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Mesoporous matrices for quantum computation with improved response through redundance
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We present a solid state implementation of quantum computation, which improves previously proposed op-
tically driven schemes. Our proposal is based on vertical arrays of quantum dots embedded in a mesoporous
material which can be fabricated with present technology. The redundant encoding typical of the chosen hard-
ware protects the computation against gate errors and the effects of measurement induced noise. The system
parameters required for quantum computation applications are calculated for II-VI and III-V materials and found
to be within the experimental range. The proposed hardware may help minimize errors due to polydispersity of
dot sizes, which is at present one of the main problems in relation to quantum dot-based quantum computation.

I. INTRODUCTION

The current high level of progress in the design and man-
ufacture of low dimensional structures, has led to an increas-
ing interest in the development of solid state based quantum
computing1 schemes/hardware. Among the various proposals
are schemes which rely on spin and exciton qubits confined
in semiconductor quantum dots (QD)2, which can be manip-
ulated using ultra fast laser pulses3. Several of these optical
quantum computation schemes rely on exciton-exciton direct
Coulomb interaction, which provides the necessary coupling
to perform two qubit gates4,5. The presence of an exciton in a
QD produces a biexcitonic shift in the ground state excitonic
energy of a nearby QD. By driving a qubit at this shifted fre-
quency conditional operations can be performed4,5.

In order to carry out practical quantum computation it is
necessary to be able to address individual qubits. This poses
a problem for driving optically the response of self assembled
quantum dot ensembles (such as the ones grown by Stranski-
Krastanow techniques): in these ensembles the size of each
dot is one order of magnitude smaller than the laser spot ad-
dressing it. To this end it has been proposed to use energy
selective methods on isolated stacks of quantum dots (quan-
tum registers)4,5. However, it is still experimentally difficult
to control QD size and position in a satisfactory way, and QD
vertical stacks tend to form in the plane at random positions.
Additionally the size of the QDs within the stacks is hardly
controllable, resulting in the practical difficulty of creating the
desired sequences of energy selectable excitonic transitions.

In the past years, techniques and materials have been de-
veloped that may allow to solve most of the fabrication issues
associated with stacked quantum dot arrays. For example, ma-
terials like MCM-41 and SBA-15 consist of regular arrays of
pores forming a hexagonal lattice6,7,8. By simple variations
of the synthetic conditions, the pore diameter can be varied
from a few nm to tens of nm. The thickness of the oxide walls

separating the pores can also be varied, from about 1 nm to
ca. 6 nm9. While the first materials of this kind were based
on silicates, more recently matrices with a well-defined pore
size and pore arrangement have been reported also for high
dielectric constant materials such as ZrO2

10,11, and mixed Si-
Ti oxides12,13,14,15. Metal and semiconductor nanoparticles
can be grown within the pores of these materials with tech-
niques as varied as calcination16, photolithography17,18,19, and
electrochemistry20,21. With these techniques, superlattices of
quantum dots have been produced22. The electrochemical
route is probably the most interesting for the scheme that
we propose. The group of M. Natan has demonstrated that
stacked arrays of metals can be fabricated inside porous ma-
terials. Columns with a height of up to 15 µm made up by up
to 8 stacked layers have been obtained20. In the future, it may
be possible to fabricate composite materials made up of sev-
eral layers of semiconductors disposed on a hexagonal lattice.
The height of the dots within each layer will be controlled by
the processing conditions (e.g., electrodeposition time) while
the lateral size of the dots will be determined by the matrix
pore size. The coupling between dots in different pores will
be tuned by varying the wall thickness and/or by varying the
dielectric constant of the oxide making up the walls.

