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SUEED - Stochastic User Equilibrium Assignment with Elastic Demand

Mike Maher
School of the Built Environment, Napier University, 10 Colinton Road, Edinburgh EH10 5DT

Abstract

It is well-known that, in deterministic usequilibrium assignment, is straightforward to

allow for elastic demand. The research describékis paper sets out to show that the same
is true for stochastic user equilibrium assigntnveith elastic demand (SUEED). It presents a
new objective function for SUEED, and a simp&dution algorithm that can be implemented
by only a minor modification to existingsignment software. A numerical example
illustrates the working of the algorithm

1 Introduction

Conventional traffic assignment techniqueswane that the demand matrix is fixed.
However, it is now generallycaepted that this may not always be accurate. A reduction in
travel costs through, for example, the constructiba new highway scheme, may lead to the
release of previously suppredgeps. The SACTRA Repor994) concluded that there was
overwhelming evidence to show that the fixkEsmand assumption was unsafe and that there
are a variety of possible behaural responses to increalseongestion. As well as re-
routeing, there may be changes in mode chdiigefrequency, destination choice and time of
travel. Further evidence was gathered (Cooetlag 1998) that the impact of highway
capacityreduction (through, for example, the implemetiba of a bus priority scheme) was
likely again to result in changes in mode chofcae of travel and destination choice. In both
cases, it was recommended that, in the short & least, this coplex set of responses
should be approximated by akastic demand assignment model. Demand is said to be
elastic, if the level olemand between an O-D pair isuaétion simply of the travel cost
between that O-D pair.

The purpose of this paper is to show that #sseasy to solve the assignment problem with
elastic demand as it is for fixed demand. Ttas been known for some considerable time for
deterministic user equilibrium (DUE) assignmedrgre we show that the same is true for
stochastic user equilibrium (SYBssignment. The aim is to show that, with very little
modification, existing assignment software ¢t@nused to solve for Stochastic User
Equilibrium with Elastic Demand (SUEED).

We start, in section 2, byviewing briefly the techniques agted for the solution of DUE
assignment with elastic demand. Then we nmvéo consider previous work on SUE with
fixed demand in section 3, types of stochastic loading methods in section 4, and the
determination of step size in section 5.séttion 6, we consider the formulation of the
SUEED problem, with a new kdion algorithm described irestion 7, and results from its
application in section 8. We then see howahproach can be extended to take account of
multiple user classes in section 9 before summarising the main findings in section 10.

2. Elastic demand in (deterministic) user equilibrium

Techniques for allowing for elastic demandieterministic user equilibrium (DUE)
assignment models have been establisheohémy years and have been implemented in
commercial software: as in the SATEASY maglulithin the SATURNsuite (Van Vliet and
Hall, 1993), for example. The original fornatibn of the DUE model as an optimisation



problem (Beckmanet al, 1956) also included the formulatiof the DUE model with elastic
demand:

2= [c,(d dx— Y DA(C..) (1)

wherex, andc, are respectively thilow and cost on linka, andCs is the travel cost between

O-D pairrs. It has been shown thatconvenient way to solve the elastic demand problem is

to treat it as a fixed demand problem and to create, for each O-D pair, an extra imaginary link
directly connecting the origin and destinatiorcéory the “excess” demand (that is, that part

of the fixed total demand that does not &lahrough the real netwk). The cost-flow

function for the imaginary link is consicted from the inverse demand funct®«(qrs)..

Therefore, for DUE assignment with elastic demand:

e The problem has been formulated as a function minimisation problem; and
e The problem can be readily solved asxadi demand problem by the creation of extra
links.

Hence, the DUE problem with elastic demanuhisffect no more difficult to solve than the
fixed demand problem.

3. Previouswork on SUE assignment

Before dealing with elastic demand, we give iafisummary of the “state of play” of fixed
demand SUE assignment modelling. This will provide the basis for describing the extension
to elastic demand.

