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ABSTRACT

KIRBY, H.R. (1979) Partial matrix techn igues. Leeds: Univ.
Leeds, Tnst. Transp. Stud., Work, Pap. 111.

Partial matrix techniques are those in which gravity
models are fitted to a partially cobserved matrix of trips
and journey costs, and used to infer the trips in the
unobserved cells. This paper reviews the theoretical basis
from which such techniques have been developed, and
demonstrates the need to pay careful attention to the -
underlying assumptions, which in effeect require that the
model be a good £it to be observed data (and also a good
'fit! to the unobserved data). Circumstances are described
in which the estimates for the unobserved cells may not
be uniquely determined, and the effects of data structure
on the reliability of the estimates (assuming these to be
unigue) are discussed. Ways are suggested in which further
theoretical and empirical research might demonstrate whether
a given pattern of observations would lead to particularly
error-prone eshimates.




PARTIAL MATRTX TECHNIQUES

Howard R. Kirby

L. INTRODUCTION

Trip distribution models are often fitted to data in the form of
origin—destination'matrices of trips and generalised costs. TFor several
years, it has been the practice to use matrices in which, by virtue of
the survey desién, not all origih—destination movements are observable.
Such matrices are ssid to be partial as opposed to whole*. Cells not
included in the partial mstrix may be described as excluded, uncbservable,

or missing.

The phrase 'partial matrix techniques' generally refers to the practice
of calibrating a gravity model to a partial trip matrix, and using the
results of this calibration to infer something about the trip distribution
for the whole matrix (including the missing cells). The practice was
developed by Wootton (1972) and first used in Derbyshire, and subsequently
applied by Neffendorf in Sheffield; see Neffendorf and Wootton (197k).

Tt drew support from theoretical considerations first reported by Kirby (1972)
and subseguently published partly in Kirby (1974) and partly in Beardwood
and Kirby (1975).

Although partial matrix techniques have been widely used, very little
has been reported in the published literature. Occasionally, however,
statements are made - for example in Cunliffe and Nesbitt (1977) - that
make it appear that these theoretical considerations are thought to have
g wider valldity or applicability then was claimed, with perhaps insufficient
appreciation of ths assumptlons that have to be made when using the partial

mabrix technlque.

Sinece failure to appreciate the theoretical issues or assumptions
might cause the partial matrix technique to be used in conditions in which

it is not appropriate, this paper has been prepared with three objectives:

¥ Note that a whole matrix does not necessarily mesn that the observed values

for each movement or cell are non-zero; indeed, whole matrices may contain

zero entries that are zero by chance. If the proportion of observable cells that
are zero is high (whether in & whole or partial matrix), the matrix is said to

be sparse. Thus, a sparse matrix is not necessarily partial, and a partiasl matrix
is not necessarily sparse - a distinction which has not always been observed in
the literature (see for example Cunliffe & Nesbitt, 1977). The term full matrix
is probably best reserved for whole matrices. with no empty cells. In the
statistical literature, it is more usual to use the terms 1ncomp1ete and

complete matrices rather than partial and whole ones,




(a) to highlight and emplify the role of theory and assumption
in the use of partial matrix techniques; :

{(b) +o suggest some practical tests for verifying the kinds of
conditions under which the use of partial matrix technigues
are most appropriate;

(e¢) to report on some tests that have been carried out of the kind
mentioned in (b), and to appeal for others to be reported.

2. THEORETICAL BASIS

The theoretical basis from which partial matrix techniques have been
developed was that given in Beardwood and Kirby (1975), although, as we shall
see in Section 3, an extension to the results there given should also have

been sppealed o in some circumstances. This extension is deseribed in 2.2.

