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Abstract

A novel method for the design of two-dimensional (2-D) and three-dimensional (3-D)
arrays with frequency invariant beam patterns is proposed. By suitable substitu-
tions, the beam pattern of a 2-D or 3-D arrays can be regarded as the 3-D or 4-D
Fourier transform of its spatial and temporal parameters. Since frequency invariance
can be easily imposed in the Fourier domain, a simple design method is derived.
Design examples for the 2-D case are provided.
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1 INTRODUCTION

In the past, broadband beamformers have been studied extensively due to their
wide applications to sonar, radar and communications [1–3]. Amongst them is
a class of arrays with frequency invariant beam patterns [4–10], which aim to
overcome the fact that for fixed aperture, the spatial resolution is proportional
to the signal frequency.

In order to achieve a frequency invariant response, we may optimize the array’s
coefficients directly with respect to the desired response. However, this is not
a practical approach for large arrays. Moreover, for two or three-dimensional
arrays, even for a moderate size, the number of coefficients to be optimized
can be extremely large and it is almost impossible to optimize them directly.
In the planar array design example provided later, the number of coefficients
is 32 × 32 × 32 = 32768. Another approach is harmonic nesting, where for a
number of frequency bands, different subarrays with appropriate aperture and
sensor spacing are operated [4,5,1,11]. This method can be based on frequency
bin processing [4,5,1] or a decomposition into octave bands by means of filter
banks [11]. Subsequently, each octave band or group of frequency bins lying
within one octave draws their inputs from one specific subarray. While the
resulting beam pattern is octave-independent, the spatial resolution within an
octave band is still dependent on frequency.

To achieve invariance within octaves, [8] combines harmonic nesting and filter-
and-sum beamforming together, whereby each element of a subarray is fol-
lowed by an FIR filter whose response is determined by the desired beam
pattern. Frequency bin dependent windowing of the array elements can lead
to a constant beamwidth for the main beam [1], whereby the same method
can be applied in the time domain with suitably designed lowpass filters fol-
lowing each sensor [7]. In both approaches [7,1], sensor elements close to the
array’s end positions are disemphasised at higher frequencies, thus yielding
a constant beam width and near frequency invariant beam pattern. Differ-
ent from the above methods, an approach employing the asymptotic theory
of unequally spaced arrays has been suggested in [6], where the relationship
between the beam pattern properties and array properties is derived and ex-
ploited for the broadband linear array design. More recently, a systematic
method has been proposed in [9,10], which can be applied to one-dimensional
(1-D), two-dimensional (2-D) and three-dimensional (3-D) arrays. In this new
method, each element in the array is followed by its own primary filter and
the outputs of these primary filters share a common secondary filter to form
the final output. Although the design for a 1-D array is relatively simple be-
cause of the dilation property of the primary filters, for higher-dimensional
arrays this property is not guaranteed, which makes the general design case
too complicated and no design examples for a 2-D array were provided there.
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Fig. 1. An equally spaced linear array with a sensor spacing of dx, where the signal
impinges from the direction θ.

In [12], a novel method was proposed to design a frequency invariant beam-
former with specific beam direction for a broadband linear array. In this cor-
respondence, we extend the idea in [12] to the problem of how to achieve a
general desired frequency invariant response with arbitrary beam pattern for
a linear array and then focus on the design problem of 2-D and 3-D arrays.
Starting from the desired frequency invariant beam pattern of an n-D array,
the proposed method uses a series of substitutions and an (n + 1)-D inverse
Fourier transform to achieve a frequency invariant beamformer design.

This paper is organised as follows. In Section 2, we will introduce the idea
for the linear array case by both reviewing and generalizing the method pro-
posed in [12]. In order to understand the 2-D and 3-D cases easily, a detailed
discussion about the linear array case will be provided. In Section 3 we will
propose the design procedure for the case of a 2-D array. As its extension
to the 3-D case is straightforward, details for the 3-D design are omitted. A
design example is given in Section 4 and conclusions are drawn in Section 5.

Note in the derivations presented in this paper we always assume that all of
the array elements are omni-directional and have a constant response over the
required frequency range. If the array elements have a frequency dependent
response, then under the reasonable assumption that all of them have the
same response, the frequency dependent response can be compensated using
a single filter at the output of the frequency invariant beamformer obtained
by the proposed method.