The SUE assignment problem, in which individual drivers minimise theirpenoeived
travel costs was formulated by Sheffi andvet (1982) as an unconstrained optimisation
problem in the flows, with objective function:

ZSJE = Z Xa Ca(xa) B Z _fca (X) dX - qussrs (X) (2)

in whichgsis the demand anfisis expected minimum perceived travel cost (sometimes
referred to as the “satisfagti” function) between O-D pais. All terms, including th&,, in
the expression above feare routinely calculated within the stochastic loading

The solution to this problem is obtained by simaple iterative technique shown in schematic
form in Figure 1. The current solutianconsisting of the vector dihk flows, is input into

the link cost-flow functions to provide current costs These are then used as the mean link
costs in the input to a stochiadbading routine (of which we shall say more in a moment).
The output is the “auxiliary” sotion consisting of the vectgrof link flows. The updated
current solution is then a linear combination@ighted average) of the old current solution
x and the auxiliary solutiop, with a step length (about which we shall also say more in a
moment): that isx™? = (1-4)x™ + Ay wheren is the iteration number. The process is
repeated until convergence: that is, uxtd y or, more precisely, untdome measure of the
difference between them is sufficiently small
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Figure 1. standard schemefor the SUE iterative process

4. Types of stochastic loading

The stochastic loading process may be argymimber of forms, including the Monte Carlo
methods of Burrell (1968), with uniformly digiuted link costs, or Daganzo and Sheffi
(1977) with Normally distributed costs: baihe available in SATURN. Alternatively, logit
loading may be used in the form eitheittod STOCH algorithm (Dial, 1971) which, by
omitting any “inefficient” links avoids any loops, or that of Bell (1995) that allowsilfor
possible loops. A further alternative i®tBAM probit loading method first described in
Maher (1992) and more fully in Maher and Hughes (1997a) that takes proper account of
overlapping paths, unlike logit. Our prina@ptmphasis here will be on the numerically-based
methods of logit and probit loading rather than the simulation-based methods.

The overall structure of a stochadbading (whether probit or logiis illustrated in Figure 2.
In the Forward Pass (FP) ttugh the network the link costéx) are input and, for each origin
in turn, the splitg (the proportions of traffic enterirgach node via each of the “before”
links) and the satisfactions (OD travel co8sgre found. In the Backward Pass (BP) the
demandg are used, together with the splitisto calculate the auxiliary link flows Note
particularly (i) that the denmals are not used in the FongddPass and (ii) that the flowsand
the demandg need not be consistent (that is, at aarimediate stage of the iterative process,
the sum of flows on links emerging from a za®atroid need not be equal to the sum of
demands originating at that zone). The sigariice of these points will be seen later.
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5. Step length deter mination

»

y

The step length to be taken from current tagaauxiliary may be pre-set (as in the familiar
Method of Successive Averages (MSA), witbadily reducing values at each iteration, such
as the typical = 1/(n+1)), or may be optimised in a manner similar to that of the Frank-
Wolfe (1956) method for DUE. Figure 3 shoavgypical plot of the SUE objective function
(2) along a search directionence, the left hand end, whére 0, corresponds to the current
solutionx, whilst the right hand end, wheke= 1, corresponds to the auxiliary solutpn

The optimal step length is that which gives the minimum valzeotquivalently where the
gradientg (= dz/d)) is zero. A simple scheme to estimate the optimialprovided by
calculatingg at the two end points and usingdar interpolation to estimate wheye 0, at

A =-0o/ (-Qo + Qu).
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Figure 3: SUE objective function along a sear ch direction

These values aj can be easily calculated, using quargititomatically found in the loading
process.

dc dc
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a
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wherew is the “auxiliary of the aukary”: that is, in addition to the stochastic loading based
on the current solutior, we carry out @econd stochastic loadingased on the auxiliary
solutiony. The disadvantage, then, of this approach over MSA iswbadtochastic loadings
have to be carried out for each iteratidrhe advantage, though, is that the algorithm
convergewery much faster than MSA, even allowing fdre fact that, because of the extra
loading, each iteration takes twice as long asioMd@SA. A sensible hybrid approach is to
use the pre-set MSA step lengths for the firgt ifierations and then switch to the use of
optimised step lengths for subsequent iterations.