2.1 Basic result

The result given in Beardswood and Kirby relates to the synthesis of a
trip matrix (using the two—way adjustment (or biproportional) procedure of
Furness) such that it is biproportional to some starting matrix and agrees
with prescribed row and column sums. The result demonstrates the equivalencé
between the solutiom for bi-proportional (Furness) adjustmentéto suitably
related whole and partial mﬁtrices. It is simply described in terms of
an example, as in the three-zone example of Fig 1. The diagrams. above the
dotted line in Fig 1 define values (a,...,i}, for a starting matrix (which
nay be base~year observations, and contain some values that are zero by chance;
or may be derived by. applying some function to & cost-matrix}; wvalues
(P ...,U) of the trip ends to which the starting values are to be adjusted
pro-rata; and values (A,...,I) of the results of synthesising a whole matrix
to agree with these trip-end totals. The diagrams below the dotted line
define how the corresponding falues for the synthesis of a partial matrix
relate to those for thelwhole matrix. The cells shown shaded in the lower
line are those excluded from the whole matrix in forming the partialrmatrix,
and there may in general be several such cells in each row and column of
the matrix. In general, the location of the excluded cells may be best

expressed by an incidence matrix, 1in which '0' indicates an excluded cell,

and '1! indicates & cell for which an observation is available. (See_Fig 2
for some examples.) We note in Section 3 that it may be necessary to restrict

the permisssble locations of the excluded cells.
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Fig 1. An illustration of the theoretical result which has been drawn on as

a basis for partial metrix technigues.

This equivalence of the two lines of calculations shown in Fig 1 means that
if data for some movements is not obtainable (either as a result of the survey
design or because some movements are physically impossible), the results of a
fully constrained synthesis of the trip distribution for just the observed
parts of the matrix would be the same as we would have synthesised for those

parts had we been using the whole matrix, provided that the trip end data

used in the partial matrix synthesis is consistent with that for the whole matrix.

In practice, therefore, attention needs to be paid to the proviso
underlined; and the ramifications of this will be explored in Section L,
which discusses three ways in which the above theoretical result has been
invoked in a practical context. But first we present a slight exftension

which is also relevant to that discussion.

2.2 An extension

The Beardwood & Kirby result applied to the case in which a two—way
adjustment proéedure is applied to a given two—diﬁensional matrix,
(fij) say, in order to 'synthesise' atripmatrix (ﬁzj) that agrees with
prescribed row.and column sums (corresponding to trip totals (gi) in
‘generation zones' and (aj)’in attraction zones). The result is expressed

in the form:
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in which the generation factors (Pi) and sttraction factors (qj) are such
that

Zj t?.” = g, ~° and zi t?j = a; {2)
The above describes the process carried out in the prediction of

certain types of trip matrix; an obvious extension of the result in 2.1

is to the calibration situation, in which we wish to estimate not only

the parameters (pi) and (qj) but also the parametgrs of'f as a function of

the separation or generalised cost cij' In the case where the cost is

divided into Kranges such that, if the cost falls in the kh interval,

a factor T, expresses the average value of f(cij in this interval oL

we may define a three-dimensional matrix Aijk

lindicate in which interval " a particular cost cij falls, and a maximum

of zeroes and ones: which

likelihood procedure for estimating the parameters of (pi), @j)and ka)

is such that, under certain conditions, the value
¥ = . .. .
ti,jk 141 (lJ T Al,]k ‘ (3)

iz such as to satisfy

* = M . * | = . . *, =
Z,jk tijk €i3 Zlk tle aJ’ 213 tle Sg (F)

where the (gi), (aj) and (sk) are here to be understood as, respectively,
the number of trips in each generation zone, attraction zone, and interval
of separation as given by the corresponding summation over an observed trip
watrix. .. . - ~ For such a three-dimensional situation -a three—

way balancing {(or triproportional) procedure. may be used. (See Kirby,
1974, Evans and Kirby 1974, end Kirby and Leese, 1978 for a discussion of

the procedure and conditions).

The result for three dimensions that correspond to that given in Fig 1 for 2
_dimensions isillustrated in Fig 2; the mathematical demonstration of the
equivalence, and the conditions under which it holds, are similar to those

given in Beardwood and Kirby (1975).
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Fig.2 Extension of the regult demonstrated in Fig.l to a calibration situation.




3 APPLICATIONS

There at least three ways in which the theoretical work described in
section 2 has been invoked in a practical context: synthesis for a partial
matrix, calibration and synthesis for a partial matrix, and calibration and

synthesis for a whole matrix with data for a partial matrix.

