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MODELLING THE IMPACT OF ALTERNATIVE FARE STRUCTURES ON 
TRAIN OVERCROWDING 

 
Gerard Whelan* and Daniel Johnson 

Institute for Transport Studies, University of Leeds, UK 
 

Abstract 
The Strategic Rail Authority (SRA) provides the backbone to rail regulation in 
Great Britain. As part of its responsibilities, the SRA monitors overcrowding on 
trains which it measures in terms of the proportion of passengers on trains in 
excess of the seat capacity for longer distance services, and with an 
allowance for standing passengers on shorter journeys of less than 20 
minutes. Overcrowding on Britain’s railways fell during the early 1990s but 
has been on the increase since 1996 with particularly acute problems in the 
morning peak for services travelling to London. In a study conducted on 
behalf of the SRA we developed the PRAISE rail operations model to include 
penalties for overcrowding based upon journey purpose, journey time and 
degree of overcrowding. Using demand, fares and timetable information for an 
actual case study route, we examine how fares and ticketing restrictions can 
be set to manage demand throughout the day without significantly reducing 
the overall demand for rail travel.  
 
Keywords: rail passenger simulation model, train overcrowding, yield 
management. 
 
 

1. Introduction 
Crowded conditions on board trains are not only uncomfortable for 
passengers; they signify lost revenue to operators and provide a constraint to 
the Government’s rail passenger growth targets. Difficulties in procuring 
additional stock, restrictions to train length and capacity constraints on track 
mean that the provision of additional seating capacity is not always feasible 
and alternative ways to manage demand must be sought. Because train 
loadings typically vary throughout the day, with the morning and evening peak 
periods experiencing high demand and the off-peak experiencing lower 
demand, it is common practice to use ticket restrictions and peak period 
pricing to manage demand.  
 
It is the aim of this paper to report on the development of a simulation model 
to show the impact of crowding on rail demand and to test alternative ticketing 
strategies to deal with the problems of overcrowding. The remainder of the 
paper is structured as follows. In Section 2 the structure of the PRAISE rail 
operations model is described and a discussion of passengers’ preferences 
and relative valuations of overcrowded conditions is presented. Section 3 
provides a case study application of the model and examines a set of 
alternative strategies from the point of view of the operator and the consumer. 
Finally, Section 4 provides a summary and draws some conclusions. 
 

                                                 
* Author for Correspondence, email: gwhelan@its.leeds.ac.uk, telephone: +44 (0)113 3435347 



2. Methodology 
The PRAISE (Privatised Rail Services) model was developed at the Institute 
for Transport Studies, University of Leeds to look at the potential for open 
access competition following the privatisation of rail services (Whelan et al, 
1997, Preston et al, 1999). The model was initially developed to assess 
competition on the Leeds to London corridor but it has subsequently been 
applied to other routes in the UK (Gatwick Express) and overseas (Stockholm 
to Gothenburg). More recently, the model has been re-written and developed 
on behalf of the Strategic Rail Authority as a Windows software package 
capable of assessing demand and costs for small networks of stations 
incorporating the services of up to 5 operators, each with 10 different ticket 
types (Whelan, 2002). The software comprises a demand model, a cost 
model and an evaluation model. 
 
The demand model has a hierarchical structure and works at the level of the 
individual traveller. Using information on passenger’s valuation of journey 
attributes, such as journey time, together with elasticity estimates, the lower 
level of the model assigns a probability that a given traveller will choose a 
particular ticket and outward and return service combination. By aggregating 
the ticket and service probabilities over a representative set of simulated 
passengers, the model is able to forecast market shares for each service and 
ticket combination. To allow for the fact that changing fares and services will 
change the overall demand for rail, the upper level of the model is structured 
to allow the rail market to expand or contract according to the overall level of 
service. By assessing the outward and return portions of a journey, together 
with information on ticketing restrictions (departure time, advanced purchase, 
transferability between operators), the model is able to forecast ticket revenue 
by operator.  
 

The cost model employs a cost accounting approach incorporating costs that 
are related to operating hours, costs that are related to train kilometres and 
fixed costs. Costs can be varied by operator and rolling stock type and can be 
combined with estimates of revenue to generate forecasts of operator 
profitability.  
 