2 One-dimensional Array

An equally spaced linear array with a sensor spacing of dx is shown in Fig. 1.
The received signal by the m-th sensor is sampled with a sampling period
of T and then processed by a digital filter with coefficients d[m, n], n =
−∞, . . . ,−1, 0, 1, . . . , +∞. The response of the array is given by

P (ω, θ) =
∞
∑

m,n=−∞

d[m, n] e−jmω sin θ
c

dx e−jnωT . (1)
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Fig. 2. The possible location of the spatio-temporal spectrum of the impinging signal
on the (Ω1,Ω2) plane.

To avoid aliasing in both the spatial and temporal domains, T should be less
than half of the period of the maximum frequency ωmax of interest and dx

should be less than half of the wavelength λmax corresponding to ωmax. If we
assume the limit case for alias-free sampling, we have dx = λmax

2
= cT and

ωmaxT = π. We denote the normalised angular frequency by Ω = ωT . Then,
(1) can be rewritten as

P (Ω, θ) =
∞
∑

m,n=−∞

d[m, n] e−jmΩsin θ e−jnΩ . (2)

2.1 Design Idea

By substituting Ω1 = Ω sin θ and Ω2 = Ω, (2) yields

P (Ω1, Ω2) =
∞
∑

m,n=−∞

d[m, n] e−jmΩ1 e−jnΩ2. (3)

It is clear that the beam pattern of a linear array can be obtained by first
applying a 2-D Fourier transform to d[m, n] and then re-substituting Ω1 =
Ω sin θ and Ω2 = Ω. Now the spatio-temporal spectrum of the impinging signal
lies on the line Ω1 = Ω2 sin θ, which for a variable angle of arrival θ covers the
area between the two lines Ω1 = Ω2 and Ω1 = −Ω2 as shown in Fig 2.

For the beam pattern to be frequency invariant, the 2-D Fourier transform
P (Ω1, Ω2) must be a function of only θ, or more precisely sin θ. Let F (sin θ)
be such a frequency invariant beam pattern. In order to match this desired
beam pattern, the function P (Ω1, Ω2) must, after re-substituting Ω1 = Ω sin θ
and Ω2 = Ω, be identical to F (sin θ). In order to achieve this, the variables Ω1

and Ω2 must obey a specific dependency in the expression of P (Ω1, Ω2) for Ω
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Fig. 3. An example for a frequency invariant beam pattern.

to disappear. Note that if P (Ω1, Ω2) depends on Ω1 and Ω2, such that it can
be written as P (Ω1

Ω2

), then after the re-substitutions, Ω1

Ω2

will change to

Ω1

Ω2

=
Ω sin θ

Ω
= sin θ , (4)

thus eliminating any dependency on Ω.

2.2 Design Procedure

Given a desired frequency invariant beam pattern F (sin θ) as shown in Fig. 3,
which may be obtained by a narrowband beamformer design method, we can
obtain the 2-D response P (Ω1, Ω2) by the substitution P (Ω1, Ω2) = F (Ω1

Ω2
).

Thereafter, an inverse 2-D Fourier transform is applied to P (Ω1, Ω2), which
yields the time domain parameters of the desired beamformer. The precise
steps are outlined below:

Step 1. Let the desired beam pattern be F (sin θ). With the substitution
sin θ = Ω1

Ω2

, for (Ω1, Ω2) ∈ [−π; π) we have

P (Ω1, Ω2) =











F (Ω1/Ω2) |Ω1

Ω2
| ≤ 1

⋂

Ω2 6= 0

A(Ω1, Ω2) otherwise
. (5)

A(Ω1, Ω2) is an arbitrary function to define values for P (Ω1, Ω2) and it will
not affect the beam pattern because no signal exists in this area according to
Fig. 2. Note that P (Ω1, Ω2) is a function with a period of 2π. The response
of P (Ω1, Ω2) for the example of Fig. 3 is shown in Fig. 4 with A(Ω1, Ω2) = 0.