3.1 Synthesis'for a partial matrix

If one is interested only in synthesising frips for ?arts of s matrix
given the cost matrix (cij) and .cogt function f{c), then the result given
in section 2.1 suggests that it is in order for the trip—end balancing
(Furness) calculations to be done on the partial matrix, provided that the
trip—end estimating procedure yields zonal trip-end totals that properly
exclude the trips that would have gone to the missing cells; that ig that
these excluded trips would have been estimated reasonably accurately by the
model had it been applied to the whole matrix with full trip-end totals.
Some typical partial matrix situations are illustrated by the incidence

matrices given in Fig.3. One common situation is that in which intra-zonal

movements are not estimated (Fig.3a): here, the trip generation relationships
would have been developed only for inter-zonal movements. A second common
situation is that in which there is no information about the ‘external-external
traffic (Pig. 3b). -

_ Internal External T 1o 1 1 1 1

0o 1 1 1 | 1111 11 10101 1 1 1 1

10 1 1 Internal 11 1 1 1 .l, 110 1 0 1 1

| B 1111111

3.1 0 1 eede—t 111101 1110111

External 111100 i %1121 18

1.1 109 1111009 11111 11
a. Intra-zonal b. External-external c. Scattered selection

cells missing eells missing of excluded cells

Fig. 3 Tncidence matriceés for some typical partial matrix situations
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A third situation is where the excluded cells are scattered throughout
the matrix (Fig.3c). One way in which this might occur would be if certain
pairs Of zones were in a special relationship. That relationship would have
to be modelled separately and those zone-palrs excluded from the usual trip
distribution calculations. An example is the link between an RAF base and a
housing estate containing mainly RAF personnel; or that which sometimes
happens in the planning of new towns in which certain estates may be
(initially) earmarked for the eﬁployees of certain firms.

3.2 Calibration and synthesis for a partial matrix

In Bearwood and Kirby (1975}, it was suggested in the conclusions that
"ha analyst need not worry too -much if, when he wants. to.do a calibration,
there is information missing about some interzonal transfers. He may omit
completely from his cﬁlibration‘all cells for which information is missing,
and rest assured that, had the missing data conformed to his (ealibrated)
model, the trips he synthesises for the partial matrix would be the same as

those he would have obtalned by synthesising the whole matrix.

Note fifstly that these remarks are addressed to the problem of calibrating
and synthesising for the partial matrix, not to that of calibrating and
synthesising for the whole matrix, given dsta only for parts of it. The
latter problem we discuss in 3.3. We again see the need for ensuring that
the proviso in italics is reasonably adhered to, although, if the analyst
is not concerﬁed about the extent to which his model agrees with the model
that he would have fitted in the whole matrix, he need not be concerned if
the proviso does not hold; the model fitted to the observed data will
still be the best fitting model for that data.

3.3 Calibration and synthesis for a whole matrix, from partial data

The partial matrix techniques which Neffendorf and Wootton (1974)
developed build on the suggestions reproduced in 3.2 concerning the
calibration for partial matrices. The essential difference between the

situations of 3.2 and that now discussed is as follows.

&. In 3.2 we infer something about those parts of the matrix for
which we have information, seeking only to be satisfied that
this is not far different from what we might infer for those

parts had we had the data for the whole matrix.




b. Tn 3.3 we infer something not only about the parts of the_matrix

for which we have information, but also those parts for which we

do not have information.

The inferences made about the ?arts of the matrix for which no information
iz available require the ealibration resulting from the partial matrix to be

applied to the whole matrix, and are of two kinds.

1. Estimates ofthe zonal totals of trips {summed over beth observed
and uncbserved cells), as a basis for deducting (or checking) trip
generation relationships

ii. Rstimates ofthe inter-zonal transfers in the unobserved cells.

It is now very much more necessary than in 3.2 to ensure that the
proviso:b.italice in 3.2 holds. Since the model fitted to the observed
dets is, in a sense, belng extrapolated, the consequences of a departure
from the conditions of the proviso are more severe, as we shall see in
section 4. For (i) to be a reasbnable procedure, it is necessary only to
ensure that, in total for each of the rows and columns over the excluded
cells, the model reproduces the number of trips_that would have been

observed in those cells. For (ii) to be a reasonable procedure, rather

more is requlred namely, thax each,estrmate in the excluded cells would be
in general agreement with vhat observation would have shown; or,’ at least

the agreement in the unobserved cells would be no worse than the agreement
between model and data in the observed cells. This implies that the model
Pitted to the data in the observed cells is not only a good one but is also,
in some sense, representative of the uncbserved cells as well. This qﬁestion

is discussed further in seeiion 5,

Note that there is no suggestions. in the theoretical literature that
the parameters of the separation function (for‘example, 8 in f(c.j) =
exp (- Bc. }) are, as Cunliffe and Nesbitt (19TT) claimed, the same as those
" that would have been obtained by callbratlng to the whole matrix.

