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SUEED - Stochastic User Equilibrium Assignment with Elastic Demand 

 
Mike Maher 

School of the Built Environment, Napier University, 10 Colinton Road, Edinburgh EH10 5DT 
 
Abstract 
It is well-known that, in deterministic user equilibrium assignment, it is straightforward to 
allow for elastic demand.  The research described in this paper sets out to show that the same 
is true for stochastic user equilibrium assignment with elastic demand (SUEED).  It presents a 
new objective function for SUEED, and a simple solution algorithm that can be implemented 
by only a minor modification to existing assignment software.  A numerical example 
illustrates the working of the algorithm 
 
1. Introduction 
Conventional traffic assignment techniques assume that the demand matrix is fixed.  
However, it is now generally accepted that this may not always be accurate.  A reduction in 
travel costs through, for example, the construction of a new highway scheme, may lead to the 
release of previously suppressed trips.  The SACTRA Report (1994) concluded that there was 
overwhelming evidence to show that the fixed demand assumption was unsafe and that there 
are a variety of possible behavioural responses to increased congestion.  As well as re-
routeing, there may be changes in mode choice, trip frequency, destination choice and time of 
travel.  Further evidence was gathered (Coombe et al, 1998) that the impact of highway 
capacity reduction (through, for example, the implementation of a bus priority scheme) was 
likely again to result in changes in mode choice, time of travel and destination choice.  In both 
cases, it was recommended that, in the short term at least, this complex set of responses 
should be approximated by an elastic demand assignment model.  Demand is said to be 
elastic, if the level of demand between an O-D pair is a function simply of the travel cost 
between that O-D pair. 
 
The purpose of this paper is to show that it is as easy to solve the assignment problem with 
elastic demand as it is for fixed demand.  This has been known for some considerable time for 
deterministic user equilibrium (DUE) assignment; here we show that the same is true for 
stochastic user equilibrium (SUE) assignment.  The aim is to show that, with very little 
modification, existing assignment software can be used to solve for Stochastic User 
Equilibrium with Elastic Demand (SUEED). 
 
We start, in section 2, by reviewing briefly the techniques adopted for the solution of DUE 
assignment with elastic demand.  Then we move on to consider previous work on SUE with 
fixed demand in section 3, types of stochastic loading methods in section 4, and the 
determination of step size in section 5.  In section 6, we consider the formulation of the 
SUEED problem, with a new solution algorithm described in section 7, and results from its 
application in section 8.  We then see how the approach can be extended to take account of 
multiple user classes in section 9 before summarising the main findings in section 10. 
 
2. Elastic demand in (deterministic) user equilibrium 
Techniques for allowing for elastic demand in deterministic user equilibrium (DUE) 
assignment models have been established for many years and have been implemented in 
commercial software: as in the SATEASY module within the SATURN suite (Van Vliet and 
Hall, 1993), for example.  The original formulation of the DUE model as an optimisation 
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problem (Beckmann et al, 1956) also included the formulation of the DUE model with elastic 
demand: 
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where xa and ca are respectively the flow and cost on link a, and Crs is the travel cost between 
O-D pair rs.  It has been shown that a convenient way to solve the elastic demand problem is 
to treat it as a fixed demand problem and to create, for each O-D pair, an extra imaginary link 
directly connecting the origin and destination to carry the “excess” demand (that is, that part 
of the fixed total demand that does not travel through the real network).  The cost-flow 
function for the imaginary link is constructed from the inverse demand function D-1

rs(qrs).. 
 
Therefore, for DUE assignment with elastic demand: 
 

• The problem has been formulated as a function minimisation problem; and  
• The problem can be readily solved as a fixed demand problem by the creation of extra 

links. 
 
Hence, the DUE problem with elastic demand is in effect no more difficult to solve than the 
fixed demand problem.   
 
3. Previous work on SUE assignment 
Before dealing with elastic demand, we give a brief summary of the “state of play” of fixed 
demand SUE assignment modelling.  This will provide the basis for describing the extension 
to elastic demand. 
 
