i

kθ
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 225 

226 

227 

228 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

Felli and Hazen
4,15

 gave a different Monte-Carlo procedure known as MC1 (see Appendix 1).  When 

compared with Box 1, there are two important differences.  The first is that MC1 appears as a single 

loop.  Felli and Hazen assume that there is an algebraic expression for the expected payoff conditional 

on knowing θi
, and thus the inner expectation in the first term of (5) can be evaluated analytically 

without using an inner Monte-Carlo sampling loop.  This is not always possible and the inner loop in 

Box 1 provides a generalised method for any net benefit function.  Note also that, although the 

procedure takes a concurrent random sample of the parameters of interest (θi
) and the remaining 

parameters (θc
), the assumption of an algebraic expression for the expected payoff is still made, and the 

sampling of θc
 is not used to evaluate the inner expectation.  The second difference is that MC1 step 2ii 

recommends estimating the improvement obtained given the information, immediately as each sample of 

the parameters of interest is taken.  Our 2 level algorithm can be amended to estimate the improvement 

given by the revised decision d*(θi
) over the baseline adoption decision d* at the end of each outer loop 

iteration (see Box 2).   

 

The Box 2 algorithm is based on an alternative formula for partial EVPI, which combines the first and 

second terms of (5) into a single expectation.   

EVPI(θi
) = }{ }{ ⎟

⎠
⎞

⎜
⎝
⎛ −⎥⎦

⎤
⎢⎣
⎡ )NB(d*,)NB(d,max θθ

θθθθθ icici EEE
d

.    (6) 242 

243 The summation notation provides a mathematical description of the Box 2 estimate:  

EVPI(θi
) estimate = ( ){ } ( ){∑ ∑∑

= === ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎥

⎦

⎤
⎢
⎣

⎡K

k

J

j

c

jk

i

k

J

j

c

jk

i

k
toDd

dNB
J

dNB
JK 1 11

1
,*,

1
,,

1
max

1 θθθθ }244 

245 

246 

247 

248 

,  (6s) 

With large numbers of samples the estimates provided by the general algorithm (Box 1) and that 

computing improvement at each iteration (Box 2) will be equivalent.  The difference between them 

concerns when to estimate the improvement.  In Box 1 we estimate the second term of (5s) just once for 

the whole decision problem.  In Box 2, we make K estimates of the improvement versus the baseline 
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adoption decision conditional on knowing the parameter of interest.  If the same numbers of inner and 

outer samples are taken, then there is little difference in computation time because the same total number 

of samples and net benefit function evaluations are undertaken in both.  The potential advantage of Box 

2 is that the improvement is computed as exactly zero whenever the revised decision d*(θ

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

i
) = d*.  

Because of this, with small numbers of samples the Box 2 algorithm might have some marginal 

reduction in noise compared with Box 1.  Furthermore, if the net benefit functions are positively 

correlated, then the Box 2 algorithm is less susceptible to noise and will provide marginally more 

accurate partial EVPI estimates for a given small number of samples.  The number of Monte-Carlo 

samples required is our next consideration. 

 

Monte-Carlo Sampling Error 

 

Monte-Carlo sampling estimates of any expectations including those in (5) are subject to potential error.  

Consider a function f of parameters θ, for which the true mean Eθ[f(θ)] is say µ.  The estimator  

 [∑
=

)=
N

j

j
N 1

^

f(
1

θµ ]263 

264 

265 

266 

267 

         (7) 

is an unbiased estimator of the true mean µ.  The standard approach to ensuring that a Monte-Carlo 

expectation is estimated with sufficient accuracy is to increase the number of samples N, until the 

standard error of the estimator, S.E.( ) , is less than some defined acceptable level.  The Monte-Carlo 

sampling process provides us with an estimate of the variance of f(θ),  

^

µ

∑ ⎟
⎠
⎞⎜

⎝
⎛

=

−)
−

=
N

j

j
N 1

2
^

2
^

f(
1

1 µθσ         (8) 268 

269 and the estimated standard error of the Monte-Carlo estimator is defined by 

N

^
^^

 S.E. s
σµ =⎟

⎠
⎞

⎜
⎝
⎛=          (9) 270 

 12



Brennan et al. Calculating Partial Expected Value Of Perfect Information Via Monte-Carlo Sampling Algorithms. 

The standard error in the Monte-Carlo estimate of an expectation S.E.( ) reduces in proportion to the 

square root of the number of random Monte-Carlo samples taken.  

^

µ271 

272 

273 

274 

275 

276 

277 

278 

279 

280 

281 

282 

283 

284 

 

Applying this approach to estimating the net benefits given current information is straightforward.  For 

each decision option we can consider f(θ)=NB(d,θ) and denote the estimators of expected net benefit 

Eθ[NB(d,θ)] as , with associated variance estimators and standard errors .  Running a 

probabilistic sensitivity analysis (as in steps 1 to 3 of Box 1), we can establish the mean and variance 

estimators and choose a sample size N to achieve a chosen acceptable level of standard error. 

d

^

µ d

^

σ ds
^

 

However, estimating the potential Monte-Carlo error in partial EVPI computation is more complex 

because we have a nested loop when we are repeatedly estimating expectations.  In computing partial 

EVPI, we have K outer loops, and for each sampled θi
k we estimate the conditional expected net benefit 

using J samples of θc
|θi

k in the inner loop.  We can denote the Monte-Carlo estimator of the expected net 

benefit for decision option d conditional on a particular value of the parameters of interest θi
k, as    

([∑
=

=
J

j

c

jk

i

kdk dNB
J 1

^

,,
1 θθµ )]285 

286 

287 

         (10) 

Denoting  as the estimator of the variance in the net benefit conditional on the k’th sample θdk

^

σ i
k, then 

the standard error of this Carlo estimate is therefore estimated by: 

( )( )∑
=
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11
 S.E. µθθ

σµ     (11) 288 

289 
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292 

 

We might expect that the standard error of the estimated conditional expected net benefit  will be 

lower than the overall standard error , because we have learned the value of sample θ

dks
^

ds
^

i
k and hence 

reduced uncertainty.  If it is, then the number of inner loop samples required to reach a specified 
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tolerance level could reduce.  However, this will not necessarily always be the case and we give an 

example in the case study section when knowing θ

293 

294 

295 

296 

297 

298 

299 

300 

301 

302 

303 

304 

305 

306 

307 

308 

309 

310 

311 

312 

i
k. is at a particular value can actually increase the 

variance in net benefit and the standard error.  In general it is worth checking how stable these standard 

errors are for different sampled values of the parameters of interest early in the process of partial EVPI 

computation.   

 

Having estimated the conditional expected net benefit for each of the D options, we take the maximum.  

The partial EVPI estimate is therefore made up of K*D Monte-Carlo expectations, each estimated with 

error, within which K maximisations take place.  With the maximisation taking place between the inner 

and the outer expectations there is no analytic form for describing the standard error in the partial 

estimate.  Oakley et al. have recently developed a first suggestion for an algorithmic process for this 

estimation based on small numbers of runs
38

.  This process of taking the maximum of Monte-Carlo 

estimates has one further important effect. 