L.  THEORETICAL CONSIDERATIONS

It will be evident from the description of the theoretical undergiming
of the partial matrix technique given in sections 2 and 3 that, for the

technique to be successful, there are essemtially two issues:




a. the model needs to be a good fit to the data that one has got;

b. the parameters that represent the data that one has got need
aiso to be representative of the data one has not got.
Strangely, the question of whéther-jhe gravity model is a good fit
to the data is rarely‘discussed in the literature. Séme empiricsl tests
have been described by Haskey (1972, 1979). The standard statistical tests
(such as;xt) are biased towards rejection of the model, and therefore suitable
techniques need to be developed that are -appropriate to the kinds of datsa
typicaily to be-found in trip matrices (Leese, 1977). Although it is
particularly important in the context of section 3.3 to be assured of the
model's appropriateness, we shall discuss this question no further here.

The second issue, that of representativeness, is discussed in section T.

There are, however, two other issues that assume particular

importance in dealing with partial matrix technigues. These are:

c. @ solution of the form (1), satisfying conditions (2) (for the
-situation described in 3.1), or of the form (3), satisfying

conditions (L) (for the situation deseribed in 3.2} must exist

d. . the matrix which is being synthesised, or to which a model is
being calibrated, cannot be split (or disconnected) into two or
more independent parts. (The matrix would be a two dimensional
one for the situation of 3.1, and a three-dimensional for the

situation of 3.2)

Until recently, it had been thought  likely that these conditions would

not beé encountered in practice, and so it is for whole matrices. The
conditions are however MOT€ 1ikely to be encountered with partial matrix
applications; in particular, it has recently been realised that disconnectedness -
can occur in the calibration (triproportional)} problem in such a way as ‘
to cause thé inferences about the form of the separation function and

hence the éstimates for unobserved parts of the matrix to be particularly
unreliable. This is the subject of the companion paper by Hawkins and

Day (1979). The conditions for a solution to exist and the meaning and
implications of disconnectivity in the matrix are described in sections

5 and 6 respectively.
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5. UNIQUENESS OF THE TRIP ESTIMATES

If we wish to synthesize a trip matrix, as in 3.1, we need to be
satisfied that a two-dimensional matrix of the form (1) that setisfies
conditions (2) exists. The condition for this is that a solution exists
if and only if some two-dimensional matrix exists that satisfies the
congtraints (2) and contains zeroes where the matrix (fij) is zero,
and is strictly positive elsewhere. Similarly, when calibrating (as
for 3.2 and 3.3}, the existence of a three-dimensional matrix of the
form (3) that satisfies {4) is proven if éggg;three—dimensional matrix
exists that satisfies the constraints (k), and contains . =zeroes where
the matrix (Aijk) is zero, and iS'strictly-posifive elsewhere., (Evans
& Kirby, 19Tk, p.115 and Beardwood & Kirby, 1975, pp.366, 367). Thus
these conditions involve considering both the location and number of
" Zeroces in the matrices (fij) and (Aijk) respectively. We note that, in
the case of a predietion, if a growth factor method is being used the
(fij) would be a (partid) matrix of observed trips, and thus the zerces
present in it might be either 'structural zerces' (that iz, due to the
movement being impossible to observe in the base year), or 'sampling
zeroes', {that is, observed as zero by chance). But in the calibration
situation, the (Aijk) matrix is a defining function, and all the zeroes

in 1t are structural ones.

To illustrate these above conditions, we show in Fig. L4(a) a starting
matrix with two empty cells (shown shaded); +the remaining cells would
have strictly positive entries (it does not matter what their values are)
which are to be adjusted (using the Furness, or biproportional procedure)
to agree with the row and column totals shown. Fig L4(b) shows one of
several arrays of strictly positive entries that can be made in all the
other cells so as to satisfy the row and column conditions. Therefore a

solution to this gravity model prediction problem exists.