The model generates output that can be used in a formal appraisal system. 
This output includes passenger demand, passenger kilometres, operator 
revenue, operator costs, profitability, user benefits (consumer surplus), 
overcrowding, and diversion to and from other modes in terms of passenger 
numbers and passenger kilometres.  
 
It is the demand model that is of particular interest to this study and therefore 
it is described in detail below. 
 
2.1 Demand Model Structure 
When making a rail journey, a passenger will often have a choice from a 
number of different services and ticket types. For example, they could choose 
to travel in the peak using an unrestricted ticket or in the off-peak using a less 
expensive restricted ticket. 
 



If we know when the passenger would ideally like to travel we can estimate a 
generalised cost for each option (service and ticket combination) available 
and assign each a probability that it will be chosen: 
 

r|nrn P'PP =          (1) 

 

Where  is the probability of choosing option n,  is the probability of 

choosing rail and the probability of choosing option n conditional on the 

choice of rail.  
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The probability that an individual will choose a given service and ticket 
combination conditional that they chose rail is: 
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Where  is the utility of option n, which is given by: nU
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Where 

nGC  is the Generalised Cost for option n  

tASC  is an Alternative Specific Constant for ticket t  

 

For a given value of , the scale parameter associated with each ticket type, 

 governs the sensitivity of choice to changes in the generalised cost. As the 

value of  approaches zero, all N options have an equal chance of being 

chosen whereas as the value of 

rλ

tλ

tλ

tλ  increases, the probability that the option 

with the lowest generalised cost is chosen tends to one. The value of tλ  

therefore helps determine the elasticity of demand to changes in generalised 
cost. 
 

The upper level of the model is concerned with mode choice and therefore the 
overall size of the rail market. This decision is modelled by way of an 
incremental logit model and is based on the overall attractiveness of rail 
services relative to other modes and not travelling at all. We have chosen to 
use the incremental specification of the logit model so we can hold factors 
external to the rail market constant during the modelling process. The model 
pivots around existing rail market shares as the overall attractiveness of rail 
changes.  
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Where 

rP′  is the new probability of choosing rail 

rP  is the base probability of choosing rail 

rU  is the composite cost of rail, ∑
∈

λ=
N'n

'nrr )Uexp(lnU  

rUΔ  is the change in the composite cost of rail from the base period 

rλ   is an index of dissimilarity of alternatives included in the rail nest. To be 

consistent with the theory of utility maximisation 10 r ≤λ< . 

 
The choice modelling hierarchy is repeated for a sample of individuals drawn 
from known desired departure time profiles. The market share for each option 
(service and ticket type) is taken as the average probability for each option 
over all individuals in the sample.  
 
2.2 Demand Model Calibration 
There are three stages to the calibration of the demand model. The first 
involves the estimation of the generalised cost of travel for each return service 
and ticket combination. The second involves setting the ‘scales’ of the choice 
model so that it replicates known elasticities of demand. The third involves 
calibrating ticket specific constants to ensure that the base market shares can 
be replicated. The three calibration stages are set out in more detail below. 
 
2.2.1 Estimation of Generalised Cost 
For a given individual, the generalised cost of each option is given as:  
 

CP)GJT*vot(FGC nnn ++=       (5) 

 
Where 
F   is the return fare  
GJT  is the generalised journey time (minutes) 
vot  is the behavioural value of time (pence per minute) 
CP  is a crowding penalty (pence) 
 
The generalised journey time is expressed as: 
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Where 
IVT  is in-vehicle time (minutes) 
AT  is schedule adjustment time (minutes). This is the difference between a 

passenger’s most desired time of departure and the actual timetabled 
departure time. 

vat  is the behavioural value of schedule adjustment time (pence per 
minute) 

IP  is an interchange penalty (minutes) 
OVT  is out of vehicle time (minutes) 
 



The attributes included within the generalised cost expression are for the most 
part well known and there is a wealth of literature providing evidence on 
relative attribute values (see for example Wardman, 2001). There are 
however three important aspects of this function which require some 
discussion.  
 
(i) Return Services 
The first is that the generalised cost expression relates to a return journey and 
therefore contains generalised cost elements for both the outward and return 
legs. This feature is important when there is more than one operator and 
tickets are operator specific.  
 