The SUE assignment problem, in which individual drivers minimise their own perceived 
travel costs was formulated by Sheffi and Powell (1982) as an unconstrained optimisation 
problem in the flows x, with objective function: 
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in which qrs is the demand and Srs is expected minimum perceived travel cost (sometimes 
referred to as the “satisfaction” function) between O-D pair rs.  All terms, including the Srs, in 
the expression above for z are routinely calculated within the stochastic loading 
 
The solution to this problem is obtained by the simple iterative technique shown in schematic 
form in Figure 1. The current solution x, consisting of the vector of link flows, is input into 
the link cost-flow functions to provide current costs c.   These are then used as the mean link 
costs in the input to a stochastic loading routine (of which we shall say more in a moment).  
The output is the “auxiliary” solution consisting of the vector y of link flows.  The updated 
current solution is then a linear combination (or weighted average) of the old current solution 
x and the auxiliary solution y, with a step length λ (about which we shall also say more in a 
moment): that is, x(n+1) = (1-λ)x(n) + λy(n) where n is the iteration number.  The process is 
repeated until convergence: that is, until x = y or, more precisely, until some measure of the 
difference between them is sufficiently small.  
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Figure 1: standard scheme for the SUE iterative process 

 
4. Types of stochastic loading 
The stochastic loading process may be any of a number of forms, including the Monte Carlo 
methods of Burrell (1968), with uniformly distributed link costs, or Daganzo and Sheffi 
(1977) with Normally distributed costs: both are available in SATURN.  Alternatively, logit 
loading may be used in the form either of the STOCH algorithm (Dial, 1971) which, by 
omitting any “inefficient” links avoids any loops, or that of Bell (1995) that allows for all 
possible loops.  A further alternative is the SAM probit loading method first described in 
Maher (1992) and more fully in Maher and Hughes (1997a) that takes proper account of 
overlapping paths, unlike logit.  Our principle emphasis here will be on the numerically-based 
methods of logit and probit loading rather than the simulation-based methods.  
 
The overall structure of a stochastic loading (whether probit or logit) is illustrated in Figure 2.  
In the Forward Pass (FP) through the network the link costs c(x) are input and, for each origin 
in turn, the splits p (the proportions of traffic entering each node via each of the “before” 
links) and the satisfactions (OD travel costs) S are found.  In the Backward Pass (BP) the 
demands q are used, together with the splits p, to calculate the auxiliary link flows y.  Note 
particularly (i) that the demands are not used in the Forward Pass and (ii) that the flows x and 
the demands q need not be consistent (that is, at an intermediate stage of the iterative process, 
the sum of flows on links emerging from a zone centroid need not be equal to the sum of 
demands originating at that zone).  The significance of these points will be seen later. 
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Figure 2: structure of a stochastic loading 

 
5.  Step length determination 
The step length to be taken from current towards auxiliary may be pre-set (as in the familiar 
Method of Successive Averages (MSA), with steadily reducing values at each iteration, such 
as the typical λ = 1/(n+1)), or may be optimised in a manner similar to that of the Frank-
Wolfe (1956) method for DUE.  Figure 3 shows a typical plot of the SUE objective function 
(2) along a search direction: hence, the left hand end, where λ = 0, corresponds to the current 
solution x, whilst the right hand end, where λ = 1, corresponds to the auxiliary solution y.  
The optimal step length is that which gives the minimum value of z or equivalently where the 
gradient g (= dz/dλ) is zero.  A simple scheme to estimate the optimal λ is provided by 
calculating g at the two end points and using linear interpolation to estimate where g = 0, at 
λ* = -g0 / (-g0 + g1). 
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Figure 3: SUE objective function along a search direction 

 
These values of g can be easily calculated, using quantities automatically found in the loading 
process.   
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where w is the “auxiliary of the auxiliary”: that is, in addition to the stochastic loading based 
on the current solution x, we carry out a second stochastic loading based on the auxiliary 
solution y.  The disadvantage, then, of this approach over MSA is that two stochastic loadings 
have to be carried out for each iteration.  The advantage, though, is that the algorithm 
converges very much faster than MSA, even allowing for the fact that, because of the extra 
loading, each iteration takes twice as long as one in MSA.  A sensible hybrid approach is to 
use the pre-set MSA step lengths for the first few iterations and then switch to the use of 
optimised step lengths for subsequent iterations. 
 