Fig 4. Demonstration of the-conditions for a solution to the

biproportional problem to exist




_ll_

For completeness, we should add that the sbove assumes that the

constraints (2) and (L4) are consistent; that is, that

19 = I & in (2)
i i

and | 4, = ] a; =] 5 in (1),

i J k

Since, in calibration, values of (g;) (aj) and (Sk) in (1) are
determined from a base-year trip matrix, we know that these constraints are
consistent. Bacharach . {1970, Theorem 3, p.51) also formulate a conditibn
for the convergence of the bi-proportional problem for the situation in which
the base matrix (fij) contains zefo terms; but this too 1s simply a check

on the conistency of the constraints.

6. UNIQUENESS OF THE MULTIPLYING FACTORS

In the preceding section, we considered the conditions under which
one would  obtain unique estimates for the trips in a given cell - the t:a
or t?jk values. On considering instead the estimates of the row {or generation)
factors (pi), column {or attraction) factors (qj) and level (or separation)
factors (rk)‘ which combine to form the trip estimates, a more complicated
situation emerges as to the conditions affecting thelr uniqueness; this we

illustrate Tirst by reference to the two-dimensional situation.

6.1 Bagic c0ncepts:'the tWOwaiﬁensional soclution

Tt is well known that, in synthesising & matrix of the form (1) satisfying
(2), the factoré p } and (q )} are only unique up to an arbitrary multiplying
factor: one can multiply each p; by scme sealing factor.i, and divide
-each qj by the same factor, without affecting the trip estimates tig
Thus, to identify the (pi) and (gj) factors uniquely, one of those has to
be set arbitrarly to some value. Or rather, at least one: for situations
can arise in which more than one factof'has to be set to identify the others
unigquely. Consider the situation shown in Fig 5 (i), in which opposite.
quadrants of the (fij) matrix contain zero terms. On applying a

bi-proportional procedure to estimate a model of the form (1) satisfying (2),
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Fig. 5 A disconnected two-dimensional matrix

we find that the trips synthesised in the two non-empty quadrants are
independent of each other; we could obtain the same results by separating
matrix (i) into two independent parts (ii) and (iii) and synthesise for

each separately. For each part, one of the row or column factors needs

to be set to identify the others uniquely; that is, in the original matrix ()},
two factors (taken from different quadrants) rather than one factor need

to be set.

Clearly, in general, it may be possible to separate a matrix into
several independent parts. Moreover, it is not always very apparent
whether a given matrix has such a structure, as Fig‘5(iv) illustrates;
yet it has the same structurs as Tig 5(i), as may be seen by re-ordering

its rows and columns.

A number of names have been used to deseribe this sifuation. Thus,
if a matrix can be separated into two or more independeﬁt parts, it
may be said to be separable (Bishop, Fienberg& Holland, 1975, p.182) or
disconnected ( Bacharach 1970, p.47 ). The notion of connectedness is

also well used by Bishop et al (1975, p.182), and is further explained

below. The term separability is not widely used (and we used it in a
different sense in Beardwood & Kirby, 1975), so we shall not use it here.

Another useful térm, that focusses attention on the essential uniqueness

properties of the row, column {and level) factors is that of identifiability.
A disconnected matrix has an extra degree of freedom for each of the parts '

into which it can be separated.

6.1.1 Detecting disconnectivity in the two—dimensional situation

A test for disconnectiwvity in a two-dimensiongl matrix (or for the
non-identifiability of the row and column factors) may be described as

follows. Suppose, for some matrix (fij) with given row and column constraints,
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a matrix (tiﬁ) is found of the form (1) satisfying those constraints (2).
The row Ffactors (Pi) and column factors (qi) are (we hypothesise) uniquely
identified by specifying one of these factors at a particular value.
Should we choose to change the value of that (or some other) specified
factor, a 'chain' of pro rata multiplicetions would be set up in the
matrix, the effect of which would be to leave the original predictions
unchanged. For example, if the first generaticn. factor (pl) were changed

by 2 multiplier o,, the first attraction factor (ql) would have to be

>
changed by a multiplier l/al. The difference between a connected and
disconnected matrix is thet, in the former, the multiplication chain
reaches all parts of the matrix, whereas in the latter it cannot. For a
matrix to be connected, it must be-possible for all cells with non-zero
fij to be linked in & chain, any two consecutive members of which are

either in the same row or the same ecolumn.