(ii) Value of Adjustment Time 
When selecting a service on which to travel, it is unlikely that passengers will 
consider all possible services, but rather they are likely to select trains from a 
given timeframe around their most desired departure time. To accommodate 
this feature, a non-linear value of adjustment time function that relates the 
value of adjustment time to the level of adjustment time has been specified: 
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Where 
vat  value of adjustment time (pence per minute) 
AT  adjustment time (minutes) 
β  base value of adjustment time (minutes) 

θ  threshold parameter (minutes) 
m  power term 
 
The expressions in square brackets in equation 7 are conditional statements 
that equal one if the condition is met, else they are equal to zero. When 
adjustment time is below the threshold (θ ) the value of adjustment time is 
simply equal to β , however, when adjustment time is greater than or equal to 

the threshold the value of adjustment time increases with adjustment time. 
 
With a high value for m, the value of θ essentially defines the size of the 
window of opportunity in which individuals are prepared to consider alternative 
options. Opportunities outside this window would have a much higher vat and 
consequently a higher generalised cost, leading to a lower probability. 
Although we do not have empirical evidence to determine this threshold, we 
believe that for relatively frequent services values of m=6 and θ=30 are 
sensible. This effectively creates a one-hour window of opportunity to travel. 
There are of course likely to be some people with considerably more flexibility 
in the time they choose to travel and it would be interesting to undertake 
additional model runs in which the model parameters are drawn from a 
distribution. Although this specification is more realistic the associated 
computer run times are too prohibitive at present. 
 
(iii) Crowding Penalties 



Passengers on crowded or overcrowded trains will typically experience 
discomfort associated with having to stand or sit in cramped conditions. The 
level of discomfort varies according to whether the passenger is sitting or 
standing, the degree of overcrowding, the length of the journey and the type 
of journey being made (e.g. commuters may be used to overcrowding on 
short journeys). Much of the published research on passengers’ valuation of 
overcrowding uses stated preference techniques to assess the trade-off 
between fares, times and crowding to derive monetary or time estimates of 
overcrowding penalties. A summary of the findings of this research is 
presented in Table 1. 
 
INSERT TABLE 1 ABOUT HERE 
 
The penalties vary widely across the studies, but it is clear that those 
passengers who are left standing through overcrowding suffer much more 
discomfort than those seated in cramped conditions. 
 
Penalties vary depending on the type of traveller. Commuters, who may be 
used to overcrowding on short journeys, have the lowest penalties. Business 
travellers, who may have to work on-board, suffer the highest penalties.  
 
2.2.2 Setting the Scale of the Model 
The demand model described in section 2.1 includes a set of scaling 

coefficients (λ values) which govern the sensitivity of demand to changes in 
generalised cost. These scales can be set to replicate known fare and GJT 
elasticities of demand. 
 
The elasticity of demand for ticket type t with respect to the GJT for ticket type 
t is given as: 
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Where is the probability of choosing ticket type t conditional on rail being 

chosen. 

r|tP

 
The cross elasticity of demand for ticket type s with respect to the generalised 
journey time for ticket type t is given as: 
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As improvements to generalised journey time will, by and large, impact all 
ticket types, the GJT elasticities can be thought of as ‘conditional elasticities’ 
which are expressed as: 
 

∑
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Given that we know the base market shares for rail and for each ticket group 
and that we can estimate a value for GJT for each ticket group, we can set the 

values of  so that the conditional elasticities of demand for each ticket type 

are equal to those suggested by empirical research. 
tλ

 
Whilst the conditional GJT elasticities for each ticket type (equation 10) are 

independent of the nesting parameter rλ , the coefficient has important 

implications for the size of the own (equation 8) and cross (equation 9) 
elasticities of demand, and to the sensitivity of the model to changes in the 
size of the choice set (i.e. the addition or withdrawal of choice options). The 

calibration of is achieved via a trial and error process in which the 

elasticities of demand to GJT and to fare are set to replicate known values. 
rλ

 
2.2.3 Replicating the Base Market Shares 
Following the estimation of the generalised cost of each option and the 
calibration of the scaling coefficients, the model is applied to generate 
forecasts for each operator and ticket type. To ensure that the model is able 
to correctly forecast ticket market shares in the base period, a full set of model 
constants are derived using equation 11 and inserted in the generalised cost 
expression (equation 5). 
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Where 

base
tASC  is the base constant for ticket type t  
new
tASC  is the new constant for ticket type t 

tP′   is the forecast share of ticket type t  

tP   is the actual share of ticket type t  

 
The alternative specific constants for each ticket type are initially set to zero 
and the model is then run to generate forecasts of the share of each ticket 
type. These forecasts are then compared with actual ticket sales data and a 
new set of model constants derived. These constants capture the impact of 
the range of factors that influence passengers’ choice of tickets that are not 
already included within the generalised cost expression. 
 