 

Bias when taking maxima of Monte-Carlo expectations 

 

Although the Monte-Carlo estimate of an expectation is unbiased, it turns out that the estimate of the 

maximum of these expectations is biased, and biased upwards.  To see this, consider 2 treatments with 

net benefit functions NB1(θ) and NB2(θ) with true but unknown expectations µ1 and µ2 respectively .  If 

µ1 and µ2 are quite different from each other then any error in the Monte-Carlo estimators 

[ ]∑
=

)=
N

j

θ j
N 1

1

^

NB1(
1µ  and [∑

=

)=
N

j

θ j
N 1

2

^

NB2(
1µ ]313 

314 

315 

316 

317 

 is unlikely to affect which treatment is estimated to 

have the highest expected net benefit.  However, if µ1 and µ2 are close, then the Monte-Carlo sampling 

error can cause us to mistakenly believe that the other treatment has the higher expectation, and this will 

tend to cause us to over-estimate the maximum.  Mathematically, we have that  

E[max{ , )] ≥ max{E[ ], E[ ]} = max{E[NB1],E[NB2]}= max{µ1

^

µ 2

^

µ 1

^

µ 2

^

µ 1, µ2}  (12) 
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Thus, the process of taking the maximum of the expectations (when they are estimated via a small 

number of Monte-Carlo samples) creates a bias i.e. an expected error due to Monte-Carlo sampling.   

318 

319 

320 

321 

322 

323 

324 

325 

326 

 

The bias affects partial EVPI estimates because we evaluate maxima of expectations in both the first and 

second terms of (5s).  For the first term, the process of estimating the maximum of Monte-Carlo 

expectations is undertaken for each different sample of the parameters of interest ( ).  Each of the K 

evaluations is biased upwards and therefore the first term in (5s) is biased upwards.  The larger the 

number of samples J in the inner loop, the more accurate and less biased the estimator  given each 

θik.  The larger the number of samples K in the outer loop the more accurate the average of the 

maximum expected net benefits i.e. 

i

kθ

dk

^

µ

∑
=

=
K

k

dk
d

i

K 1

^^

}{max
1

)( µθµ
.  If J is small and K is very large then we 

will get a very accurate estimate of the wrong i.e. biased partial EVPI.  If is the Monte-Carlo 

estimator of expected net benefit for decision option d given parameters θi , and is the true 

expected net benefit for decision option d given parameters θi, then the size of the expected bias in the 

first term of (5s) is given by the formula: 

327 
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  (13) 332 

333 

334 

335 

336 

337 

338 

339 

The magnitude of the bias is directly linked to the degree of separation between the true expected net 

benefits.  When the expected net benefits for competing treatments are close, and hence parameters have 

an appreciable partial EVPI, then the bias is higher.  

 

Because the second term in (5s) is also upwards biased, the overall bias in partial EVPI estimates can be 

either upwards or downwards.  The size and direction of the bias will depend on the net benefit 

functions, the characterised uncertainty and the numbers of samples used.  Increasing the sample size J 
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reduces the bias of the first term. Increasing the sample size L reduces the bias of the second term.  If we 

compute the baseline adoption decision’s net benefit with very large L, but compute the first term with 

very small number of inner loops J, then such partial EVPI computations will be upward biased.  It is 

important also to note that the size K of the outer sample in the 2-level calculation does not affect bias.  

For overall EVPI, the first term in (3s) is unbiased but the second (negative) term is biased upwards and 

hence, the Monte-Carlo estimate of overall EVPI is biased downwards.  As with Monte-Carlo error in 

partial EVPI estimates, the size of the expected bias cannot generally be calculated analytically.  The 

investigation of methods to develop an algorithm for this bias estimation is continuing38.   

340 
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356 

357 

358 
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There are two separate effects of using Monte-Carlo sampling to estimate the first term in (5) – the 

random error if J and K are small and the bias if J is small.  The bias will decrease with increasing inner 

loop sample sizes, but for a chosen acceptable accuracy we typically need much larger sample sizes 

when computing EVPI than when computing a single expectation.  We investigate some of the stability 

of partial EVPI estimates for different inner and outer sample numbers in the case studies.  We also 

examine a very simple 2 treatment decision problem, in which it is possible to compute the bias in 

formula (13) analytically.   

 

The ‘Short-Cut’ 1 Level Algorithm 

 

In some simple models, it is possible to evaluate expectations of net benefit analytically, particularly if 

parameters are independent.  Suppose NB(θ)=λ*θ1 – θ2* θ3, and the parameters θ2 and θ3 are 

independent, so that the expected net benefit can be calculated analytically simply by running the model 

with the parameters set equal to their mean values, }{ )NB(d,θθE  =  321 ** θθθλ − .  Although simple, 

there are economic models in practice, particularly decision tree models, which are of this form.  

362 

363 

364  
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In such circumstances, the 2 level partial EVPI algorithm can be simplified to a 1 level process (Box 3).  

This performs a one level Monte-Carlo sampling process, allowing parameters of interest to vary, 

keeping remaining uncertain parameters constant at their prior means.  It is much more efficient than the 

two- level Monte-Carlo method, since we replace the many model runs by a single run in each of the 

expectations that can be evaluated without Monte Carlo.  Mathematically, we compute analytic solutions 

for the inner expectations in the 1

365 

366 

367 

368 

369 

370 

371 

372 

373 

st
 term of (5) and all of the expectations in the 2

nd
 term of (5).  Note 

that the expectations of maxima cannot be evaluated in this way. Thus, the expectation in the first term 

of (3) and the outer expectation in the first term of (5) are still evaluated by Monte-Carlo in Box 3.  Felli 

and Hazen4 give a similar procedure, which they term a ‘shortcut’ (MC2) and is identical to MC1 

described earlier but with those parameters not of interest set to their prior means i.e. θθ cc = .  Note that 

a misunderstanding of the Felli and Hazen ‘short cut’ method previously led some analysts to use a quite 

inappropriate algorithm, which focussed on reduction in opportunity loss

374 

375 

376 

377 

378 

379 

380 

381 

16,17
.  The level of inaccuracy in 

estimating partial EVPI which resulted from this incorrect algorithm is discussed elsewhere19. 

 

The 1 level algorithm is correct under the following conditions. Mathematically, the outer level 

expectation over the parameter set of interest θi
 is as per equation (5), but the inner expectation is 

replaced with net benefit calculated given the remaining uncertain parameters θc
 set at their prior mean. 

1 level partial EVPI for θi   = [ ]}{ }{ )NB(d,max),NB(d,max θθθ θθ
EE

d

ci

d
i −  (14) 382 

383 

384 

Note that we now have just one expectation, and that the 1-level approach is equivalent to the 2 level 

algorithm if (5) ≡ (14), i.e. if 

 }{ [ ]}{ ),NB(d,max)NB(d,max ci

dd
iici EEE θθθ

θθθθ
≡⎟

⎠
⎞

⎜
⎝
⎛

⎥⎦
⎤

⎢⎣
⎡     (15) 385 

386 This is true if the left hand side inner bracket (expectation of net benefit, integrating over θc
|θi

) is equal 

to the net benefit obtained when θc
 are fixed at their prior means (i.e. cc θθ = ) in the right hand side.   387 

388  
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Felli and Hazen comment that the 1 level procedure can apply successfully “when all parameters are 

assumed probabilistically independent and the pay-off function is multi-linear i.e. linear in each 

individual parameter”, in other words condition (15) will hold if:   

389 

390 

391 

392 

393 

394 

395 

396 
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399 

400 

401 

402 

403 

404 
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406 

407 

408 

409 

410 

411 

412 

413 

A1. For each d the function NB(d, θ) can be expressed as a sum of products of components of θ  

A2. All of the components of θ are mutually probabilistically independent of each other. 

