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ABSTRACT

The superimposed training method estimates the chan-

nel from the induced first-order cyclostationary statis-

tics exhibited by the received signal. In this paper,

using vector space decomposition, we show that the

information needed for training sequence synchroni-

sation, and for DC-offset estimation, can be extracted

from the first-order cyclostationary statistics as well.

Necessary and sufficient conditions for channel com-

putation and equalisation are derived, when training

sequence synchronisation and DC-offset removal are

required. The computational burden of the practical

implementation of the method presented here is much

lighter than for existing algorithms. At the same time,

simulation results show that the performance, in terms

of the MSE of the channel estimates and BER, is not

diminished when compared to these existing algorithms.

1. Introduction

In communications, the system estimation problem is

often solved by the inclusion of a training sequence,

as opposed to the long data record demanding blind-

identification techniques. Traditionally, the training

sequence and the data sequence were allocated in sep-

arate time slots (as in TDM) thus wasting bandwidth.

This problem was addressed by the superimposed (im-

plicit) technique (ST/IT) [1,2], where a periodic train-

ing sequence is actually added to the data prior to trans-

mission, at the expense of a small data-power loss.

The knowledge of the added training sequence at

the receiver is what enables the ST method to esti-

mate the channel; any other sequence received at the

receiver (including the data) must be considered as

noise. But the negative effects of this ‘data noise’

can be completely removed. To see how it is done,

it is easier to examine the signal in the frequency do-

main. Given that the training sequence is periodic of

period P , its Discrete Fourier Transform (DFT) have

non-zero energy at only P equally spaced DFT bins.

∗E. Alameda-Hernandez is funded by the Secretarı́a de Estado de

Educación y Universidades of Spain and the European Social Fund.

The goal is to make the energy of the data sequence

zero at these bins, thus removing their effect on the

training sequence. The details are given in [3], where

the data dependent ST (DDST) method is developed.

In both ST and DDST, it is important that the posi-

tion within the received sequence, that corresponds to

the start of a training sequence period, is known at the

receiver. We will refer to this kind of synchronisation

as ‘training sequence synchronisation’ (TSS). TSS for

ST was first studied in [1] in conjunction with DC-

offset estimation. The TSS method presented in [1]

was based on higher-order statistics (HOS) and poly-

nomial rooting, and only required that the training se-

quence period is no smaller that the number of channel

taps M—i.e. P ≥ M . The use of HOS and polyno-

mial rooting was avoided in the TSS method presented

in [4], but required P ≥ 2M + 1. These two TSS

methods can be applied to DDST as well.

In this paper we present a new TSS method and

we will apply it specifically to ST. It is based on the

properties of the projections, onto two specifically de-

fined subspaces, of the cyclic permutations of the vec-

tor that contains the received sequence’s first-order,

cyclostationary statistics. This new method for TSS

has a much lighter computational burden than the meth-

ods in [1, 4], while at the same time it shows better

or equivalent behaviour —as the included simulations

illustrate— in terms of the MSE of the channel esti-

mates and the BER.

2. Problem description and geomet-
rical interpretation

The familiar system set-up required for the ST method

is depicted in Fig. 1 [1]. Accordingly, the received data

block in the ST method has the following form [1, 2]:

x(k) =

M−1∑

l=0

h(l)b(k−l)+

M−1∑

l=0

h(l)c(k−l)+n(k)+m

(1)

with k = 0, 1, ... , N − 1, where b(k) is the infor-

mation bearing sequence, h(k) is the channel impulse
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Fig. 1. The mathematical model for ST.

response, n(k) is the noise and m represents an un-

known DC-offset term due to using first-order statis-

tics (see (2)) with non-ideal r.f. receivers (see [1]).

Furthermore, c(k) is the superimposed training sequen-

ce of mean c̄ = 1
NP

∑
P−1
k=0 c(k) and power σ2

c
=

1
NP

∑P−1
k=0 |c(k)|2, periodic with period P ≥ M .

We will assume the following:

H1) All terms in (1) can be complex valued.

H2) The sequences b(k) and n(k) are independent

and identically distributed (i.i.d.) random sequen-

ces of zero mean.

H3) The channel is of order M − 1 —i.e. h(0) 6= 0
and h(M − 1) 6= 0.

H4) The channel order is known.