6. An objective function for SUEED

Having reviewed the position for SUE wittkxdéid demand, we turn now to SUE assignment

with elastic demand, which we shall refer to asE&D. At the SUEED solution, we have
simultaneous equilibria in the flows € y) and the demands;{ = D{(Ss) for each OD pair,

rs). Just as (2) formulates SUE assignmerdrasptimisation problem, so it can be shown

that the objective function in (4) below formulates SUEED as an optimisation problem (again
unconstrained) in x andg. More technical details of equivalence and convexity can be found

in Maheret al (1999) and Maher and Zhang (2000):



Zyygep = z X, Cy (Xa) - ZTCa(X) dx
+ 2 D (0D (S (X)) = D (S(¥))De (S (X)) (4)

Ors

+ z J.Dr_sl (q) dq - zqrs Dr_sl (qrs)
s o rs

The benefit of having an objectifunction is that it enablessaund theoretical basis for the
SUEED model. For example, it can be shown Wiatn the derivatives of (4) with respect to
link flows and demands are all zero, the twin sétsonditions for SUEED are satisfied. Itis
also provides direct evidence of convergeas its value steadily decreases through an
iterative process. Furthermore, closer apn and manipulation of the objective function
leads to the formulation of a solution alglom, referred to as the Balanced Demand
Algorithm (BDA) which turns out to be a verytmaal and efficient method of solution. Other
approaches are possible (see, for exanidéher and Hughes, 1997b, 1998) but the BDA is
the simplest.

7. The Balanced Demand Algorithm

The form of the BDA is very simple and draws the fact, mentioned earlier, that the forward
pass of a stochastic loadingcerried out without any referemdo the demands but uses only
the link flowsx from which the splitg and the satisfactior$are found. In the BDA, the
demands are only specified at the end oftineard pass (FP) and before the start of the
backward pass (BP), by applying the demand fondiDF) for each O-D pair, to give a set of
“balanced” demandgs= D;{(Ss) that therefore satisfy the elastic demand equilibrium
conditions. The whole scheme of the algantis shown in Figure 4, with the first loading
using the current flows as input and producing asitput the auxiliary patteryy and the
second loading usingas input and producing thauxiliary of the auxiliary”w.

First loading

T FP &
S(X)\g
DF

> BP —>
q=D(S) y

——— oY) Second loading

c(y)
S(y)
DF » BP —»
t =D(S) w

Figure 4: Schematic description of the Balanced Demand Algorithm




The BDA for the solution of the SUEED prelh therefore requires no more computational
effort than that for SUE with fixed demand. aqg, two stochastic loadings are carried out in
each iteration: one at the current solutkoand the other at the auxiliary solutign The
gradientgy are calculated in exactly the samanner at each point and, by linear
interpolation of the gradient, the step length at wigiehO can be estimated.

8. Test results

We illustrate the application of the Balanced Demand Algorithm firstly to a small test
network where the calculations can be fully@&t and followed. The network, consisting of
five links, three paths and angle OD pair is shown in Figure 5. The link cost-flow functions
are each of the simple BPR forofx) = co(1 +x/X) wherec is the free-flow cost and is the
notional capacity. The free-flow costs age= (10, 13, 5, 15, 10) and the capacitiesXare

(600, 800, 400, 900, 700). We shall applyiit@ading with a vale of the sensitivity
parametef = 0.05 and assume a demand functiothef‘constant elasticity”, power law

form D = Dy (%) ° with e = 0.7, base values 8 = 1000 andy = 20. Starting with an
arbitrary initial flow pattern ok = (400, 800, 100, 300, 900), the detailed calculations for the
first iteration are set out in Table 1.

Figure 5: simplefive-link networ k

In the upper part of Table the first loading is carried out, starting from the flow pattern
above. This consists of calating, in turn, the link costs, the three path cos the values
of exp(6C) and, from the multinomial logit model, the proportignssing each path and the
satisfaction valu&

expoC,)

p. [ S—
' D explCy)
k

[It should be noted that although here, for diaity, the loading is cared out on the basis of
paths, it is normally envisaged thatliak-based loading method would be used, especially
when the network is of a more realistic size].

S= —%Ioge(z expo ij
k



Then, the value dd= 21.10073 is input to the demanahétion to calculate the “balanced”
demandy = 963.2121 which is then used together with the gplitsproduce the auxiliary.
Finally, the value of the gradiegg is found to be —9622.129. The whole set of calculations is
then repeated in the lower halfthe table, for the secondalding, starting with the auxiliary
patterny this time, and producing at the right haside the “auxiliary of the auxiliaryiv and

the gradieng; = 4773.066. The estimate of the optimal step lefgt9622.129/(9622.129 +
4733.006) = 0.668. To complete the iteratitve, new current solution is found by the linear
combination 0.332 + 0.66§/.