II. SYSTEM AND REDUNDANT ENCODING

We consider a system consisting of a TiO2 matrix in which
alternating layers of two semiconductors with widely differ-
ent band gaps are deposited. This provides a stack of QDs
(qubits), sandwiched between the larger band gap material
(barriers). The resulting system is depicted in Fig. 1(a) and
consists of an array of identical, hexagonally packed stacks
of quantum dots (columns). The band structure within each
column is sketched in Fig. 1(b). As shown in sec. III the dis-
tance between nearby columns, and the high dielectric con-
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stant (ǫ ≈ 100)23 of the matrix is sufficient to consider each
stack as isolated from its neighbors.

FIG. 1: Fig. 1: (a) The proposed system, an ensemble of stacks of
alternating QDs (dark shade) and barriers (light shade) and (b) the
band structure of each individual stack including the intrinsic field of
the materials.

We propose to use semiconductors which can assume
wurtzite crystal structure. This leads to a strong intrinsic
electric field24, which enhances coupling between excitons in
neighboring quantum dots within a stack5. We calculate the
built-in electric fields inside the quantum dots by considering
an alternating sequence of quantum wells and barriers: results
are in good agreement with experimental findings5, showing
that the lateral shape of the dot is mainly responsible for the
strong in-plane carrier confinement. Quantum computation
can then be carried out by using sequences of laser pulses,
as described in Ref. 3. Under the influence of the same laser
pulse, each column will act as an independent replica of the
same computational array. The advantage of the hardware we
propose is this intrinsic redundance.

A practical quantum computing scheme must include some
error-correction strategy for errors due to computation or
hardware faults. A possibility is to average over many individ-
ual occurrences of the same quantum algorithm, so that fluc-
tuations around the expected result are protected against. An
example of this is seen in nuclear magnetic resonance (NMR)
schemes25, where large ensemble of qubit arrays are natu-
rally available. In the current work we propose a somewhat
analogous, but solid state based, ensemble. The ensemble is
constituted by the quantum dot columns uniformly distributed
within the matrix. The advantage of our solid state ensem-
ble over NMR ones is twofold, namely the ability to initial-
ize all arrays in the ensemble to a known well defined state –
the ’no-exciton’ ground state – and the intrinsic order of our
ensemble, which e.g. allows for a certain degree of spatial
addressability. In this respect we mention that on the microm-
eter scale, different semiconductors can be deposited with
photolithographic techniques on areas of the matrix, to cre-
ate regular supra-arrays of selected geometries, e.g. hexagons
or stripes17,18,19. We foresee that this property might be used
to perform different calculations on different areas of the ma-

trix. The envisaged possibility of growing relatively long ar-
rays, i.e. quantum registers of the order of some tens of qubits
(QDs), is another advantage over NMR based systems.

III. THEORETICAL MODEL AND CALCULATED
PARAMETER RANGE

To check the feasibility of the proposed scheme, we model
each individual stack as a column of cylindrical quantum dots
with the same radius. To calculate the biexcitonic shifts,
the confining potentials are modeled as parabolic potentials
with the same characteristic widths as the expectation values√
< z2 > and

√
< r2 > of the cylindrical dots in the stack.

Nearby quantum dots are coupled by the biexcitonic shift ∆E
between ground state excitons. In order to calculate the cor-
rect parameter space, we approximate the biexcitonic shift
∆E as

|∆E| = | 〈ψ1ψ2|UC |ψ1ψ2〉 |, (1)

where ψi(rie, rih) = ψie(rie)ψih(rih) is the wavefunction of
the exciton in QDi in the single particle approximation, and
UC is the Coulomb interaction between the two excitons.

In the proposed hardware, the stacks are separated by the
matrix walls, which can currently be made up to 6 nm thick
whilst maintaining the order of the structure. To be negligible,
the inter-stack interaction must be much smaller than the in-
teraction between excitons within a column, i.e. |∆Etot

IC | <<
|∆E|. As we will show below, both II-VI and III-V based
systems can be designed so that there is more than an order of
magnitude difference between the two energy scales, whilst
mantaining the matrix walls within the experimental range.