Under H2 and the periodicity of the training se-

quence, we can see from (1) that the output sequence

x(k) is first-order cyclostationary of period P . Thus,

we can define its cyclostationary mean

y0(j) := E[x(iP +j)] =
M−1∑

l=0

h(l)c(j− l)P +m (2)

with j = 0, ... , P − 1 where (·)P indicates arith-

metic modulo-P , and the subscript ‘0’ indicates that

it is a fixed (deterministic) value as opposed to a gen-

eral variable y(j), and this nomenclature will be used

throughout the rest of the paper. Equation (2) can be

written in matrix form as

y0 = C[M ]h0 + m0 (3)

where C[M ] is P×M and h0 = [h(0), h(1), ..., h(M−
1)]T is M × 1; y0 = [y0(0), y0(1), ... , y0(P − 1)]T

and m0 = [m, ... , m]T are both P × 1. Matrix

C[M ] corresponds to the first M columns of matrix

C = circ(c(0), c(P − 1), c(P − 2), ... , c(1)), where

the operation ‘circ’ produces a circulant matrix [5].

Matrix C is thus composed of C[M ] in (3) and its ‘com-

plement’ C〈P−M〉, i.e. the last P − M columns of C,

where

C ≡
[
C[M ]|C〈P−M〉

]
. (4)

To make the subspace interpretation that follows

meaningful, we require C to be full rank. Note that

this is not a necessary condition for channel estima-

tion using ST assuming perfect TSS, as was shown

in [6]. To make C full rank, we are going to use op-

timum channel independent (OCI) training sequences

that were introduced in [1]. These also give, CHC =
CCH = Pσ2

c IP×P , simplifying the projection opera-

tion between subspaces. Thus, from the least squares

solution to (3), the filter coefficients are obtained by

(noting that CH
[M ]C[M ] = Pσ2

c IM×M )

h0 =
1

Pσ2
c

CH
[M ] (y0 − m0) . (5)

In the situation where there is no TSS, once the

cyclic means in (2) are computed, there is no way to

say which of them corresponds to j = 0, j = 1 and

so on. The only thing we know is that they appear se-

quentially and that the computed cyclostationary mean

is an unknown cyclic permutation P0y0 of the true one

(y0), due to the periodicity of c(k). It is important to

note that a matrix P0 that performs a cyclic permu-

tation operation on a vector is a circulant matrix as

well. The vector m0 is not affected by any (cyclic)

permutation because all its components are equal and

so m0 = P0m0.

For P = M , and no TSS, the solution to (3) is

a cyclically permuted version of the true channel co-

efficient vector, P0h0. This solution is obtained from

(5) with y0 replaced by P0y0, making m0 = P0m0,

and noting that CP0 = P0C —i.e. circulant matrices

commute [5]. Thus, TSS reduces to finding the correct

permutation P0, as was (implicitly) done in [1].

For P > M , the channel vector can not be re-

trieved as in the previous paragraph (P = M ), be-

cause the matrices C[M ] and P0 do not now commute.

One possible option then is to pre-process the avail-

able vector P0y0 and select the correct y0 among a set

of candidates, before solving (3).

Important clues to develop a new method for syn-

chronisation can be derived from the previous para-

graphs. Recall that the method in [1] (P = M ) re-

quired HOS and polynomial rooting, and so is rather

complex. On the other hand, the method in [4] (P >
M ) uses the FFT and is simpler that the former. Fur-

thermore, (5) obtains the channel vector just by pro-

jecting on the subspace spanned by the columns of

C[M ] (recall that C is OCI). So we set out to investigate

the advantages of using an overdetermined system of

equations (P > M ) and try to interpret the problem

resolution as a projection process.

To start with, we study what happens to the cy-

clostationary mean vector after a cyclic permutation.

From the RHS of (3), we can confirm that after a cyclic

permutation of y0, C[M ]h0 will be the only affected

term —recall that m0 is invariant under permutations.

Thus, in the next Lemma we study the effect of a per-

mutation on C[M ]h0.

Lemma 1 Let C be a full rank circulant P×P matrix,

P any cyclic permutation P×P matrix, and h any M×



1 vector. Then, PC[M ]h can be uniquely decomposed

as

PC[M ]h =C[M ](P[hT 0T
P−M

]T)[M ]+

+ C〈P−M〉(P[hT
0T

P−M ]T)〈P−M〉

(6)

where 0P−M is the column vector [0, ... , 0
︸ ︷︷ ︸

P−M

]T and for

a vector v, v[M ] (v〈P−M〉) are its first M (last P −M )

elements.