Condition (15) will also hold in a second circumstance.  It is not necessary for all of the parameters to be 

independent of each other provided that the net benefit functions are linear.  In fact, the 1 level 

procedure can apply successfully for any chosen partition of the parameter vector θ into parameters of 

interest θi 
, and their complement θc

 if the conditions below are satisfied: 

B1. For each d, the function NB(d, θ) = NB(d, θi
, θc

) is a linear function of the components of θc
,  

    whose coefficients may depend on d and θi
.  If θc

 has m components, this linear structure takes  

    the form NB(d, θi
, θc

) = A1(d, θi
)×θc

(1) + A2(d, θi
)×θc

(2) + … + Am(d, θi
) ×θc

(m) + b(d, θi
).  

B2. The parameters θc
 are probabilistically independent of the parameters θi

.  

Thus, provided the net benefit function takes the form in sufficient condition (B1), then the one-level 

algorithm will be correct in the cases where there are (a) no correlations at all, (b) correlations only 

within θi
, (c) correlations only within θc

, or (d) correlations within θi
 and within θc

 but no correlations 

between θi
 and θc

.  If the net benefits are linear functions of the parameters, it is only when the 

correlations are between members of θc
 and θi

 that the 1 level algorithm will be incorrect.   

 

The specifications of the sufficient conditions in (A1,A2) and (B1,B2) above are actually slightly 

stronger than the necessary condition expressed mathematically in (15) but it is unlikely in practice that 

the one-level algorithm would correctly compute partial EVPI in any economic model for which one or 

other of the two circumstances described did not hold.  In the next section we consider how accurate the 

shortcut 1-level estimate might be as the parameters move from independent to being more highly 

correlated, and as the net benefit functions move from linear to greater non-linearity. 
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CASE STUDIES   

 

Case Study Model 1: Analytically tractable model to illustrate effects of bias 

 

Case study 1 has 2 treatments with a very simple pair of net benefit functions, NB1 = 20,000*θ1,  

NB2 = 19,500*θ2, where θ1 and θ2 are statistically independent uncertain parameters each with a 

normal distribution N(1,1).  Analytically, we can evaluate max{E(NB1), E(NB2)} as 

max{20000,19500} = 20,000.  We compare the analytic results with repeatedly using very small 

numbers of Monte-Carlo samples to evaluate the expectations of NB1 and NB2, and illustrate the scale 

of the bias due to taking maxima of two Monte-Carlo estimated expectations.  In this very simple 

example with statistically independent, normally distributed net benefit functions, it is also possible to 

derive analytically, both the partial EVPI’s and the expected bias due to taking maxima of Monte-Carlo 

estimated expectations.   

 

Case Study 1 Results - Bias 

 

In all of the case study results, the partial EVPI estimates are presented not in absolute financial value 

terms but rather relative to the overall EVPI for the decision problem. Thus, if we have an overall EVPI 

of say £1400, which we ‘index’ to 100, then a partial EVPI of £350 would be reported as ‘indexed 

partial EVPI’ = 25. 

 

The effect of Monte-Carlo error induced bias in partial EVPI estimates depends upon the numbers of 

inner samples J used in the first term (5s) and the number of samples L used to estimated the expected 

net benefit of the baseline adoption decision in the second term of (5s).  In this very simple example with 
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statistically independent, normally distributed net benefit functions, it is actually possible to derive 

analytically, both the partial EVPIs and the bias due taking maxima of Monte-Carlo estimated 

expectations (See Appendix 2).  Table 3 shows the resulting bias for a range of J and L sample sizes.  

When L is small, the second term in (5s) is over-estimated due to the bias.  In this case study the effect is 

strong enough, for example at L=1000, that the partial EVPI estimate is actually downwards biased for 

any value of J over 100.  As L is increased the second term converges to its true value.  When J is small 

and L is large, we can expect the first term in (5s) to be over-estimated and the resulting partial EVPI 

estimate to be upwards biased.  The bias when J=100 is 0.49% of the true EVPI, and this decreases to 

0.1% at J=500 and 0.05% at J=1,000.  Note that the actual error in a Monte-Carlo estimated EVPI can be 

considerably greater than this on any one run if small numbers of outer samples are used because over 

and above this bias we have the usual Monte-Carlo sampling error also in play.   

439 
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Case Study Model 2: Accuracy of 1 level estimate in a decision tree model with correlations 

 

The second case study is a decision tree model comparing two drug treatments T0 and T1 (Table 1).  

Costs and benefits for each strategy depend upon 19 uncertain parameters characterised with 

multivariate normal distributions.  We examine 5 different levels of correlation (0, 0.1, 0.2, 0.3, 0.6) 

between 6 different parameters.  Zero correlation of course implies independence between all of the 

parameters.  Correlations are anticipated between the parameters concerning the two drugs’ mean 

response rates and the mean durations of response i.e. θ5, θ7, θ14 and θ16 all are correlated with each 

other.  Secondly, correlations are anticipated between the two drugs’ expected utility improvements, θ6 

and θ15.  To implement this model we randomly sample the multi-variate normal correlated values 

using [R] statistical software
39

.  We also implemented an extension of Cholesky decomposition in 

EXCEL Visual Basic to create a new EXCEL function =MultiVariateNormalInv (see CHEBS 

website)
40

.   
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Case Study 2 Results – Effects of Correlation on Accuracy of 1 Level Algorithm 

 

In the circumstance where correlation is zero, Figure 1 shows 1 level and 2 level partial EVPI estimates 

for a range of parameter(s) of interest.  The estimates are almost equivalent, with the 2 level estimates 

just slightly higher than the 1 level estimates for each of the parameter(s) of interest examined.  The 

largest difference is just 3% of the overall EVPI.  This reflects the mathematical results that (a) the 1 

level and 2 level EVPI should be equivalent, because the cost-effectiveness model has net benefit 

functions that are sum-products of statistically independent parameters, and (b) the 2 level estimates are 

upwardly biased due to the maximisation of Monte-Carlo estimate in the inner loop.  Note also that 

partial EVPI for groups of parameters is lower than the sum of the EVPIs of individual parameters e.g. 

utility parameters combined (θ6 and θ15) = 57%, compared with individual utility parameters = 

46%+24% = 70%.   