6.3 The three—-dimensional situation

The two-dimensional situation described above, in.which the factors
(pi), (qi) may not be uniquely identifisble, is in fact of little interest
in practice, because these factors are not used in their own right: it
is their product, in the form p; 4; fij'that-is used in synthesis, and

for this uniqueness conditions were discussed in 5.

- But in calibration, when we are dealing with a situation in which a
set of empirical factors are determined, one for each interval of seperation,
the factors.(r#)'are of primary interest, because they are related to the
separation or cost of travelling, and used in forecasting separately from
‘the values of (pi) and'(qﬁ). Moreover, with the partial matrix technique
it is not sufficient to be satisfied that the prodqct P; q_'j rk'Aijk is
unique for the observed parts of the metrix (as was demonstrated in Evans
and Kifby‘lQTh); we alsc want the proﬁuct to be ﬁniquerfor the uncobserved
parts of the matrix as well, and thi@can mean that all the Ffactors (pi),_
(qj) and (rk) need to be identified. :

Thus, when calibrating to a whole matrix, and even more When .
calibrating to a partial matrix with subsequent synthesis of the whole
matrix, we need to be sure that the three—dimensional matrix cﬂijk) is
not disconnected.. In féa.ct:9 this is rather more likely to oeccur than with
two-dimensionalimatrices since, for a single mode calibration, évery zone~
pair has but one cost—interval associated with_it; and, for partial

matrices of course there are even more zeros.
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The phenomenon of a disconnected matrix is rather more complex
and difficult to demonstrate in the three-dimensional situation than
it is in the two—dimensional one, however. Indeéd, it wasg only when
Hawkins of the Department of Transport, was exploring the application
of partial matrix technigues to a hypothetical situation that the
phenomenon was encountered in the partial matrix situation and interpreted
by Day. (Hawkins and Day, 1979). Bishop et al (1975, p 212 et seq)
~ show that the definition of the appfopriate measure of connectedness
is linked with the definition of the model that is being fitted.

That circumstances might occur in which more than two of the
generation, atfraction and separation factors (taken from different sets)
might need to be specified to uniquely identify them all was recognised
by Evans and Kirby (19Tk, pp 116, 117). As it happened, the main
proofg in that paper, on the tniqueness of.the-trips estimated in the

observed cells and on the convergence of the tri-proportional process,
were valid whether or not these circumstances held, and unfortunately they

expressly excluded further consideration of, for eXample, the effects on

the estimates in the unobserved cells should such curcumstances oceur.

The effect of disconnectedness bn the calibration for a particula
matrix (whether whole or partial), is that we could have two or more
independént sets of separation faectors; within each set, the relative
‘values of the separation factors are correctly determined, but the relative
values between factors drawn from different sets is arbitrary. This
. would mean that, on looking at all the separation factors together, as
a function of separation, the shape of the function would in general not
be correctly interpreted. ' Thus, in forecasting,the relative effeets on
the amount. of travel of changes in zone to zZone journey costs may be

inadeguately depicted.

Hawkins and Day encountered this effect on examining the situation
in which the parameters (Pi)’ (qj) and (rk) were not only estimsted from
a partial matrix of observations, but also used to synthesise trips in
the unobserved parts. They found that a change in the values for the
separation factors assumed at the start of the iterative process led to
differences in the values for the trips synthesised‘forrthe uncobserved

cells,

6.2.1 - . Detecting disconnectivity in the three-dimensional situation

The identifiability or_otherwise of the factors (pi), (qj) and (rk)
cannot be detected by examining the performance of the calibration

process as such; .the trip generation and attraction constraints for the
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zones, and the constraints for the cost bands, are all well met (if

the process converges). Hawkins and Day (1979) suggest that the effect
could be detected in practice by doing as they did, applying the ﬁartial
matrix technique to an idealised situation. - This requires the syﬁthesis
of a trip distribution for the whole matrix, using some arbitrary bub
non—-trivial separation function; followed by a calibration with an

- empirical function to those parts . for which observations exist.