Proof: First note that C[M ]h = C[hT 0T
P−M ]T ⇒

PC[M ]h = PC[hT 0T
P−M

]T. Now, using the com-

mutativity of circulant matrices, PC[hT 0T
P−M

]T =

CP[hT 0T
P−M ]T, and (6) follows from (4). The unique-

ness comes because C is full rank. Q.E.D

The interpretation of Lemma 1 is clear. Consider

the vector space spanned by the columns of matrix C,

which are a base for this space as well because C is full

rank. In turn, C[M ] and C〈P−M〉 span two subspaces

V and V ⊥ respectively, which are orthogonal because

c(k) is OCI. Assume for the moment that m = 0 in (3).

The true cyclostationary mean vector y0 lies exactly

on V —i.e. it is a linear combination of the columns of

C[M ]—but any cyclic permutation P 6= I of it will have

components in V ⊥ as well. This important property

can be used to achieve TSS in the DC-offset free case.

The next section proposes a general method to deal

with TSS in the presence of a non-zero DC-offset.

3. Proposed training sequence syn-
chronisation method

Because of the lack of TSS, assume that the cyclic

permutation of the cyclostationary mean available at

the receiver is P0y0. To work with the most general

case possible, a DC-offset will be taken into account as

well. Let us now consider the decomposition of P0y0

in V and V ⊥.

So, applying a cyclic permutation operator to both

sides of (3), we need to know the decomposition of the

permuted C[M ]h and the decomposition of (the per-

muted) m0. The former is given by Lemma 1 while

the decomposition of the DC-offset term is given by

m0 = C[M ]m̃0[M ] + C〈P−M〉m̃0〈P−M〉 (7)

where m̃0 is a P × 1 vector of constant elements m

Pc̄
,

as can easily be confirmed. So from (3), and using (7)

and Lemma 1, then we have,

P0y0 =C[M ](P0[h
T
0 0T

P−M ]T)[M ]+

+ C〈P−M〉(P0[h
T
0 0T

P−M
]T)〈P−M〉+

+ C[M ]m̃0[M ] + C〈P−M〉m̃0〈P−M〉.

(8)

Consider now the projection of P0y0 onto the V ⊥

space. So, multiply both sides of (8) by 1
Pσ2

c

CH
〈P−M〉:

1

Pσ2
c

CH
〈P−M〉P0y0 =

=(P0[h
T
0 0T

P−M ]T)〈P−M〉 + m̃0〈P−M〉.

(9)

Now, two different cases are clearly distinguishable:

C1) For P0 = I the RHS of (9) reduces to m̃0〈P−M〉

—i.e., a vector with all its components of equal

value m

Pc̄
.

C2) For P0 6= I the first term of the RHS of (9) does

not vanish, and thus, we will not have a vector

of equal components.

Note that C2 is only valid in general. The conditions

under which C2 is always true will be discussed shortly.

The properties of (9) under cases C1 and C2 can be

used for TSS, but prior to the formalisation of these

properties in form of a useful proposition, it is neces-

sary to develop a measure of how equal are the ele-

ments of a vector. So, define the operator J {v} =
‖v − v̄‖2, where v̄ = [v̄, ... , v̄]T and v̄ is the mean of

all the elements of v. The desired property of J {v}
is that J {v} = 0 iff all the elements of v are equal to

each other (and thus, equal to the mean).

Proposition 1 Let P ≥ 2M + 1, hereafter known as

the strong constraint, then J
{

CH
〈P−M〉P0y0

}

= 0 iff

P0 = I.

Proof: The necessary condition (⇐) is proved by C1.

For the sufficient condition (⇒), we need to find the

conditions under which C2 is always true for all P0,

y0 and OCI c(k). Thus, let us work with the worst

case scenario—i.e. when all the M components of h0

are equal. So, if we require (P0[h
T
0 0P−M ]T)〈P−M〉

not to be a vector of equal components for any P0 6= I

and h0 6= 0M , then we require that its length is larger

that M—i.e. P − M > M . Q.E.D

TSS is finally achieved as follows. The available

cyclic permutation of the cyclostationary mean vector,

P0y0, is cyclically permuted by all the cyclic permu-

tations of P elements. The cyclic permutation PP0y0

of P0y0 minimising the operator J
{

CH
〈P−M〉PP0y0

}

is the true cyclostationary mean vector y0. This fol-

lows because by proposition 1 PP0 = I, and thus

PP0y0 = y0.