 

If correlations are present between the parameters, then the 1 level EVPI results sometimes substantially 

under estimate the true EVPI.  The 1 level and 2 level EVPI estimates are broadly the same when small 

correlations are introduced between the important parameters.  For example, with correlations of 0.1, the 

2 level result for the utility parameters combined (θ6 and θ15) is 58%, 6 percentage points higher than 

the 1 level estimate.  However, if larger correlations exist, then the 1 level EVPI ‘short-cut’ estimates 

can be very wrong.  With correlations of 0.6, the 2 level result for the utility parameters combined (θ6 

and θ15) is 18 percentage points higher than the 1 level estimate, whilst for the response rate parameters 

combined (θ5 and θ14) shows the maximum disparity seen, at 36 percentage points.  As correlation is 

increased the disparity between 2 level and 1 level estimates increases substantially.  The results 

demonstrate that having linear or sum-product net benefit functions is not a sufficient condition for the 1 
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level EVPI estimates to be accurate and that the second mathematical condition, i.e. that parameters are 

statistically independent, is just as important as the first. 
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The 1 level EVPI results should be the same no matter what level of correlation is involved, because the 

1 level algorithm sets the remaining parameters θc
 at their prior mean values no matter what values are 

sampled for the parameters of interest.  The small differences shown in Fig 1 between different 1 level 

estimates are due to random chance of different samples of θi
. The 2 level algorithm correctly accounts 

for correlation, by sampling the remaining parameters from their conditional probability distributions 

within the inner loop.  It could be sensible to put the conditional mean for θc
 given θi

 into the 1 level 

algorithm rather than the prior mean, but only in the very restricted circumstance when the elements of 

θc
 are conditionally independent given θi

 and the net benefit function is multi-linear.  In case study 2, 

such a method would not apply for any of the subgroups of parameters examined, because the elements 

of the vector of remaining parameters θc
 are correlated with each other. 

 

Case Study Model 3: Accuracy of 1 level estimate in an increasingly non-linear Markov model 

 

Case study 3 extends the Case study 2 model incorporating a Markov model for the natural history of 

continued response.  Table 2 shows that the parameters for mean duration of response (θ7 and θ16) are 

replaced with 2 Markov models of natural history of response to each drug with health states 

“responding”, “not responding” and “died” (θ20 to θ31).  The mean duration of response to each drug is 

now a function of multiple powers of Markov transition matrices.  To investigate the effects of 

increasingly non-linear models, we have analysed time horizons of Ptotal = 3, 5, 10, 15 and 20 periods 

in a Dirichlet distribution.  To implement the models we sampled from the Dirichlet distribution in the 

statistical software R
41

, and also extended the method of Briggs
42

 to create a new EXCEL Visual Basic 

function = DirichletInv40.   We have characterised the level of uncertainty in these probabilities by 
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assuming that each is based on evidence from a small sample of just 10 transitions.  We use a Bayesian 

framework with a uniform prior of Dirchlet(1,1,1), and thus the posterior transition rates used in 

sampling for those “responding” to the health states “responding”, “not responding” and “died” are 

Dirichlet(7,4,2) and the equivalent transition rates for non-responders are Dirichlet (1,10,2)..  We have 

assumed statistical independence between the transition probabilities for those still responding and those 

no longer responding and also between the transition probabilities for T1 and T0.   
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Case Study 3 Results – Effects of Non-Linearity on Accuracy of 1 Level Algorithm 

 

We investigated the extent of non-linearity for each Markov model by expressing the net benefits as 

functions of the individual parameters using simple linear regression and noting the resulting adjusted R
2
 

for each.  Increasing the number of periods in Markov model (e.g. 3, 5, 10, 15, 20) results in greater non-

linearity (i.e decreasing adjusted R
2
 = 0.97, 0.95, 0.90, 0.87, 0.83 respectively).  Figure 2 shows the 

effects on partial EVPI estimates.  The 1 level estimates are substantially lower than the 2 level for the 

trial (θ5, θ14) and utility parameters (θ6, θ15) and for their combination.  Indeed, the 1 level partial 

EVPI estimates are actually negative for the trial parameters (θ5, θ14) for the 3 most non-linear case 

studies.  This is because the net benefit function is so non-linear that the first term in the 1 level EVPI 

equation [ ]}{ )|NB(d,max cc

d
iE θθθ

θ
=  is actually lower than the second term, }{ )NB(d,max θθE

d
.  Thus, 

when we set the parameters we are not interested in (θ

530 
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532 

533 

534 

535 

536 

537 

c
) to their prior means in term 1, the net benefits 

obtained are lower than in term 2 when we allow all parameters to vary.  Estimated partial EVPI for the 

Markov transition probabilities for duration of disease (θi
 = θ20 to θ31) show a high degree of alignment 

between the 1 level and 2 level methods.  This is because, after conditioning on θi
 the net benefit 

functions are now linear in the remaining statistically independent parameters.  It is very important to 

note that even quite high adjusted R
2
 does not imply that 1 level and 2 level estimates will be equal or 

even of the same order of magnitude.  For example for trial parameters (θ5, θ14) when correlation is set 
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at 0.1, the adjusted R
2
 is 0.973 but the 2 level EVPI estimate is 30 compared with a 1 level of 19.  This 

suggests that the 2 level EVPI algorithm may be necessary, even in non-linear Markov models very well 

approximated by linear regression.   
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Results On Numbers of Inner and Outer Samples Required 

 

We can use the Monte-Carlo sampling process to quantify the standard errors in expected net benefits 

for a given number of samples quite easily.  For example, 1000 samples in case study 2 with zero 

correlation provided an estimator for the mean[NB(T0)] = £5,006, with an estimator for the sample 

standard deviation [NB(T0)] 
 

0

^

Tµ

0

^

Tσ = £2510, giving a standard error of ⎟
⎠
⎞

⎜
⎝
⎛

1000/0

^

Tσ = £2.51.  The 

equivalent figures for T1 are mean estimator £5351, sample standard deviation estimator £2864 and 

standard error £2.87.  This shows clearly that the 95% confidence intervals for the expected net benefits 

(£5006±5 and £5351±6) do not overlap and we can see that 1000 samples is enough to indicate that the 

expected net benefit of T1 given current information is higher than that for T0.   
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As discussed earlier, it is likely that, conditioning on knowing the value of θi
k, will give estimators of the 

variance in net benefits  which will be lower than the prior variance  because knowing θdk

^

σ d

^

σ i
k means 

we are generally less uncertain about net benefits.  However, this is not necessarily always the case, and 

it is possible that posterior variance can be greater.  When estimating EVPI(θ7) in case study 2 with zero 

correlation, we found for example that our k=4th sampled value (θi
4 = 4.4 years) in the outer loop 

combined with J=1000 inner samples provided a higher standard error ⎟
⎠
⎞

⎜
⎝
⎛

1000/0

^

Tσ = £3.25 as 

compared with £2.51.   
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We further examined the number of Monte-Carlo samples required for accurate unbiased estimates of 

partial EVPI using case study 2, assuming zero correlation, and focusing only on the partial EVPI for 

parameters (θ5 and θ14).  Figure 3 illustrates how the estimate converges as increasing numbers of inner 

and outer samples are used.  With very small numbers of inner and outer level samples the partial EVPI 

estimate can be wrong by an order of magnitude.  For example, with J=10 and K=10, we estimated the 

indexed EVPI(θ5,θ14) at 44 compared to a converged estimate of 25.using J=10,000 and K= 1,000.  

However, even with these quite small numbers of samples the fact that the current uncertainty in 

variables θ5 and θ14 is important in the decision between treatments is revealed.  As the numbers of 

inner and outer samples used are extended cumulatively in Figure 3, the partial EVPI result begins to 

converge.  The order of magnitude of the EVPI(θ5,θ14) estimates is stable to within 2 indexed 

percentage points once we have extended the sample beyond K=100 outer and J=500 inner samples.  