If all the stacks in the ensemble were to compute correctly
– i.e. no computational errors – inter-stack interactions would
only renormalize the excitonic energies by the same amount
for each stack, which could be easily accounted for in the
computational scheme. However the event of computational
failure in a certain stack will induce a local, unwanted, shift of
the exciton energies in neighbouring stacks. Each individual
stack will interact with a certain number of such ’faulty com-
puting’ stacks. Therefore the magnitude of this unwanted shift
is the sum of the interaction energies of a resident exciton with
an exciton in each ’faulty computing’ stack. The stacks are
arranged in a hexagonal structure, which can be represented
as a series of concentric hexagonal shells surrounding each
stack. The i th shell consists of 6i stacks. The number of ex-
pected computational failures in the i th shell will therefore be
6i · (1 − p), where p is the probability of a successful compu-
tation for any individual stack. We estimate the total energy
shift due to interactions with all the ’faulty computing’ stacks
in the ensemble as:

|∆Etot
IC | =

ensemble
∑

i=1

6i(1 − p)∆EIC(ri) (2)

where ri = (rmax + rmin)/2 is radius of the i th hexagonal
shell, rmax and rmin being the maximum and minimum dis-
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tance of the shell from the central stack. ∆EIC is calculated
according to Eq. (1).
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FIG. 2: Fig. 2: Ratio of inter-column biexciton interaction energy,

to intra-column biexciton interaction energy ( |∆Etot

IC
|

|∆E|
) for different

probabilities of success p for any individual stack, against the number
of shells of neighbors included. a) GaN/AlN system with 6 nm walls,
b) CdSe/CdS system with 6 nm wall, c) GaN/AlN system with 2nm
walls, d) CdSe/CdS system with 4.5 nm walls.

In Fig. 2 we show the results for system parameters appro-
priate for implementing computational schemes. As a typi-
cal GaN/AlN system, we consider 5 nm porous radius with

QD height 3.2 nm and barrier width 2.4 nm; As a typical
CdSe/CdS system we consider 5 nm porous radius with QD
height 10.75 nm and barrier width 5 nm. It will be shown later
in this section that these parameters are indeed appropiates to
our scopes. Fig. 2(a) and Fig. 2(b) correspond to the GaN/AlN
and CdSe/CdS systems respectively with matrix wall thick-
ness of 6 nm. It can be seen that for GaN QDs (panel a), each
stack in the ensemble can be considered isolated for p = 0.66
and indeed for whichever p value (not shown). p = 0.66
corresponds to an average of two failures among the nearest
neighbors. For CdSe QDs (panel b) the ensemble can be con-
sidered isolated for p >∼ 0.86. Fig. 2(c) and Fig. 2(d) show
the same calculation but for different wall thicknesses. In the
GaN/AlN system even for matrix walls as thin as 2 nm and
p

>∼ 0.74, stacks can be still considered isolated (panel c); for
the CdSe/CdS system with matrix walls of 4.5 nm (panel d),
the individual stacks can be considered isolated for p >∼ 0.91
only. Our results show that that each system can be designed
so that individual stacks can be considered isolated for realis-
tic wall thicknesses and a probability of success for a single
stack which is reasonably low in CdSe/CdS and can be arbi-
trarily low in GaN/AlN.

The biexcitonic shift between neighbouring qubits within
a stack can be exploited to perform two-qubit gates using
multicolor train of laser pulses4,5,26. For performing opera-
tions on picosecond time scales – which is essential due to
the relatively short excitonic decoherence times – ∆E must
be of the order of a few meV. When choosing the correct pa-
rameter range however, additional factors must be taken into
consideration4. Larger ∆E can be induced by increasing the
height of the quantum dots. This increases the excitonic dipole
moments under the influence of the intrinsic electric field.
Care must be taken however in allowing at the same time for a
satisfactory oscillator strength. Finally the barrier width must
be large enough to ensure that single particle tunneling be-
tween stacked quantum dots is negligible on the relevant time
scales. The tunnelling time is calculated by taking the inverse
of the tunneling rate in Ref. 27.