This iterative process is cnued until the difference betwegrandy is acceptably small. In
this example, after five iterations, the currand auxiliary link flovs are identical to two
decimal places and are (604.55, 393.92, 25339,36, 647.11) and the values of the two
gradients gradierg, andg; are both reduced to kees of the order of 10

The BDA has also been applied to many othet networks using both logit and probit
loading. A set of typical results is shownFigure 6 (these being for the Winnipeg network
with over 4,000 links and 2,500 nodes). That pbmpares the rates of convergence of BDA
and MSA. (The measure of convergeddse thelogarithm of the difference between the
current and auxiliary solutions: fatll convergence this equal® and hence the rate of
convergence is indicated by the steepness of #yghgrlt can be seen that the convergence of
MSA is initially good but becomes steaddlpwer, whereas the convergence of BDA is
uniformly fast throughout.) Note th#te plot is against the numberlo&dings and not the
number of iterations, and so takes astoof the fact that the BDA requireso loadings per
iteration instead of the one in MSA. Gerraa good policy is to use MSA for the early
iterations and then to switch teetBDA for subsequent iterations.

No. loadings
0 t t t t t t t t t l
20 40 60 80 100 120 140 160 180 200
_2 + .‘
..\
4 |
y
J .| m~ MSA
.i
.\
81 -i
n
"
10 4 5
"
l.u.
_12 £
=_ BDA
-

aal e
216 L

Figure 6: Plot of convergence measur e against number of loadings, for the BDA and
MSA.



9. Extension to allow for multiple user classes

For certain applications it is desirable tstaiguish between different user classes. For
example, to distinguish between those whodeckes are equipped with an in-car driver
information system and those whose vehialesunequipped, one migdtribute the former

with a lower value of the variability parameter in the stochastic loading process (to reflect the

better and more reliable information they tednetwork conditions). See Maher and Hughes
(1996). Alternatively, one might wish tostinguish between different vehicle types in
respect of their speeds and hemctheir travel costs. Iraft, it can be shown that both are
equivalent, if the ratio of costs between any péinser classes is the same for all links in the
network.

One might therefore wish to formulate whatiltbbe referred to as a MUCSUEED problem
(Multiple User Class Stochastic User Hdprium with Elastic Demand). At the
MUCSUEED solution, the demariglin equilibrium for each separate user class (thatdss
D:su(Ss) for each O-D pairs and for each user clasy as well the flows being a SUE
solution for that set of demands. It isfact, quite easy to shotkat the MUCSUEED
problem can be formulated as an unconstrained function minimisation problem, with an
objective function that is a nal extension of that for SUEED:

Zyycsueep = Z X, Cq (Xa) - z ICa(X) dx
a o

+ z z D (qrsu)Drsu( (X)) - Z z (Srsu (X)) Drsu (Srsu (X)) (5)
+z ZJ.D (q)dq a Z zqrsu rsu (qrw

It also follows from this that the BDA can be readily extended to deal with multiple user
classes. In fact, for each origin, a forward pass is carriefroedch user class based on the
current flowsx so that user-specific splipg and satisfactionS, are determined. Then, the
balanced demandps, = D;si(S) are calculated and applied, together with the splits, in the
backward pass for each class, to determine the auxiliary fipwhkich, when summed over
all user classes, give the total link flows The calculation for optimal step length is identical
to that in SUEED and, in particular, uses onlytthtal link flows x andy.

Hence, the extension to multiple user cladsestraightforward both in terms of the
formulation of the problem and its solution.

10. Summary and conclusions
The main achievement of the research has bedanmnstrate that it is no more difficult to
solve the SUEED problem than the SUE peoblwith fixed demand. In particular

e A new objective function for SUEED has been formulated whose properties (equivalence,

convexity etc) have been formally established;

¢ An efficient algorithm (the Balanced Demand Algorithm) has been developed which
converges much faster than theyous conventional method of MSA;

e The algorithm can be applied with any formadit or probit stochastic loading process.

e The calculations to perform the BDA requireyglantities that areeadily available in
any existing assignment software. Therefordy minimal changes need to be made to
such software to enable it taél the SUEED solution using the BDA.



e The objective function and the solution aligfam can both be readily extended to allow
for multiple user classes (MUCSUEED).
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