The number of samples needed for full convergence is not symmetrical for J and K.  For example, over 

K=500 the EVPI(θ5,θ14) estimate converges to within 1 percentage point, but for the inner level, where 

there is a 4 point difference between J=750 and J=1000 samples, and it requires samples of J=5,000 to 

10,000 to converge to within 1 percentage point.  The results suggest that fewer samples on the outer 

level and larger numbers of samples on the inner level could be the most efficient approach.   
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Of course, the acceptable level of error when calculating partial EVPI depends upon their use.  If 

analysts want to clarify broad rankings of sensitivity or information value for model parameters then 

knowing whether the indexed partial EVPI is 62, 70 or 78 is probably irrelevant and a standard deviation 

of 4 may well be acceptable.  If the exact value needs to be established within 1 indexed percentage 

point then higher numbers of samples will be necessary.  

 

Having seen that K=100, J=500 produced relatively stable results for one parameter set in Case study 2, 

we decided to investigate the stability of partial EVPI estimates using relatively small numbers of 
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samples in four different parameter groups using the 5 models in case study 3 i.e. 20 parameter sets in 

total.  By repeatedly estimating the partial EVPI, we were able to produce a distribution of results and 

hence estimate the standard deviation in the partial EVPI estimates.  Figure 4 shows the standard 

deviations obtained for different numbers of inner and outer samples.  The results show that when we 

increase the number of outer samples from (K=100 to K=300, with J set at 500), the standard deviations 

fall substantially, on average by a factor of 0.62.  This is in line with a reduction in proportion to the 

square root of the number of outer samples i.e. reduction in standard deviation ∝ (√100)/(√300)=0.58.  

In contrast, the reductions in standard deviation due to increases in the number of inner samples are not 

so marked.  When we increase the number of inner samples from (J=100 to J=500, with K set at 100), 

the standard deviations fall on average by a factor of just 0.89, which is a much smaller reduction than if 

reductions were in proportion to the square root of the number of inner samples (√100/√500)= 0.45.  

This demonstrates that improving the accuracy of partial EVPI estimates requires proportionately greater 

effort on the inner level than the outer. It is also clear that the higher the true partial EVPI, the greater 

the level of noise that might be expected.  Figure 5 shows ‘confidence intervals’, (± 1.96 * s.d.) for the 

partial EVPI estimates with relatively small numbers of samples.  Parameters with low EVPI are 

estimated with low EVPI even with as small a number of samples as K=100, J=100.  Parameters with 

much higher EVPI’s are estimated with relatively high EVPI but also have a larger confidence interval 

around them.   
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Finally, we used case study 3 to compare the algorithm that computes improvement after each iteration 

(Box 2) with the general algorithm (Box 1), to assess whether estimates might exhibit less noise.  We 

undertook 30 runs using both Box 1 and Box 2 algorithms with K=100 outer and J=100 inner samples.  

Figure 6a shows the results for the four different parameter sets and five different time period models.  

The results show that standard deviations in the indexed partial EVPI results are almost equivalent for 

the Box 2 algorithm compared with the Box 1 algorithm.  Over all of the 20 parameters examined, the 
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average reduction in standard deviation in estimates is just 1%.  This is because the net benefit functions 

in case study 3 are almost uncorrelated (the only linked variable is θ4).  We then repeated this process, 

but this time assumed that the natural history of response using the Markov model was the same for both 

treatments.  That is, parameter θ26=θ20, θ27=θ21, … θ31=θ25.  Because these parameters are now 

linked, the net benefit functions for the two treatments are now correlated.(correlation = 0.33, 0.44, 0.59, 

0.66 and 0.71 for the models with 3, 5, 10, 15 and 20 total periods respectively).  Figure 6b shows that 

the standard deviations of the Box 2 algorithm EVPI estimates are now lower than those for Box 1, with 

an average reduction in standard deviation in estimates of 9%.  The reduction in standard deviation 

observed was higher for the models with higher correlations in net benefit (estimated reduction in 

standard deviation in partial EVPI estimates = 1%, 6%, 15%, 11%, and 13% respectively).  The standard 

deviation in partial EVPI estimates is reduced by approximately 2% for every 0.1 increase in the 

correlation between the net-benefits.  Using a square root of n, rule of thumb, this suggests that using the 

Box 2 algorithm might require roughly 4% fewer samples for every 0.1 increase in correlation between 

the net-benefits to achieve the same level of accuracy in partial EVPI as the Box 1 algorithm.   
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DISCUSSION 

 

This paper describes the calculation of partial EVPI, with the evaluation of two expectations, an outer 

expectation over the parameter set of interest and an inner expectation over the remaining parameters.  A 

generalised algorithm of nested outer and inner loops can be used to compute Monte-Carlo estimates of 

the expectations and the maxima required for each outer loop.  In specific circumstances, a ‘short-cut’ 1 

level algorithm is equivalent to the 2 level algorithm and can be recommended for use in simple models 

with linear and independent parameters.  If net benefits are non-linear functions of parameters, or where 

model parameters are correlated, the 1 level algorithm can be substantially inaccurate.  The scale of 

inaccuracy increases with non-linearity and correlation, but not always predictably so in scale.  Case 

studies here show the 1 level algorithm under-estimating partial EVPI but elsewhere we have shown a 
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case study where over-estimates are also possible19.  In practice, the 1 level ‘short-cut’ algorithm could be 

useful to screen for parameters which do not require further analysis.  If parameters do not affect the 

decision, our case studies show that their partial EVPI will be very close to zero using both the 2 level 

and the 1 level algorithm.  Thus, the 1 level algorithm might be used with a relatively small number of 

iterations (e.g. 100) to screen for groups of parameters in very large models.  The 2 level Monte-Carlo 

algorithm is applicable in any model, provided there is computing resource to run a large enough 

number of samples.  
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The number of inner and outer level simulations required depends upon the number of parameters, their 

importance to the decision, and the model’s net benefit functions.  The standard error of each Monte-

Carlo estimated expectation in the algorithm reduces in proportion to the square root of samples used but 

when this accumulates over many inner and outer loops and the maxima taken, the standard error of 

partial EVPI estimates is not generally able to be computed analytically. We recommend analysing the 

convergence of estimates to ensure a threshold accuracy of partial EVPI estimates fit for the specific 

purpose of the analysis.  Our empirical approach, in a series of alternative models, suggests that the 

number of inner and outer samples should not in general be equal.  In these case studies, 500 inner loops 

for each of the 100 outer loop iterations (i.e. 50,000 iterations in total) proved capable of estimating the 

order of magnitude of partial EVPI reasonably well in our examples, although it is likely that higher 

numbers may be needed in some situations.  For very accurate calculation or in computationally 

intensive models, one might use adaptive processes to test for convergence in the partial EVPI results, 

within a pre-defined threshold.   

 

A further consequence of Monte-Carlo sampling error is the existence of an over-estimating bias in 

evaluating maximum expected net benefit across decision options when using small numbers of samples.  

This can result in over or under-estimating the partial EVPI depending on the number of iterations used 

to evaluate the first and second terms.  Previous authors have investigated mathematical description of 
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Monte-Carlo bias outside the EVPI context
43

. Again, analytical computation of this bias is generally not 

possible and analysis of the convergence of estimates as the number of inner samples increases is 

recommended. In our case studies the bias appeared as no more than 1or 2 percentage points of the 

overall EVPI when using 1000 inner samples.  Further theoretical investigation of Monte-Carlo bias in 

the context of partial EVPI would be useful and work is ongoing on a theoretical description of the 

Monte-Carlo bias in partial EVPI calculation, and on using this theory to develop algorithms to quantify 

the inner level sample size required for a particular threshold of accuracy
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38,44
. 