Fig. 3 shows the range of barrier widths and QD (qubit)
heights which satisfy all of the above conditions. The con-
straints on the system paramaters are ∆E > 3meV , oscil-
lator strength µ > 0.15µzerofield, tunneling time τ > 1ns

and (
|∆Etot

IC
|

|∆E| ) < 0.1, where the latter is the ratio between the
inter-column to the intra-column exciton-exciton interaction
energy.

We have considered both II-VI and III-V heterostructures,
specifically CdSe QD and CdS barrier (panels a and b), and
GaN QD and AlN barrier (panel c). Panel a) shows the param-
eter space for a CdSe/CdS system with 4.5 nm matrix walls,
and p = 0.91. Panel b) corresponds to the same system but for
p = 0.93. It can be seen that the parameter space is reduced by
the requirement of negligible interaction among different QD
stacks. Decreasing p and/or the wall thickness increases the
inter-column interaction, so that the region in parameter space
corresponding to low values of ∆E is ’cut off’. For large p
and/or wall thickness the shape of the CdSe/CdS space would
be similar to the GaN/AlN case (panel c). For a wall thickness
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FIG. 3: Fig. 3: Parameter space of QD height and barrier width for
which ∆E > 3meV , oscillator strength µ > 0.15µzerofield, tun-

neling time τ > 1ns, and (
|∆Etot

IC
|

|∆E|
) < 0.1 for CdSe/CdS (panels (a)

and (b)) and GaN/AlN (panel (c) stacks of radius 5nm.

of 4.5 nm this occurrs at p ≈ 95. For reasonable values of p
and wall thickness, due to the low interstack coupling in the
III-V system, the request that different stacks do not interact
does not affect the parameter space. Our results show that for
both systems there is a wide range of dot sizes, which pro-
duce a suitably large biexcitonic shift in the absorption spec-
trum of the quantum dot. The compatible parameter space
in the II-VI system corresponds to taller QDs than the III-V
case. This is due to the intrinsic electric field being smaller in
the CdSe/CdS system than in GaN/AlN. Therefore larger dot
heights and barrier widths are needed to displace the electron
and hole wavepackets to provide sufficient coupling between
excitons.

Synthesis of II-VI QDs is generally speaking easier than
synthesis of of their III-V counterparts. However it has been
shown28 that due to the electron-hole exchange interaction the
ground excitonic state of materials with wurtzite structure is
optically passive, the separation between bright and dark exci-
ton being too large in II-VI systems to be negligible in respect
to the energy scales we consider. To overcome this problem,
we suggest to consider an n-doped structure such that each

quantum dot traps a single electron. As demonstrated exper-
imentally for III-V materials29, the exchange splitting can in
this way be switched off. This would allow for implementa-
tion of schemes such as the one described in Ref. 26, where
the spin of the excess electron is the qubit and excitons are
used for two qubit gating. It has been shown that for dots in
the strong coupling regime, the wave function of the ground
state exciton is not significantly affected by the presence of an
extra electron26. Its effect on the biexcitonic shift, which de-
pends on the shape of the excitonic wave functions, can then
be safely neglected. Experimentally a possible way of doping
each dot with exactly a single electron has been found by dop-
ing a QD ensamble with an electron density which matches
the dot density. Due to the strong Coulomb repulsion, double
occupancy of the dot is avoided. A similar solution could be
used to dope the dots in our structure. We envisage an alter-
native method, which could improve also detrimental stochas-
tical effects. We suggest to apply a bias between the top and
the bottom of the structure. In this way each dot would be
occupied by exactly one dot starting from the bottom and up-
wards. For not too strong biases Coulomb blockade would
in fact prevent more than one electron occupaying each dot.
Once the process has been completed, the bias would be re-
moved and the computational process could begin. As a pos-
sible alternative to doping, we can consider CdSe QDs with
radii greater than 5nm, for which the exchange splitting be-
comes very small28. These QDs fit well into the parameter
space described in Fig. 3.