2.3 Application of the Model to Forecast Demand 
The way in which the model is applied is outlined in the step-by-step 
procedure shown below: 
 

(i) For each origin-destination pair on the network in a given operational 
period (e.g. a typical weekday), the model generates a sample of i 
simulated individuals with given tastes and desired outward and return 
leg departure times. Tastes are expressed in terms of relative journey 
attribute valuations (e.g. the value of time) and elasticities of demand. 



 
(ii) For each simulated individual, the model estimates the generalised 

cost of travel for each available ticket type and return-service 
combination using equation 5, and assigns each travel option a 
probability that it will be chosen using equation 2. 

 
(iii) The market shares for each service and ticket type are then estimated 

by averaging the derived probabilities over all simulated individuals. 
 

(iv) To allow for the fact that changing fares and services will change the 
overall demand for rail, the upper level of the model (equation 4) is 
structured to allow rail’s market share to expand or contract according to 
the overall quality of rail, as defined by its composite cost. 

 
(v) The number of individuals using each travel option is then estimated by 

factoring the relevant market share information (steps iii and iv) by the 
base period demand, which is defined by the user. 

 
(vi) Using load factors based on number of individuals on a particular 

service, an overcrowding penalty is calculated for each service. Steps ii 
to v are then repeated, incorporating the overcrowding penalty for 
services into the generalised cost calculation of step ii. 

 

3. Case Study 
To keep the case study example simple, we have defined a core network of 
services operating between two regional rail stations in the North of England. 
In the interest of commercial confidentiality the stations are simply referred to 
as Station A and Station B. 
 
Table 2 provides a summary of the case study network characteristics. The 
timetable, fares, ticket restrictions, base demand and market share 
information were all derived from information kindly supplied by the Strategic 
Rail Authority. The fare for each ticket type is specified in terms of a return 
fare equivalent and ‘reduced’ tickets are specified to be unavailable between 
0700 and 0900 and between 1600 and 1800. Passenger preferences 
including the value of time, value of adjustment time and crowding penalties 
were set to be equal to those recommended in the Passenger Demand 
Forecasting Handbook (ATOC, 2002) and the GJT elasticities and desired 
departure time profiles taken to be equal to those used in the commonly used 
MOIRA rail demand model (AEAT, 2002).  
 

INSERT TABLE 2 ABOUT HERE 
 
Following calibration, the model was applied to estimate demand for each 
service and ticket type and the results compared with actual guard count data 
showing the number of passengers on board each service. The findings of 
this validation are encouraging and are presented in Figures 1 to 3.  Figures 1 
and 2 show a comparison of the model estimates with guard count data and 
the assumed desired departure time profile. 
 



INSERT FIGURE 1 ABOUT HERE 
 
Figure 1 shows the demand profiles for traffic between Station A and Station 
B. As would be expected, the desired departure time shows greater demand 
in the peaks but this latent demand is ‘priced-off’ by the higher priced tickets. 
In this instance it appears as though the operator has set the fare differentials 
between the peak and off-peak and the ticket restrictions at reasonable levels 
to manage overcrowding although as the assumed capacity of trains was set 
at 250 seats there are still some problems with overcrowding in the peak 
periods. A comparison of the forecasts with the guard counts is promising, 
with forecast demand closely mapping actual demand.  
 
INSERT FIGURE 2 ABOUT HERE 
 
Forecasts of demand profiles for Station B to Station A (Figure 2) are not as 
encouraging as forecasts for Station A to Station B. This might be expected 
given that the guard counts are more capricious and there appears to be 
bigger differences between the assumed desired departure time profile and 
the guard count data. 
  