A systematic procedure for detecting non-identifiability is similar
in principle to that described in 6.1.1, but is more complex because at
least two factors may now be arbitrarily set. Murchland (1978) has
provided a rigorous procedure for detecting the effect, dealing with the

'mOre'comprehensive case in which all possible comhinamions-of i, j and k
might occur. Some simplification of this procedure is probably possible,
for the usuasl single-mode situation in which there is only one value of k
for a given i, j pair. All that is needed for that situation is a two-
dimensional matrix indicating for each observed zone—pair its eorresponding

cost~interval, with unobserved zone-pairs indicated by a 'zero'.

6£.2.2 Avolding disconnectivity in the three-dimensional situation

An extreme way of avoiding a ecalibration situation in which .
disconnectedness occurs is to use an analytic form of separation function
rather than an empirical set of separatioh factors. Thus the calibration
pfocess becomes one of estimating, say, the parameters o and 8 in a
function of the form flc) = e °° 7B, rather than with the factors (rk); the
three—-dimenaional situation is itself avoided; Essentially, the analytic
function makes the link between the different cost intervals. Whether
other, related, kinds of estimation problem might occur is not however
yef known for this situation; especially if different parameteis are

assumed to apply to different parts of the matrix.

Assuming, however, that one wants to explore the empirical shape of
the separation functiqn_befdre preseribing an analytic form for it, one
might stay with the three—dimensional representation.  If disconnectedness
is detected, it may then be removed'by redefining one {or more) of the
cost intervals so as to overlap the costs occurring in the two unconnected
portions of the'matrix. Such links could be made at different piaces:
and, indeed, this is advisable, to guard agalnst having a loosely—connected

gtructure (see 7).
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Alternativély, a modified calibration procedure could be adopted,
in which the separation factors are essentially linked with one another
by a smoothing process automatically. A method has been suggested by
Murchland {1979) which achieves this by associating with each (i, j) pair
not just the interval k in which the cost e falls, but also (say) the
intervals k-1 and k+l. In the calibration process, a welghted average
of the factors Tr_7> Fo Tpap would be used to estimate the trips in a
given cell. It is understood that such a technique is used by Wootton.
Whilst the technigue will undoubtedly reduce the risk of disconnectedness
occurring, it has yet to be demonstrated whether it will avoid it in all

Cases.

T. REPRESENTATIVENESS AND RELIABILITY

Even fof situations in which non—identifiability is not a problem,
fhe estimates for the model parameters may be such as to make the estimates
of the trips in the unobserved cells more unreliable than the estimates
for the trips in the observed cells¥., In other ﬁords, the model might
be a good £it to the deta one has got, but a poor fit to the data one has
not got! This is being illustrated in practice by some studies which
have found that the estimates of the trip-end -totals obtained by
application of the partial matrix techniques can be very different from
those obtained by the applicaﬁioﬁ of trip generation and attraction
relationships. Of course, in those studies, there may be incompétibilities
in the data sources and relationships whieh in paft aceount for these
differences. Bubt other studies have found that the estimates for the
uncbserved cells can be very sensitive to changes in the values for the
observed-trip end totals (Branston, 1978). We shall here review just those
issues which might make the application of the partial matrix technique
itself unreliable. We discuss these issues in a tehtative way, since a
clear understanding of all the factors affecting the reliability of the

estimates in the wnobserved cells has yet to be reached.

*Note We include here both models with an analytic form of separation function,

RS cigs, and an empirical set of separation f:ctors (rk);

and by parameters we mesn not only the 4,8 o¥ (rk) values, but also

such as e

the (pi) and (qj) values.




| First of all, we note that, in many partial matrix applications, the
data obtained is not necessarily representative of that for the whole matrix.
" Tor example, intrazonal trips are generally shorter than, and external-external
trips generally longer than those in other parts of the matrix, so that,
were no data to be available for either of these movements, the trip
length frequency distribution will be distorted from the shape sppropriate

to the whole matrix.