Step 2. Applying a 2-D inverse Fourier transform to P (Ω1, Ω2) results in an
infinite support of d[m, n]. It is difficult to obtain the result analytically;
therefore we can apply the 2-D inverse discrete Fourier transform (DFT) as
an approximation by sampling P (Ω1, Ω2). After applying an inverse DFT,
the resulting d[m, n] may need to be delayed along the discrete time index
n for causality and be truncated according to the number of sensors and
the digital filter length attached to each sensor.
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Fig. 4. The response of P (Ω1,Ω2) for the example of Fig 3.
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Fig. 5. An equally spaced planar array with sensor spacings of dx and dy respectively,
where the signal impinges from the direction (θ, φ).

3 Two-dimensional and Three-Dimensional Arrays

3.1 Two-dimensional Arrays

Fig. 5 shows the structure of a planar array with sensor spacings of dx and
dy respectively. With spatial indices l and m and the time index n, The 2-D
array response is given by

P (ω, θ, φ) =
∞
∑

l,m,n=−∞

d[l, m, n] e−jl ω
c
dx sin θ cos φe−jmω

c
dy sin θ sinφ e−jnωT . (6)

Assuming the same setup for spatial and temporal samplings as in Sec. 2 such
that dx = dy = λmax

2
= cT , we have
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P (Ω, θ, φ) =
∞
∑

l,m,n=−∞

d[l, m, n] e−jlΩsin θ cos φe−jmΩsin θ sinφe−jnΩ . (7)

Substituting Ω1 = Ω sin θ cos φ, Ω2 = Ω sin θ sin φ and Ω3 = Ω into (7) gives

P (Ω1, Ω2, Ω3) =
∞
∑

l,m,n=−∞

d[l, m, n]e−jlΩ1e−jmΩ2e−jnΩ3. (8)

The spatio-temporal spectrum of the impinging signal in the 2-D case lies
on the lines Ω1

Ω3

= sin θ cos φ and Ω2

Ω3

= sin θ sin φ, respectively. Based on the
analysis and design of the 1-D case, we perform the 2-D discrete design as
follows:

Step 1. Suppose F (sin θ cos φ, sin θ sin φ) is the desired beam pattern. With
the substitutions sin θ cos φ = Ω1

Ω3
and sin θ sin φ = Ω2

Ω3
, we obtain P (Ω1, Ω2, Ω3)

defined over an interval of one period Ω1, Ω2, Ω3 ∈ [−π; π) as

P (Ω1, Ω2, Ω3) =











F (Ω1

Ω3

, Ω2

Ω3

) |Ω1

Ω3

| ≤ 1
⋂

|Ω2

Ω3

| ≤ 1
⋂

Ω3 6= 0

A(Ω1, Ω2, Ω3) otherwise
. (9)

A(Ω1, Ω2, Ω3) is an arbitrary function to define values for P (Ω1, Ω2, Ω3) and
it will not affect the beam pattern because no signal exists in this area.

Step 2. Applying a 3-D inverse Fourier transform (or DFT as an approxima-
tion) to P (Ω1, Ω2, Ω3) returns the desired response d[l, m, n]. For a causal
and practical result, a truncation in the spatial l and m domains and the
temporal n domain is necessary with a possible shift in time n prior to
truncation in order to ensure a good approximation with a causal response.

3.2 Three-dimensional Array

With spatial indices k, l, m, and the temporal index n, the response of a 3-D
array is given by

P (ω, θ, φ) =
∞
∑

k,l,m,n=−∞

d[k, l, m, n] e−jk
ω sin θ cos φ

c
dx

· e−jl
ω sin θ sin φ

c
dye−ml ω cos θ

c
dze−jnωT . (10)

By selecting the array parameters as in the 1-D and 2-D cases, we obtain
dx = dy = dz = cT , Ω = ωT . The substitutions Ω1 = Ω sin θ cos φ, Ω2 =
Ω sin θ sin φ, Ω3 = Ω cos θ and Ω4 = Ω applied to (10) yield

7



P (Ω1, Ω2, Ω3, Ω4) =
∞
∑

k,l,m,n=−∞

d[k, l, m, n] e−jkΩ1e−jlΩ2e−jmΩ3e−jnΩ4 . (11)

Suppose F (sin θ cos φ, sin θ sin φ, cos θ) is the desired frequency invariant beam
pattern, we can use the substitutions sin θ cos φ = Ω1

Ω4

, sin θ sin φ = Ω2

Ω4

, and

cos θ = Ω3

Ω4
to get P (Ω1, Ω2, Ω3, Ω4). Then by a 4-D inverse Fourier transform,

d[k, l, m, n] can be obtained. Analogously to the 2-D array case, a design pro-
cedure can be developed for 3-D arrays, for which we omit the details here.