 

The differences between EVPI results using the general algorithm (Box 1) and that computing 

improvement at each iteration (Box 2)  were relatively small in case study 3 when net benefit functions 

had low correlation.  If EVPI(θi
) is small, then even small numbers of samples provide good estimates 

using either algorithm.  If EVPI(θi
) is large, then on a high proportion of occasions a different decision 

option would be taken i.e. d*(θi
k)≠d*.  Box 1 provides K estimates of Eθc[NB(d*(θi

k), θ)| θi
k] – 

Eθ[NB(d*,θ)].  In contrast, Box 2 provides K estimates of Eθc [{NB(d*(θi
k), θ) – NB(d*, θ)}| θi

k].  If the 

net benefit functions are highly positively correlated, then the Box 2 algorithm is less susceptible to 

noise and provides marginally more accurate partial EVPI estimates for a given number of samples.  It is 

important also to note that if the net benefit functions are negatively correlated then Box 2 estimates 

would display higher variance than Box 1 estimates.  From a computation time perspective, a further 

refinement to the Box 2 algorithm could also be useful in the circumstance when there are very many 

strategies and evaluating the net benefit functions takes appreciable computation time.  This refinement 

would use as small a number of inner loop iterations as possible to identify with reasonable certainty 

which of the many strategies is d*(θi
k).  If d*(θi

k) = d*, then there is zero improvement and we need no 

further calculation.  If d*(θi
k) ≠ d*, then we can use a larger number of inner loop samples just to 

estimate the improvement in expected net benefit between the 2 relevant strategies d*(θi
k) and d*.  Such 

an adaptive approach can be useful when undertaking large numbers of Monte-Carlo samples becomes 

too time-consuming.  
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There are non-Monte-Carlo methods that can be used to compute partial EVPI.  Quadrature often has 

limited use, because there is often a large number of uncertain parameters in economic models. 

However, if the number of parameters in either θi
 or θc

 is small, then quadrature can be used for the 

relevant computations in partial EVPI, and where θi
 is a single parameter, this can cut the number of 

values of θi
 required from around 1000 (which is what would typically be needed for Monte Carlo) to 10 

or fewer.  A quite different approach is set out in by Oakley et al.45, who use a Bayesian approach based 

on the idea of emulating the model with a Gaussian process. Although this method is technically much 

more complex than Monte Carlo, it can dramatically reduce the number of model runs required and the 

authors recommend its application if many EVPI calculations are required in a model which has 

individual runs taking more than a few seconds.   

 

There remain some areas where further methodological research would be useful.  Computing 

population EVPI demands estimated patient numbers involved in the policy decision.  Incidence and 

prevalence are important, as are the likely lifetime of the technology and potential changes in competitor 

strategies.  There are arguments over the validity of analysing phased adoption of the intervention over 

time explicitly versus full adoption implied by the decision rule.  When trading off against the costs of 

data collection, timing of data collection is important too. Some parameters may be collectable quickly 

(e.g. utility for particular health states), others take longer (e.g. long term side-effects), and still others 

may be inherently unknowable (e.g. the efficacy of an influenza vaccine prior to the arrival of next years 

strain of influenza).   

 

EVPI is important, both in decision-making, and in planning and prioritising future data collection.  

Policy makers assessing interventions are keen to understand the level of uncertainty, and many 

guidelines recommend probabilistic sensitivity analysis
20

.  The common representations of uncertainty, 
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the cost-effectiveness plane and the cost-effectiveness acceptability curve
46

 show the relative importance 

of uncertainty in costs and effectiveness.  Partial EVPI extends these by giving the breakdown by 

parameter, so that decision makers see clearly the source and scale of uncertainty. This paper seeks to 

encourage analysts to extend the approach to calculation of overall and partial EVPI.  The theory and 

algorithms required are now in place. The case study models have shown the feasibility and performance 

of the method, indicating the numbers of samples needed for stable results.  Wider application will bring 

greater understanding of decision uncertainty and research priority analysis.   
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 721 

722 

723 

Box 1:  General 2 level Monte-Carlo Algorithm for Calculation of Partial EVPI on a Parameter Subset of Interest 

 

Preliminary Steps 

 

0) Set up a decision model comparing different strategies and set up a decision rule  e.g. Cost per QALY is < λ 

 

1) Characterise uncertain parameters with probability distributions  

        e.g. normal(µ,σ2), beta(a,b), gamma (a,b),  triangular(a,b,c) … etc 

 

2) Simulate L (say L=10,000) sample sets of uncertain parameter values (Monte Carlo). 

 

3) Work out the baseline adoption decision d* given current information 

        i.e. the strategy giving (on average over L=10,000 simulations) the highest estimated expected net benefit. 

 

Partial EVPI for a parameter subset of interest 

 

The algorithm has 2 nested loops 

 

4)  Simulate a perfect data collection exercise for your parameter subset of interest by:  

     sampling the parameter subset of interest once from its joint prior distribution  (outer level simulation) 

 

             5) estimate the net benefit of the best strategy given this new knowledge on the parameters of interest by 

                 -  fixing the parameters of interest at their sampled values θi
k

                 -  simulating the other remaining uncertain parameters θc
j k (say J=10,000 times) allowing them to 

                     vary according to their conditional probability distribution (conditional upon the parameter subset of 

                     interest at its sampled value θi
k)                                                               (inner  level simulation) 

                 -  calculating the conditional expected net benefit of each strategy E(θ| θi
k)[NB(d,θ)] given θi

k by  

                      evaluating  the net benefit at each (θc
j k,  θi

k) and averaging 

                 -  choosing the revised adoption decision d*( θi
k ) to be the strategy which has the highest estimated 

                      expected net benefit given the sampled value for the parameters of interest  

 

6) Loop back to step 4 and repeat steps 4 and 5 (say K=10,000 times) and then calculate the average net  

      benefit of the revised adoption decisions given perfect information on parameters of interest  

 

7) The partial EVPI for the parameter subset of interest is estimated by  

     average net benefit of revised adoption decisions given perfect information on parameters  (Step 6) 

minus 

     average net benefit given current information i.e. of the baseline adoption decision              (Step 3) 

 

Overall EVPI 724 

 725 

The algorithm for overall EVPI requires only 1 loop (which can be done at the same time as steps (2,3) 726 

 727 

8) For each of the L=10,000 sampled sets of parameters from step (3) in turn,  728 

                 -  compute the net benefit of each strategy given the particular sampled set of parameters,  729 

                 -  work out the optimal strategy given that particular sampled set of parameters,  730 

                 -  record the net benefit of the optimal strategy at each iteration  731 

 732 

9) With “perfect” information (i.e. no uncertainty in the values of each parameter) we would always 733 

choose the optimal strategy.  734 

Overall EVPI is estimated by:  735 

     average net benefit of optimal adoption decisions given perfect information on all parameters  (Step 8) 736 

minus 737 

     average net benefit given current information i.e. of the baseline adoption decision                   (Step 3) 738 

 739 

740  
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 741 

742 

743 

744 

Box 2:  2 level Monte-Carlo Algorithm for Calculation of Partial EVPI using Improvement In each Iteration 

 

 

Partial EVPI for a parameter subset of interest 745 

 746 

The algorithm has 2 nested loops 747 

 748 

4)  Simulate a perfect data collection exercise for your parameter subset of interest by:  749 

     sampling each parameter of interest once from its prior uncertain range  (outer level simulation) 750 