To illustrate how demand is allocated between ticket types throughout the 
day, Figure 3 shows a plot of the demand by ticket type throughout the day. 
This plot is given for services between Station B and Station A and shows 
how the imposition of ticketing restrictions influences the distribution of ticket 
sales. 
 
INSERT FIGURE 3 ABOUT HERE 
 
Following successful calibration and validation, the model was subsequently 
applied to generate forecasts in a number of scenarios to examine the 
sensitivity of demand to changes in train seating capacity, ticketing restrictions 
and fare differentials between ticket types. The focus of the model runs is to 
examine alternative ways to manage overcrowding. Key model results are 
presented in Table 3. 
 
INSERT TABLE 3 ABOUT HERE 
 
To illustrate the influence of passenger overcrowding on rail demand the first 
two scenarios in Table 3 examine the sensitivity of demand to changes in 
seating capacity. Following a 10% reduction in seating capacity there is a 
modest increase in overcrowding (peak train loading increases from 130% to 
138%) and a modest 5% reduction in demand. More substantial cuts in 
seating capacity generate more significant changes to peak load factors 
(174%) and correspondingly high reductions in demand (13%). Including 
crowding penalties in the model at the levels recommended by the Passenger 
Demand Forecasting Handbook (ATOC, 2002) is shown to stimulate a 
significant demand response to overcrowding. If these figures are to be 
believed then there are potentially large gains to demand and revenue by 
minimising the level of overcrowding. 
 



Widening the peak period ticket restrictions from ‘0700-0900 and 1600-1800’ 
to ‘0700-0930 and 1530-1800’ reduces the overall demand for travel by 1% 
but increases operator revenue as demand for full fare tickets increases. 
Further changes to ticketing restrictions to ‘0630-0930 and 1530-1830’ are 
forecast to lead to more substantial reductions in demand (2%) and marginal 
gains in revenue. Peak train loading is largely unaffected by the change to 
ticket departure time restrictions. 
 
More substantial reductions to train overcrowding can be achieved by 
increasing the fare differentials between peak and off-peak travel. Increasing 
the price of full fare tickets by 10% and 30% reduces peak loading from 130% 
to 126% and 119% respectively. These price changes have substantial 
impacts on the demand for full fare tickets but as significant proportion of the 
‘priced off’ traffic transfers to ‘reduced’ and season tickets the overall impact 
on demand and revenue is modest. Alternatively, fare differentials between 
the peak and off-peak can be increased by discounting off-peak fares. Here, 
discounts of 10% and 30% generate only small reductions in peak load 
factors at the expense of fairly significant reductions in revenue.  
 
At the current elasticity levels, reductions to off-peak fares generate 
passenger benefits at the expense of operator losses, and increases to peak 
fares generate operator gains at the expense of passenger losses. Combining 
the two strategies allowing for fare increases in the peak and fare reductions 
in the off-peak generate significant reductions in overcrowding with marginal 
changes to demand and operator revenue.  Under the current regulation, 
peak fares are regulated to limit fare increases to less than RPI+1%. This 
policy is aimed at protecting passengers where operators have market power 
but may restrict the potential of using price discrimination to manage demand 
levels throughout the day.  
 
4. Conclusions 
This paper reports on the development of the PRAISE rail operation model to 
incorporate the demand response to overcrowding on individual services. The 
model simulates the choices of individual travellers and assigns a probability 
that each traveller will choose a given service and ticket combination. The 
model employs widely used attribute valuations and is calibrated to replicate 
known aggregate elasticities of demand.  The model is applied to data for a 
regional inter-urban route in the North of England and validated to guard 
count data to ensure that it can adequately forecast demand at the individual 
service level.   
 