6. An objective function for SUEED 
Having reviewed the position for SUE with fixed demand, we turn now to SUE assignment 
with elastic demand, which we shall refer to as SUEED.  At the SUEED solution, we have 
simultaneous equilibria in the flows (x = y) and the demands (qrs = Drs(Srs) for each OD pair, 
rs).  Just as (2) formulates SUE assignment as an optimisation problem, so it can be shown 
that the objective function in (4) below formulates SUEED as an optimisation problem (again 
unconstrained) in x and q. More technical details of equivalence and convexity can be found 
in Maher et al (1999) and Maher and Zhang (2000): 
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The benefit of having an objective function is that it enables a sound theoretical basis for the 
SUEED model.  For example, it can be shown that when the derivatives of (4) with respect to 
link flows and demands are all zero, the twin sets of conditions for SUEED are satisfied.  It is 
also provides direct evidence of convergence as its value steadily decreases through an 
iterative process.  Furthermore, closer inspection and manipulation of the objective function 
leads to the formulation of a solution algorithm, referred to as the Balanced Demand 
Algorithm (BDA) which turns out to be a very natural and efficient method of solution.  Other 
approaches are possible (see, for example, Maher and Hughes, 1997b, 1998) but the BDA is 
the simplest. 
 
7. The Balanced Demand Algorithm 
The form of the BDA is very simple and draws on the fact, mentioned earlier, that the forward 
pass of a stochastic loading is carried out without any reference to the demands but uses only 
the link flows x from which the splits p and the satisfactions S are found.  In the BDA, the 
demands are only specified at the end of the forward pass (FP) and before the start of the 
backward pass (BP), by applying the demand function (DF) for each O-D pair, to give a set of 
“balanced” demands qrs = Drs(Srs) that therefore satisfy the elastic demand equilibrium 
conditions.  The whole scheme of the algorithm is shown in Figure 4, with the first loading 
using the current flows x as input and producing as output the auxiliary pattern y, and the 
second loading using y as input and producing the “auxiliary of the auxiliary” w. 

FP

DF BP

c(x)
 p(x)

S(x)

q = D(S) y

First loading

FP

DF BP

Second loading
c(y)

 p(y)

S(y)

t = D(S) w

 
Figure 4: Schematic description of the Balanced Demand Algorithm 
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The BDA for the solution of the SUEED problem therefore requires no more computational 
effort than that for SUE with fixed demand.  Again, two stochastic loadings are carried out in 
each iteration: one at the current solution x and the other at the auxiliary solution y.  The 
gradients g are calculated in exactly the same manner at each point and, by linear 
interpolation of the gradient, the step length at which g = 0 can be estimated. 
 
8. Test results 
We illustrate the application of the Balanced Demand Algorithm firstly to a small test 
network where the calculations can be fully set out and followed.  The network, consisting of 
five links, three paths and a single OD pair is shown in Figure 5.  The link cost-flow functions 
are each of the simple BPR form: c(x) = c0(1 + x/X) where c0 is the free-flow cost and X is the 
notional capacity.  The free-flow costs are c0 = (10, 13, 5, 15, 10) and the capacities are X = 
(600, 800, 400, 900, 700).  We shall apply logit loading with a value of the sensitivity 
parameter θ = 0.05 and assume a demand function of the “constant elasticity”, power law 
form D = D0 (S/S0)

-e with e = 0.7, base values of D0 = 1000 and S0 = 20.  Starting with an 
arbitrary initial flow pattern of x = (400, 800, 100, 300, 900), the detailed calculations for the 
first iteration are set out in Table 1. 

1

2

3

4

5

 
Figure 5: simple five-link network 

 
In the upper part of Table 1, the first loading is carried out, starting from the flow pattern x 
above.  This consists of calculating, in turn, the link costs c, the three path costs C, the values 
of exp(-θC) and, from the multinomial logit model, the proportions p using each path and the 
satisfaction value S: 
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[It should be noted that although here, for simplicity, the loading is carried out on the basis of 
paths, it is normally envisaged that a link-based loading method would be used, especially 
when the network is of a more realistic size]. 
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Then, the value of S = 21.10073 is input to the demand function to calculate the “balanced” 
demand q = 963.2121 which is then used together with the splits p to produce the auxiliary y.  
Finally, the value of the gradient g0 is found to be –9622.129.  The whole set of calculations is 
then repeated in the lower half of the table, for the second loading, starting with the auxiliary 
pattern y this time, and producing at the right hand side the “auxiliary of the auxiliary” w and 
the gradient g1 = 4773.066.  The estimate of the optimal step length θ = 9622.129/(9622.129 + 
4733.006) = 0.668.  To complete the iteration, the new current solution is found by the linear 
combination 0.332x + 0.668y. 
 