We underline that both II-VI and III-V semiconductor struc-
tures can be grown in mesoporous matrices with present
technologies16,21,30.

IV. PROTECTION AGAINST ERRORS AND NOISE
THROUGH REDUNDANT ENCODING

As shown above, each individual stack in the structure we
propose will behave as an isolated computational register in
which quantum operations such as entanglement can be car-
ried out using an appropriate sequence of (sub)picosecond
laser pulses4,5,26. An appropriate modulation of the QD
heights (done as the stack is grown) will result in a differ-
ent ground state exciton energy (or sequence of energies31)
for each QD in a stack. This allows each qubit in a stack to be
selectively addressed and arbitrarily rotated around the Bloch
sphere by laser pulses of the appropriate frequency, duration
and phase. Similarly conditional two-qubit operations (e.g.
entanglement) can be performed4,5,26.

Our hardware could be used to implement quantum algo-
rithms. The final phase of the algorithm would be to make
a measurement on the qubits, generally in the computational
basis, to obtain the ’answer’. The measurement of an n qubit
output, consists of n individual measurements, each of which
will be found in either the |1〉 or |0〉 state. For each indi-
vidual qubit, being part of an ensemble provides protection
against computational errors and measurement noise. In the
following discussion we will focus for simplicity, on a single
qubit output and assume that before measurement, the qubit is
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stored in a particular QD which we will refer to as a ’storage’
qubit27. For simplicity we will think of it as the upper QD in
the stack, though this is not a necessary condition.

After initial preparation (all qubits are initialized in the |0〉
state, i.e. no excitons present), the driving laser beam will
illuminate a circular section of hexagonally packed stacks:
this ensemble ofN stacks represents our redundantly encoded
ensemble, since the train of laser pulses will simultaneously
drive the same operations on all the stacks of the ensemble.
Finally the result from the ensemble is stored in the N upper
(storage) qubits and may be read off.

In the event of a perfectly successful algorithm with no er-
rors, the entire ensemble of storage qubits would all be in the
correct state, which we will assume without loss of generality,
to be the |1〉 state. In reality however, there is a possibility
that the quantum algorithm will fail on any one stack. This
leads to n ≤ N storage qubits being in the correct state after
the computation. Let us assume that in measuring the stor-
age qubit ensemble, the output signal (e.g. photons from ex-
citonic recombination, variation of current through a narrow
contact...) is proportional to n/N and in particular a signal I
will be measured within the range Imin (corresponding to all
storage bits being in the ’wrong’ state, e.g. the |0〉 state) to
Imin + ∆I (corresponding to the whole ensemble in the |1〉
state). In the hypothesis that the quantum registers (columns)
are uncorrelated, the actual signal would be then I = ∆In/N
where we have set the zero signal at Imin. There will also be
fluctuations about this value due to noise induced during mea-
surement. In the following we derive a simple relationship to
estimate the required ensemble size to correct for given error
probabilities. In particular we want to demonstrate that with
a modest ensemble of N ≈ 100 (corresponding to the area
illuminated by a laser at optical frequencies, with a spot of
diameter ∼ 103Å), it is possible to correct for sizable errors
both in the computation and due to measurement noise.

Let us assume that the probability p of a successful com-
putation in an individual stack of qubits is constant across the
entire ensemble. For an ensemble of N stacks of qubits, the
probability distribution of obtaining n correct answers is bi-
nomial

P (n) =

(

N
n

)

pn(1 − p)N−n (3)

If we assume that in the event of a failure the state of the
qubit is found to be in the |0〉 state with probability q, the
probability distribution becomes

P (n) =

n
∑

i=0

(

N
n− i

)

pn−i(1 − p)N−(n−i) ·
(

N − (n− i)
i

)

(1 − q)iqN−n (4)

where i denotes how many failed computations have been ran-
domly assigned the correct output. This can be shown to be

s
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FIG. 4: Fig. 4: Minimum ensemble size vs probability p with q =
1/2 and ms = 0. Inset: Minimum ensemble size vs noise ms for
p = 0.8 and q = 1/2.