However, there are some other factors to be considered in the design. For a
3-D array, it is very likely that the sensors within the 3-D array will not be
able to receive the signals properly from some specific directions as the view
of those sensors has been blocked by the sensors at the outer layer. Similarly
reflection and diffraction can be a serious problem in the design for a real 3-D
array. Simply ignoring these problems in the design may cause unaccounted
degradation in the performance. But, when the size of each sensor is very small
compared to their spacings, the 3-D design result for the ideal situation may
provide a good approximation to the real problem or some useful guidance
when we design a 3-D array.

4 DESIGN EXAMPLE

4.1 Design example

To show the effectiveness of the proposed method, we give a design example
for a planar array with 24 × 24 sensors, each followed by an FIR filter with a
length of 24. It comprises of equally spaced sensors with dx = dy = cT = λmax

2

and has its main beam directed towards broadside. The desired beam pattern
is given by

F2D(sin θ cos φ, sin θ sin φ) =
1

49

3
∑

l=−3

3
∑

m=−3

e−jlπ sin θ cos φe−jmπ sin θ sinφ. (12)

It is easy to see that F2D(sin θ cos φ, sin θ sin φ) is the response of a narrowband
equispaced planar array with uniform weighting.

According to (9), we first obtain the response P (Ω1, Ω2, Ω3), and then set
A(Ω1, Ω2, Ω3) = 0 for the area outside the beam pattern’s domain. A 32×32×
32 3-D inverse DFT is employed and the 32 × 32 × 32 temporal coefficients
are subsequently truncated to the required array dimension 24 × 24 × 24.
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Fig. 6. The resultant beam pattern of the planar array at Ω = 0.4π.
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Fig. 7. The resultant beam pattern of the planar array at Ω = 0.9π.

The beam pattern resulting from the proposed design are four-dimensional and
it is impossible to show this 4-D pattern in one figure. Instead, some 3-D slices
of this response are given below. Figs. 6 and 7 are the planar array’s response to
the frequencies Ω = 0.4π and Ω = 0.9π, respectively. The frequency invariant
property can be shown by slices of its beam pattern at different values of
φ, i.e. for each value of φ, we draw its response to signals varying over the
parameters Ω and θ. Three representative slices are given in Figs. 8, 9 and
10 with φ = 60◦, 120◦, and 180◦, respectively, where for Ω ≥ 0.3π the beam
pattern is nearly frequency invariant.

Although the above example is for a response with a broadside main beam, the
proposed method can be applied to any desired responses, including the case
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with either a broadside main beam or an off-broadside main beam, or even no
specific beams in any directions. To design a beamformer with an off-broadside
main beam, we can simply use a narrowband beamformer design method to
obtain such a desired response with the required off-broadside main beam, and
then apply the proposed technique exactly in the same way as in the example
provided. However, to obtain such an off-broadside main beam, we may need
more sensors and filter taps because of some discontinuity problem when we
apply the inverse Fourier transform. This problem has been addressed in [13]
for the 1-D array design case, which is applicable to the 2-D and 3-D cases
too.

From the examples shown above, it can be seen that this method cannot
achieve a good frequency invariant property for the lower frequencies. The
reason for this phenomenon lies in the fact that the array aperture dimension
in terms of the signal wavelength gets smaller as the frequency is reduced.
Mathematically, the density of the spatio-temporal spectrum of the input sig-
nal is much higher at small values of Ω3. The low frequency region cannot
be represented as sufficiently as the higher frequency part when performing
the inverse DFT. To show this, we consider the linear array as an example.
According to Fig. 2, the incoming signals for a fixed angle θ lie on one of
the dashed lines in Fig. 11. When the inverse DFT is executed in order to
calculate the temporal coefficients, we sample the (Ω1, Ω2) plane on the grid
points given in Fig. 11. Clearly, in the whole shaded area, where signals may
exist, for low values of Ω2, the number of acquired samples is much lower than
that for large values of Ω2, which means the sampling resolution decreases
with decreasing Ω2. Therefore, with respect to frequency invariance, at low
frequencies the array resulting from the proposed design cannot perform as
well as at high frequencies. The DC component corresponds to the single point
(0, 0) on the (Ω1, Ω2) plane and hence the sampling density for the DC com-
ponent is always the same and cannot be increased, that is why we cannot
achieve a meaningful beam at DC, no matter how large the array dimension
is.