 751 

             5) estimate the net benefit of the best strategy given this new knowledge on the parameters of interest by 752 

                 -  fixing the parameters of interest at their sampled values θi
k753 

                 -  simulating the other remaining uncertain parameters θc
j k  (say J=10,000 times) allowing them to 754 

                     vary according to their conditional probability distribution (conditional upon the parameter subset of  755 

                     interest at its sampled value θi
k)                                                               (inner  level simulation) 756 

                 -  calculating the conditional expected net benefit of each strategy E(θ| θik)[NB(d,θ)] given θi
k by evaluating  the  757 

                      net benefit at each (θc
j k,  θi

k) and averaging 758 

                 -  choosing the revised adoption decision d*(θi
k) to be the strategy which has the highest estimated 759 

                      expected net benefit given the sampled value for the parameters of interest 760 

                 -  compute improvement in conditional mean net benefit as the difference  761 

                      between the revised decision given θi
k and the baseline adoption decision d* given θi

k762 

                      i.e. E(θ| θik)[NB(d*(θi
k),  θ)]- E(θ| θik)[NB(d*,  θ)] 763 

 764 

 765 

6) Loop back to step 4 and repeat steps 4 and 5 (say K=10,000 times) 766 

 767 

7) The EVPI for the parameter of interest =    average of the improvements recorded in step 5 768 

 769 

 33



Brennan et al. Calculating Partial Expected Value Of Perfect Information Via Monte-Carlo Sampling Algorithms. 

 770 

771 Box 3:  One level Monte-Carlo Algorithm for Calculation of Partial EVPI on a Parameter Subset of Interest 

Preliminary Steps ….               As in Box 1 

One level Partial EVPI for a parameter subset of interest 

The algorithm has 1 loop 

 

4)  Simulate a perfect data collection exercise for your parameter subset of interest by:  

     sampling the parameter subset of interest once from its prior distribution  (one level simulation) 

 

5) calculate the best strategy given this new knowledge on the parameter of interest by 

     -  fixing the parameters of interest at their sampled values  

     -  fixing the remaining uncertain parameters of interest at their prior mean value                                    

     -  calculating the mean net benefit of each strategy given these parameter values 

     -  choosing the revised adoption decision to be the strategy which has the highest  

         net benefit given the sampled value for the parameters of interest 

 

6) Loop back to step 4 and repeat steps 4 and 5 (say K=10,000 times) and then calculate the average net  

      benefit of the revised adoption decisions given perfect information on parameters of interest  

 

7) The EVPI for the parameter of interest =  

     average net benefit of revised adoption decisions given perfect information on parameters  (6) 

minus 

     average net benefit given current information i.e. of the baseline adoption decision              (3) 

 

 772 

 34



Brennan et al. Calculating Partial Expected Value Of Perfect Information Via Monte-Carlo Sampling Algorithms. 

Table 1: Case Study 2 Model  773 

Treatment T0 Treatment T1

Param 

No. Prior Mean Std Dev

Param 

No. Prior Mean Std Dev

Cost of drug 1 £1,000 £1 11 £1,500 £1

% admissions 2 10% 2% 12 8% 2%

Days in Hospital 3 5.20           1.00           13 6.10           1.00       

Cost per Day 4 £400 £200 4 £400 £200

% Responding 5 70% 10% 14 80% 10%

Utility change if respond 6 0.3000       0.1000       15 0.3000       0.0500   

Duration of response (years) 7 3.0             0.5             16 3.0             1.0         

% Side effects 8 25% 10% 17 20% 5%

Change in utility if side effect 9 -0.1000 0.0200 18 -0.1000 0.0200

Duration of side effect (years) 10 0.50           0.20           19 0.50           0.20       

θ 
θ 
θ 
θ 
θ 
θ 
θ 
θ 
θ 
θ 

θ 
θ 
θ 
θ 
θ 
θ 
θ 
θ 
θ 
θ 

 774 

775 

776 

λ = £10,000 

NBT0 = λ*(θ5*θ6*θ7 + θ8*θ9*θ10)  -  (θ1  +  θ2*θ3*θ4) 

NBT1 = λ*(θ14*θ15*θ16 + θ17*θ18*θ19)  -  (θ11  +  θ12*θ13*θ4) 777 

778  
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Table 2: Case Study 3 Model  779 

780  

Treatment T0 Treatment T1

Param 

No. Prior Mean Std Dev

Param 

No. Prior Mean Std Dev

Cost of drug θ 1 £1,000 £1 θ 11 £1,500 £1

% admissions θ 2 10% 2% θ 12 8% 2%

Days in Hospital θ 3 5.20           1.00           θ 13 6.10           1.00      

Cost per Day θ 4 £400 £200 θ 4 £400 £200

% Achieving Initial Response θ 5 70% 10% θ 14 80% 10%

Utility change if respond θ 6 0.3000       0.1000       θ 15 0.3000       0.0500  

% Side effects θ 8 25% 10% θ 17 20% 5%

Change in utility if side effect θ 9 -0.1000 0.0200 θ 18 -0.1000 0.0200

Natural History Model for Duration of Continued Response if Initial Response is Achieved

Markov Transition Probabilities

p(Responding --> Responding) θ 20 60% θ 26 60%

p(Responding --> Not Responding) θ 21 30%    Dirichlet (7,4,2) θ 27 30%    Dirichlet (7,4,2)

p(Responding --> Die) θ 22 10% θ 28 10%

p(Not Responding --> Responding) θ 23 0% θ 29 0%

p(Not Responding --> Not Responding) θ 24 90%    Dirichlet (1,10,2) θ 30 90%    Dirichlet (1,10,2)

p(Not Responding --> Die) θ 25 10% θ 31 10%

p(Die --> Die) 100%

781 
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θ22 = 1-θ20-θ21.     θ25 = 1-θ23-θ24. .     θ28 = 1-θ26-θ27     θ31 = 1-θ29-θ30. 
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 T

,     U0 = (θ6,0,0)
T
,    S1 = (θ14,1-θ14,0)

 T
,     U1 = (θ15,0,0)

T
. 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

100

252423

222120

0 θθθ
θθθ

M  ,  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

100

313029

282726

1 θθθ
θθθ

M

 786 
787 

788 

789 

 

Net Benefit functions depend upon the number of Markov periods used (Ptotal = 3, 5, 10, 15, 20) 
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791 

792 

793 

794 

795 

 

Table 3:  Bias in Monte-Carlo Estimates of EVPI Dependent on Number of Samples 

(Bias in partial EVPI for parameter θ1
 in Case Study 1 as a % of its true EVPI) 

 

 

 Number of Samples in 2
nd

 Term of (5s) 

 L=  1,000 3,000 10,000 100,000 1,000,000 

Number of 
Samples in 1

st
 

Term of (5s)      

 J =    100   .  -1.55% -0.08% 0.44% 0.49% 0.49% 

                   300  -1.87% -0.41% 0.11% 0.16% 0.16% 

                   500 -1.94% -0.47% 0.05% 0.10% 0.10% 

                1,000 -1.99% -0.52% 0.00% 0.05% 0.05% 

              10,000  -2.03% -0.57% -0.05% 0.00% 0.00% 

            100,000  -2.03% -0.57% -0.05% 0.00% 0.00% 
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797 