This iterative process is continued until the difference between x and y is acceptably small.  In 
this example, after five iterations, the current and auxiliary link flows are identical to two 
decimal places and are (604.55, 393.92, 253.19, 351.36, 647.11) and the values of the two 
gradients gradient g0 and g1 are both reduced to values of the order of 10-6. 
 
The BDA has also been applied to many other test networks using both logit and probit 
loading.  A set of typical results is shown in Figure 6 (these being for the Winnipeg network 
with over 4,000 links and 2,500 nodes).  The plot compares the rates of convergence of BDA 
and MSA.  (The measure of convergence J is the logarithm of the difference between the 
current and auxiliary solutions: at full convergence this equals -∞ and hence the rate of 
convergence is indicated by the steepness of the graph.  It can be seen that the convergence of 
MSA is initially good but becomes steadily slower, whereas the convergence of BDA is 
uniformly fast throughout.)  Note that the plot is against the number of loadings and not the 
number of iterations, and so takes account of the fact that the BDA requires two loadings per 
iteration instead of the one in MSA.  Generally, a good policy is to use MSA for the early 
iterations and then to switch to the BDA for subsequent iterations. 
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Figure 6: Plot of convergence measure against number of loadings, for the BDA and 

MSA. 
 

 8



9. Extension to allow for multiple user classes 
For certain applications it is desirable to distinguish between different user classes.  For 
example, to distinguish between those whose vehicles are equipped with an in-car driver 
information system and those whose vehicles are unequipped, one might attribute the former 
with a lower value of the variability parameter in the stochastic loading process (to reflect the 
better and more reliable information they had on network conditions).  See Maher and Hughes 
(1996).  Alternatively, one might wish to distinguish between different vehicle types in 
respect of their speeds and hence in their travel costs.  In fact, it can be shown that both are 
equivalent, if the ratio of costs between any pair of user classes is the same for all links in the 
network. 
 
One might therefore wish to formulate what could be referred to as a MUCSUEED problem 
(Multiple User Class Stochastic User Equilibrium with Elastic Demand).  At the 
MUCSUEED solution, the demand is in equilibrium for each separate user class (that is, qrsu = 
Drsu(Srsu) for each O-D pair rs and for each user class u), as well the flows being a SUE 
solution for that set of demands. It is, in fact, quite easy to show that the MUCSUEED 
problem can be formulated as an unconstrained function minimisation problem, with an 
objective function that is a natural extension of that for SUEED: 
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It also follows from this that the BDA can be readily extended to deal with multiple user 
classes.  In fact, for each origin, a forward pass is carried out for each user class based on the 
current flows x so that user-specific splits pu and satisfactions Su are determined.  Then, the 
balanced demands qrsu = Drsu(Srsu) are calculated and applied, together with the splits, in the 
backward pass for each class, to determine the auxiliary flows yu which, when summed over 
all user classes, give the total link flows y.  The calculation for optimal step length is identical 
to that in SUEED and, in particular, uses only the total link flows x and y. 
 
Hence, the extension to multiple user classes is straightforward both in terms of the 
formulation of the problem and its solution. 
 
10. Summary and conclusions 
The main achievement of the research has been to demonstrate that it is no more difficult to 
solve the SUEED problem than the SUE problem with fixed demand.  In particular 
 
• A new objective function for SUEED has been formulated whose properties (equivalence, 

convexity etc) have been formally established; 
• An efficient algorithm (the Balanced Demand Algorithm) has been developed which 

converges much faster than the previous conventional method of MSA; 
• The algorithm can be applied with any form of logit or probit stochastic loading process. 
• The calculations to perform the BDA require only quantities that are readily available in 

any existing assignment software.  Therefore, only minimal changes need to be made to 
such software to enable it to find the SUEED solution using the BDA. 
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• The objective function and the solution algorithm can both be readily extended to allow 
for multiple user classes (MUCSUEED).  
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