Note that the design example provided is based on the normalised frequency,
depending on the specific application, they can be transformed into the orig-
inal frequencies directly using the specified sampling frequency. For exam-
ple, for a microphone array system [2], suppose the maximum frequency of
interest is 4 KHz and the sampling frequency is 8 KHz, then the spacing
dx = dy = 34000/8000 = 4.25cm and this microphone array system will have
a good frequency response between 0.3 × 4 = 1.2 KHz and 4 KHz, as it has
a good frequency invariant response over the bandwidth [0.3π; π]. To extend
the frequency invariant range further, e.g. lower than 1.2 KHz, the dimension
of the array should be increased accordingly.
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Fig. 8. A slice of the beam pattern at φ = 60◦.
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Fig. 9. A slice of the beam pattern at φ = 120◦.

4.2 Discussions

4.2.1 Design using Fourier transform

The key to the proposed method is to transform the desired frequency in-
variant beam pattern F (sin θ) (for the case of equally spaced linear array, as
an example) into the frequency response P (Ω1, Ω2) of a normal 2-D digital
filter. Thus the design problem is simplified into the design of a 2-D FIR fil-
ter for 1-D arrays, 3-D FIR filter for 2-D arrays, and 4-D FIR filter for 3-D
arrays. we can employ any available generic FIR design method to obtain the
array coefficients and using Fourier transform is just one example. However, it
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Fig. 10. A slice of the beam pattern at φ = 180◦.
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Fig. 11. Sampling of the spatio-temporal spectrum of the signal for a linear array.

seems that the Fourier transform is the only available generic design method
for higher-dimensional FIR filter designs. We use the word “generic”, because
the desired 2-D, 3-D and 4-D FIR filter response in our proposed method is
not a lowpass, highpass or bandpass response, but with a very special shape,
as shown in Fig. 4 as an example. We can see from Fig. 4, that the FIR design
problem cannot be specified by normal FIR filter design parameters such as
the passband attenuation, stopband attenuation and cutoff frequencies, etc.

4.2.2 Choice of the window function for truncation

With the Fourier transform method, it is unavoidable to truncate the obtained
3-D or 4-D FIR filter coefficients to fit the dimension of the 2-D and 3-D arrays.
In the example, we used the rectangular window and as shown the result is
satisfactory. We tried to use some other window functions, like the hamming
window, but we find that it is not as good as the rectangular window. The
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reason for this is again that the shape of the desired FIR response is not a
normal lowpass one, but with a special shape.

4.2.3 Optimum sensor number and tap number for a desired response

Another question is, given the desired response, how many sensors and taps we
need to match this response. This is a difficult question and there is no analyt-
ical solution to it. By experiment, according to [12], the dimension of the array
should be at least three times the dimension of the narrowband beamformer
used to provide the desired frequency invariant response. We followed this rule
in our design example, where the dimension of the desired response given in
(12) is 7 × 7, and the design result has a dimension of 24 × 24 × 24, which is
a little larger than 21 × 21 × 21 (7 × 3 = 21). However, we can see in Figs. 8
and 9 that for lower frequencies Ω < 0.3π, the frequency invariant property is
not satisfactory. One solution to this problem is that, we sample the desired
response in a much larger number and after the inverse Fourier transform,
the resultant beamformer will have the same dimension as the samples. We
then truncate the results more and more until reaching the point where the
desired response cannot be matched within a specified error for the specified
frequency range.

5 CONCLUSIONS

We have proposed a novel method for the design of 2-D and 3-D frequency
invariant beamformers. For completeness, the design of the 1-D case was also
included with a generalization of the previously proposed frequency invariant
linear arrays. A design example was provided for the 2-D case, which shows a
satisfactory frequency invariant property for a large frequency band.
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