798 

799 

800 

 

Figure 1:  Impact of Increasing Correlation on Inaccuracy of 1 level method to calculate partial EVPI 
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     K=1000 outer and J=1000 inner samples 
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Figure 2:  Impact of Increasing Non-Linearity on Inaccuracy of 1 level method to calculate partial EVPI 
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Figure 3:  Illustration of stability of Monte-Carlo EVPI Estimates as the inner and outer samples (J and K) are 

extended          (Parameters θ5, θ14   Case Study 2   correlation = 0) 
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Figure 4:   

(a) Stability of partial EVPI estimates using relatively small numbers of samples (Case Study 3) 
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(b) Stability of partial EVPI estimates using Box 1 versus Box 2 Algorithms 
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 822 

823 Figure 5 ‘Confidence intervals’ for partial EVPI estimates in Case Study 3 
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825 Standard deviations based on 30 runs.   
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Figure 6:  Comparison of Box 1 and Box 2 Algorithm Noise 826 
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(a) Stability of EVPI estimates using Box 1 versus Box 2– Net benefit Functions with Very Low Correlation 
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(b) Stability of EVPI estimates using Box 1 versus Box 2– Net benefit Functions with High Correlation 
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Appendix 1: Felli and Hazen MC1 Monte Carlo Procedure for Partial EVPI 
4,15
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Model parameters are ξ, net benefit function V, and the decision options as A. Let E[V| ξ, A] be the 

decision maker’s expected payoff as a function of ξ and A.  The baseline adoption decision is denoted 

A*. ξI is a collection of parameters whose EVPI we wish to calculate and let ξI
C
 be the set of remaining 

parameters in the problem ξ = (ξI, ξI
C
),.  The decision which maximises expected value conditional upon 

particular values for the parameters of interest ξI is denoted A*(ξI).  The procedure then is: 

MC1: General Monte Carlo Simulation Procedure 15 

1. Repeatedly generate random parameter values ξ = (ξI, ξI
C
) 

2. For each generated ξ = (ξI, ξI
C
), 

i. Determine A*(ξI) as the decision option A maximizing E[V| ξI, A]. 

ii. Calculate the improvement achieved by using A*(ξI) 

Improvement = E[V| ξI, ξI
C
 ,A*(ξI)] - E[V| ξI, ξI

C
 ,A*] 

     End For 

3. Estimate EVPI (ξI) as the average of the calculated improvement values. 

Here it is assumed in Step 2i of the procedure that there is an algebraic expression for the quantity  

E[V| ξI, A] = E ξI
c
 [E[V| ξI, ξI

C
 ,A| ξI].      
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Appendix 2:  Means of maxima of two independent normally distributed variables 849 
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Suppose X1,X2 are independent normal random variables with parameters µ1,σ1 and µ2,σ2, respectively.  

Suppose µ1 > µ2.  Then 

E[max{X1,X2}] = E[X1 + max{0,X2−X1}] = µ1 + E[max{0,X2−X1}] = µ1 + E[max{0,Y}] 

where Y = X2 − X1 ~ normal(µY,σ), with µY = µ2−µ1, σ2
 = σ1

2
 + σ2

2
.  We have 

E[max{0,Y}] = E[max{0,µ + σZ}] = σE[max{0,Z − c}] 

where Z is a standard normal variable and c = −µY/σ.  Then with ϕ(z) the standard normal density and 

, the cumulative standard normal distribution function,  we have ∫ ∞−
=Φ

c

dzzc )()( φ

[ ] ∫
∞

∞−
−=− dzzczcZE )(},0max{},0max{ φ     ∫∫

∞

∞−
−+=

c

c

dzzczdzz )()()(.0 φφ

∫ ∫
∞ ∞

−=
c c

dzzcdzzz )()( φφ  

[ ]∫
∞

Φ−−=
c

ccdzzz )(1)(φ     [ ]∫
∞

Φ−−=
c

ccdzzz )(1)(φ

[ ]∫
∞ − Φ−−=
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z e )(1
2/

2

1 2

π
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[ ])(1
2/

2

1 2

cc
c

e Φ−−= −

π
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Hence, E[max{X1,X2}] = µ1 + σ. [ ]⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ−−−

)(1
2/

2

1 2

cc
c

eπ
 863 
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Application to Case Study 1 

When NB1, NB2 are independent normally distributed with parameters (µ1,σ1) and (µ2,σ2), then  

E[max{NB1,NB2}] = EMAX(µ1,σ1,µ2,σ2) = µ + σ. [ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ−−−

)(1
2/

2

1 2

cc
c

eπ
]866 

867 

868 

  (10) 

where Φ(·) is the standard normal distribution function, and 

µ = max{µ1,µ2}  σ = (σ1
2
 + σ2

2
)

1/2
  c = |µ2−µ1|/σ 
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Because θ1 and θ2 are independent normal(1,1) random variables, the Monte-Carlo estimate of EVPI(θi
) 

when using K outer, J inner and L samples for each component is given by 

869 

870 

MCEVPIJ,K,L (θ1
) = 

1 2

1 1 1
max ( , , ) max ( , )k j l

d d
k j l

NB d NB d
K J L

θ θ θ
⎡ ⎤

−⎢ ⎥
⎣ ⎦

∑ ∑ ∑
 871 

= 
1 2 1

1 1 1 1 1
max 20 , 19.5 max 20 , 19.5k j l

k j j l lK J J L L
2lθ θ θ

⎡ ⎤⎧ ⎫
θ⎧ ⎫−⎢ ⎥⎨ ⎬ ⎨

⎩ ⎭⎢ ⎥⎩ ⎭⎣ ⎦
∑ ∑ ∑ ∑ ∑ ⎬

872  

= 
{ } { }1 2 1 2

1
max 20 ,19.5 max 20 ,19.5

k J L

kK
L

θ θ θ⎡ ⎤ −⎣ ⎦∑ θ
873  

where, 
2 2

1
J j

jJ
θ θ= ∑

 ~ normal(1,1 J ). 874 

875 Therefore, we can calculate the expected value of a Monte-Carlo estimate as, 

E [MCEVPIJ,K,L EVPI (θ1
)] = 

{ } { }1 2 1 2max 20 ,19.5 max 20 ,19.5k J L LE Eθ θ θ θ⎡ ⎤ ⎡−⎣ ⎦ ⎣ ⎤⎦876 

877 

878 

 

= EMAX(20,  20,  19.5,  19.5/√J) – EMAX(20,  20/√L,  19.5,  19.5/√L) 

The true expected value of perfect information on θ1
 is given by 

EVPI(θ1
) = 

1 1max ( , ) max [ ( , )]
d d

E E NB d E NB dθ θ θ θ⎡ ⎤⎡ ⎤ −⎣ ⎦⎣ ⎦  879 

= 
{ } { }

1 1max 20 ,19.5 max 20,19.5Eθ θ −⎡ ⎤⎣ ⎦  880 

881 

882 

883 

884 

885 

= EMAX(20,  20,  19.5,  0) − 20. 

Then Bias(J,L) = E[MCEVPIJ,K,L (θ1
)] − EVPI(θ1

) 

=  {EMAX(20,  20,  19.5,  19.5/√J) 

    – EMAX(20,  20/√L,  19.5,  19.5/√L)} 

    – {EMAX(20,  20,  19.5,  0) − 20}.   
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