Following validation, the model was used to assess the suitability of 
alternative ticketing strategies to help maximise revenue and spread demand 
throughout the day. Of the policies tested we found that it was easier to price 
passengers out of the peak period rather than entice them away by reducing 
the off-peak fare and that revenue neutral solutions can be found using a 
combination of fare increases in the peak and fare reductions in the off-peak. 
These strategies are however limited by the existing level of fares regulation. 
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Figure 1: Station A to Station B Demand 
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Figure 2: Station B to Station A Demand 
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Figure 3: Station B to Station A Demand by Ticket Type 

 



Table 1: Summary Review of Overcrowding Penalties (pence per minute) 

Study  
ITS  
(1987) 

MVA/ITS  
(1989) 

HCG/Accent 
(1997) 

MVA  
(2000) 

      
Seated 4.8 1.3 to 8.7 0.9 to 11.0 89.9 to 123.5 

Business 
Standing 58.6 to 92.0 34.7 to 67.5 29.0 to 74.0 319.3 

      
      

Seated  0 to 2.4 0 to 7.0 8.3 to14.0 
Commute 

Standing  6.5 to 9.5 2.4 to 12.5 37.9 
      
      

Seated 1.8 0 to 3.8 0.3 7.7 to 15.3 
Leisure 

Standing 24.3 to 41.3 25.3 to 43.9 14.0 24.1 to 31.3 
      
      

Notes  
Intercity 
London Based 

Long Distance 
Regional 
Services 

Intercity 
London Based 

Suburban and 
Intercity 
London Based 

 



 

Table 2: Network Characteristics and Modelling Assumptions 
Full £4.55 

Reduced £3.20 Return Fare 

Season £3.30 

   

Full  60% 

Reduced 37% Shares 

Season 3% 

   

Number per day 46 
Services 

Core Frequency 3 service per hour 

 Journey Time 25 minutes 

  

Demand (return Trips per day) 5132 

   

Full  -0.58 

Reduced -0.56 GJT Elasticity 

Season -0.60 

  

Overall Fare Elasticity -0.41 

  

Value of Time (pence per minute) 5.0 

Value of Adjustment Time (pence per minute) 2.5 

Value of crowding (pence per minute) 0 to 12.8 

 



  
Table 3: Key Scenario Results 

Policy Demand  Peak 

Seats Restrictions Fares Full Reduced Season Total Revenue Loading 

As 
now 

Restrict 1 
 

As now 
 

3,141 
  

1,867 
 

124 
 

5,132 
  

20,675 
 

130% 

         

-10% Restrict 1 As now 
2,990 
(95%) 

1,788 
(96%) 

114 
(92%) 

4,891 
(95%) 

19,698 
(95%) 

138% 

         

-30% Restrict 1 As now 
2,729 
(87%) 

1,648 
(88%) 

96  
(78%) 

4,473 
(87%) 

18,009 
(87%) 

174% 

         
As 

now 
Restrict 2 As now 

3,425 
(109%) 

1,510 
(81%) 

136 
(109%) 

5,071 
(99%) 

20,866 
(101%) 

129% 

         
As 

now 
Restrict 3 As now 

3,555 
(113%) 

1,346 
(72%) 

141 
(114%) 

5,042 
(98%) 

20,947 
(101%) 

128% 

         
As 

now 
Restrict 1 +10% Full 

2,813 
(90%) 

1,987 
(106%) 

188 
(151%) 

4,987 
(97%) 

21,039 
(102%) 

126% 

         
As 

now 
Restrict 1 +30% Full 

2,192 
(70%) 

2,123 
(114%) 

428 
(345%) 

4,743 
(92%) 

21,182 
(102%) 

119% 

         
As 

now 
Restrict 1 -10% Reduced 

3,054 
(97%) 

2,025 
(108%) 

120 
(97%) 

5,199 
(101%) 

20,124 
(97%) 

129% 

         
As 

now 
Restrict 1 -30% Reduced 

2,933 
(93%) 

2,303 
(123%) 

115 
(93%) 

5,351 
(104%) 

18,883 
(91%) 

127% 

         
As 

now 
Restrict 3 

+30% Full 
 -30% Reduced 

2,563 
(82%) 

1,706 
(91%) 

502 
(405%) 

4,771 
(93%) 

20,651 
(100%) 

121% 

Notes: 

Demand is shown as return trips per day with percent of base demand shown in brackets 

Revenue is shown as £s per day with percent of base revenue shown in brackets 

Peak loading shows the highest train loading throughout the day 

Restrict 1: Reduced fare tickets not available between 7.00-9.00am and 4.00-6.00pm 

Restrict 2: Reduced fare tickets not available between 7.00-9.30am and 3.30-6.00pm 

Restrict 3: Reduced fare tickets not available between 6.30-9.30am and 3.30-6.30pm 
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