Once y0 is known, the DC-offset m can be com-

puted, using (9) under case C1, from any of the ele-

ments of CH
〈P−M〉y0. Nevertheless, we propose to per-

form an average of the elements of CH
〈P−M〉y0 because

when it comes to the practical implementation of the

method, i.e. estimation, the average will of course give

a smaller variance. So,

m =
c̄

σ2
c

1

P − M
[1, ... , 1
︸ ︷︷ ︸

P−M

]CH
〈P−M〉y0 (10)



and m is the mean just mentioned normalised by the

quotient between the mean (c̄) and the power (σ2
c
) of

the training sequence.

Finally, once y0 and m are known, the channel co-

efficients can then be computed from (5).

3.1 Relaxing assumption H4 —conditions for equal-
isation

The assumption H4 is required in order to apply Propo-

sition 1, which is the basis of the TSS method pre-

sented here. The channel order is needed twice in

Proposition 1. Firstly, so that the strong constraint

can be enforced; secondly, it appears in the argument

of the operator J . If H4 is not fulfilled, the channel

cannot be estimated. Nevertheless, when it comes to

equalisation what is needed is just an upper bound for

the channel order, as it will be shown next.

The effects of using an upper bound are then two-

fold. Firstly, the range of values of P satisfying the

strong constraint is included in the range of values ob-

tained if the actual channel order is used. So, no prob-

lem is encountered here. Secondly, if the channel order

is assumed to be bigger than what it actually is, then

h0 will have extra zero taps at the tails. This will allow

the operator J to give more than one possible solution

following proposition 1. Anyway, all the allow solu-

tions obtained will be related by a linear shift and the

only effect on equalisation is a delay. This delay can

also appear in a practical implementation of the pro-

posed TSS method, if the first or last of the channel

taps is very close to zero.

4. Actual application of the method

In an actual application, the elements of the cyclosta-

tionary mean vector y0 have to be estimated using, as

usual, time averages: ŷ0(j) = 1
NP

∑
NP−1
i=0 x(iP + j),

j = 0, 1, ... , P − 1. But because of lack of TSS, this

estimate will correspond to an unknown cyclic permu-

tation of y0, i.e. P0ŷ0. To simplify notation, replace

P0ŷ0 by ŷ
(P0)
0 . Based on this estimate, the TSS, the

DC-offset estimation and the channel estimation are

sequentially obtained as shown in Table 1.

4.2 Computational burden

Consider the overall computational burden of the prac-

tical implementation, in terms of total products and di-

visions. For the proposed method in Table 1, the com-

putational burden is P 3 + (1 − M)P 2 + 2P + 3, i.e.

O(P 3); for the method in [4], the computational bur-

den is MNP + 2P 3 + (M + 1)P 2 − (M + 2)P + 1,

i.e. O(MNP ). The filtering steps required in [4], con-

tributing toward the MNP term, can be a significant

part of the computational burden of [4]. For exam-

ple, let N = O(P 3) and M = O(P ) as in [4] and as

in the following simulation, then O(MNP ) becomes

O(P 5).

Cyclostationary mean estimation:

ŷ
(P0)
0 (j) = 1

NP

∑
NP −1
i=0 x(iP + j + k0)

j = 0, 1, ... , P − 1
where k0 is an unknown synchronisation offset.

Training sequence synchronisation:

{Pl}
P

l=1 =set of all P × P cyclic permutation matrices.

Compute Popt = arg min
Pl

{

J
{

C
H
〈P−M〉Plŷ

(P0)
0

}}

DC-offset estimation:

m̂ = c̄

σ2
c

1
P−M

[1, ... , 1
︸ ︷︷ ︸

P−M

]CH
〈P−M〉Poptŷ

(P0)
0

Channel estimation:

From (5), ĥ0 = 1
Pσ2

c

CH
[M]



Poptŷ
(P0)
0 − [m̂, ... , m̂

︸ ︷︷ ︸

P

]



.

Table 1. Proposed method for training sequence syn-

chronisation of the ST method for channel estimation

in the presence of DC-offset.

Comparing O(P 3) of the proposed method with

O(P 5) of the method in [4], it is evident that the com-

putational burden reduction achieved with the new me-

thod is very significant. And this reduction could be

even bigger if the number of samples N used in the

estimation is increased.