equal to

P (n) =

(

N
n

)

[p+ (1 − q)(1 − p)]n[q(1 − p)]N−n, (5)

which is of the same form of Eq. (3). The shift of the mean
value and standard deviation, from those of the probability
distribution (3) is due to the fact that for a binomial distribu-
tion, even in in the event of a failure there is a finite prob-
ability (1 − q) of obtaining the correct result. For a large
ensemble of dot stacks, the binomial distribution can be ap-
proximated by a Gaussian distribution. The probability dis-
tribution (5) under the Gaussian approximation yields a mean
value of n̄ = N [1 − q(1 − p)] and a standard deviation of
σ =

√

N [1 − q(1 − p)][q(1 − p)]. If the size of the ensemble
N satisfies

N

2
< n̄(N) − kσ(N), (6)

then the result I > ∆I/2 (i.e. n > N/2) from a single mea-
sure of the ensemble will indicate that the answer from the
computation is |1〉 (|0〉 otherwise) with probability 99.7% for
k = 3.

In Fig. 4 we plot the minimum value of N which satisfies
Eq. (6) for k = 3 in respect to the probability of individ-
ual success p. Here we assume no systematic bias, so we set
q = 1/2. The figure shows that, due to the redundant encod-
ing, even when each individual stack computes correctly with
a probability as low as p = 0.3, an ensemble of N <∼ 100
stacks is sufficient for measuring the correct answer with such
a high confidence. As discussed in section III, the values of p
for which our computational scheme applies depend on the
thickness of the matrix walls and system materials. For a
CdSe/CdS system with 4.5 nm matrix walls the computational
scheme only works for p > 0.912, however for a GaN/AlN
system with 6 nm walls the scheme is valid for all p.

Let us now consider that experimentally there will always
be a certain amount of noise associated to the measurement,
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and discuss how the redundant encoding can help in tolerating
this source of error. We can describe this noise by modifying
Eq. 6 as

N

(

1

2
+ms

)

< n̄(N) − kσ(N) (7)

where ms = ∆Inoise/∆I and ∆Inoise ≡ 2max{|I −
∆I(n/N)|}. Again, if N satisfies Eq. (7) with k = 3, then
a measured signal I > ∆I/2 ensures that the result of the
algorithm is |1〉 with a probability of 99.7%. By rearranging
Eq. (7) we obtain the condition

N >
k2[1 − q(1 − p)]q(1 − p)

{ 1
2 +ms − [1 − q(1 − p)]}2

(8)

with
(

1

2
−ms

)

> q(1 − p). (9)

Setting ms = 0 in Eqs. (8) and (9), gives a lower bound on
the ensemble size for the case of a noiseless measurement.
For ms → 1/2 − q(1 − p) the size of the ensemble needed
to correct for this noise tends to infinity. The inset of figure 4
shows that for an ensemble of N=100 stacks, for p = 0.8 and
q = 1/2, the system is robust even for a measurement noise

as high as 30%.
We underline that, using the proposed fabrication method,

N ≈ 100 corresponds to the smallest laser beam spot, solving
the problem of spatial addressability in QD-based quantum
computing schemes.

V. CONCLUSIONS

A scheme for implementing quantum algorithms with im-
proved response through redundancy has been presented. Our
proposal is based on a mesoporous matrix which provides an
uncorrelated ensemble of computational arrays. Our method
protects against both computational errors and measurement
induced noise, and, using relatively small ensemble sizes, cor-
rect answers are found with probability greater than 0.997.
Our hardware and computational scheme alleviate many is-
sues of quantum computing schemes based on semiconduc-
tor QDs. In these schemes, a major error source is the un-
controlled polydispersity of dot sizes due to the experimental
growing techniques. This directly affects the quantized energy
levels, detuning them from the ideal ones. We foresee that our
scheme can provide a feasible way for containing this source
of error.
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