5. Simulation

Three-tap Rayleigh fading channels were simulated.

The channel coefficients were complex Gaussian, i.i.d.

with unit variance. The average energy of the channel

was set to unity. The data was a BPSK sequence, to

which an OCI training sequence (see [1]) was added

before transmission. The training to information power

ratio
(

TIR =
σ

2

c

σ2

b

)

was set to −6.9798 dB, the training

sequence period to P = 7 and the number of sam-

ples to N = 399 —the same values that were used

in [4]. We generated NB = 300 blocks at the transmit-

ter, where (1) represents just one of these blocks. Note

that only N samples were used for channel estimation,

but all the blocks were used for BER computation. A

deterministic DC-offset (m) was added at the chan-

nel output, together with a zero-mean white Gaussian

noise. The value of the DC-offset was determined by

the DC-offset to signal AC-component (DCAC) power



ratio as defined in [2]

DCAC = m2/E
[
|x(k) − n(k) − m|2

]
.

In these simulations this was set to DCAC= 0.1. At

each realisation, a random synchronisation offset be-

tween 0 and N +P −1 was introduced between trans-

mitter and receiver, so we could be at any sample in-

dex within the first block. After channel estimation,

an MMSE equaliser, based on the channel estimates,

of length 11 and optimum delay was used to compute

the BER; 1000 realisations were averaged. As already

mentioned at the end of subsection , we may have an

unknown delay of the estimated channel with respect

to the true one. In this particular case, it may hap-

pen because of the randomness of the channel taps,

so the first and last channel tap could be close to, or

even, zero. This identification delay, which in prac-

tice has no major consequences, can worsen the sim-

ulated BER, misleading the performance analysis of

the method. To avoid this, the identification delay was

computed by comparing the equalised symbols with

the true ones, for different delays, and choosing the

delay giving the smallest BER—this problem was re-

ported in [4] as well. For a comparison between the

TSS methods in [1] and [4], please refer to [4], where

simulations show that the later clearly outperforms the

former.
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1: Method in [4].
2: ST/Table I.
3: ST, exact synchronization and DC−offset known.

Fig. 2. MSE of channel estimates, as a function of

the SNR, computed following Table 1. The identifica-

tion delay has been considered. The estimates assum-

ing known DC-offset and perfect TSS are included, to-

gether with the TSS method in [4], for comparison pur-

poses. Note that methods 1 and 2 are indistinguishable

on the graph.

Figure 2 shows the MSE of the channel estimate

obtained with the method presented in Table 1. The

MSE obtained with the ST method assuming perfect

TSS is plotted as well as a benchmark. The proposed

method (with no TSS) is not very much different. Fi-

nally, compared with the method in [4], the best pub-

lished TSS method for ST so far, we can see that our
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1: Method in [4].
2: ST/Table I.
3: ST, exact synchronization and DC−offset known.

Fig. 3. BER versus SNR obtained using the algorithm

of Table 1. Note that methods 1 and 2 are indistin-

guishable on the graph.

proposed method gives identical results, but with the

already mentioned, huge reduction in computational

burden.

Figure 3 shows the BER of the proposed method

and that of the ST with perfect TSS. The method in [4]

is included as well for comparison. The conclusions

drawn in the previous paragraph are equally applicable

here too.

6. Conclusions

In this work, the channel estimation and equalisation

problem has been addressed under the superimposed

training scheme. No training sequence synchronisa-

tion was provided, and a DC-offset could be present at

the output as well. The proposed method for channel

estimation relies on the decomposition of the permuta-

tions of the cyclostationary mean vector into two vec-

tors: one vector contains information for synchronisa-

tion and DC-offset estimation while the second con-

tains information for channel estimation. Both these

vectors are projections of the cyclostationary mean vec-

tor onto two particular subspaces of the space spanned

by all the cyclic permutations of the training sequence.

With this geometrical interpretation of the problem,

sufficient and necessary conditions for the method to

work are easily derived, involving the training sequen-

ce period and the channel order. Based on the chan-

nel estimate, a MMSE equaliser was constructed. For

equalisation, the exact channel order does not need to

be known, but just an upper bound. Simulations show

that this method performs as well —in terms of the

MSE of the channel estimates and the BER— as exist-

ing methods, but with greatly reduced computational

burden.
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