We illustrate the effect by an idealised situation. Suppose the
survey data is.collected by roadside interviews where roads cross a square
grid of screen—lines. All journeys whose direct distance between origin
and destination is greater than the length of the diagonal of the mesh will
be intercepted; but, less than this, the shorter the journey, the smaller
the probability of being intercepted (Fig.6.a). Therefore, if the trip
length frequency distribution for all journeys in the area locked something
like the solid line in Fig 6b, the trip length frequency distribution for
journeys intercepted by the roadside interview stations will look like
the dashed line in Fig 6b, that is, it will under—represent short-distance’

movements.

: 1.0 R R
Probability - Numbers
of a trip of trips
of length L of e
being length L Nx“n\ _
intercepted AN
overall
) distribution
cbservable A
diatribution — %
| temgn ot me g ot mah .
0 diagonal ' a
/ — e
Direct distance L Direct distance L
between origin and
destination
(a) The probability of (b) Effects on the trip length
interception frequency distribution

"Fig 6. The under-reporting of short distance movements using dat from
interviews on roads which cross a square grid of screen—lines.
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Now this effect is not necessarily important in itself, since the
model is fitted only to the observed cells, and it is of course appropriate
to make 1t such as to agree with the trip length frequenéy distribution
for those cbserved cells. What we are esséntially tryving to do though
is to ‘estimate from a partial matrix values of the parameters that are
applicable to the whole matrix. We therefore - need to ensure if possible
that neither the data structure, nor the model structure, nor the estimation
procedure used, introduce particular distortions to the estimates of the

parameters. We discuss these in turn.

T.1l Data structure .

Clearly, the first consideration is that all the cost—intervals (k)
that occur in the unobserved cells also occur in the cbserved cells, which
wugt include at least one ecell with a non-zero observation. But if for
a given cost interval (or zone for that m@tter) the number of cells with
non-zero observations is a low prbportion of the number of cells observed,
and the numbers of cells in the .observed part of the matrix is a low
proportion of the number in the matrix as a whole, - We might have reason
t& think that errors in the data and thus in the separation factors might
be magnified in their effect vhen used to estimate the values in the
missing cells. This effect might be all the more serious if the excluded
cells in a given cost interval (or zone) were such that they might be
estimated to contain large numbers of trips, but the included cells in
that interval contained only small numbers of trips. Such considerations
suggest that some simple explonatory enalyses of the data might provide
helpful dinsights. '

7.2 Model structure and data structure

For the issues discussed here, there are essentially two kinds of
problem: well—éonditioned ones, that is, those for which small changes
to the data input lead to small changes in the estimates; and ill~conditioned
problems, in which small changes in data input lead to large changes in the
estimates. Branston (1979} of Greater Manchester Council has provided an
example of the latter situation. It is of course ill-conditioned problems

which we need to be able to detect and if possible cure.

The considerations of 7.1 were suggestive of some exploratory analyses;

but these may not adequately identify if and where problems might oceur,
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or their magnitude or how they might be resolved. Three formal ways of
investigating this might be as follows: '
a Estimate the variances and covariances of the model parameters

as well as the means, and thus estimate the variances of the estimates

of the number of trips in the cobserved and unobserved cells.
b.  Perturb the datas input and see what effect it has on the calibration.

c. Analyse-the linkages between the different ccmpdnents of the model
for the given data structure, and the data itzelf, in order to
identify those parts_o#thévmatrix vhich most affect the trip

estimates made Ffor the unobserved cells.

Both {b) and (c) are forms of sensitivity analysis, but with methods
of the type (e) - assuming that they can be developed — it should become
possible to detéct whereabouts more data might be needed in those
situations for which the technique seems unreliable; and in due course

to learn what kinds of partial matrix structure ought to be avoided.

For (a), methods of estimating the variances and co-variances of the
parameters are well-developed in the statistical literature on the
analysis of contingency tables, particularly in the field of log-linear
models {which is the form that the gravity model takes). Computer packages
such as GLIM (Nelder, 1974) and CATLIN (Grizzle, Starmer & Koch, 1969)
 exist for meking such estimates and may be suitable. for use on smaller
scale problems. (Hutchinson, 19775; but it is probable thet some adaptation
and approximation will be required before the variance estimates can be
made for problems of typical transportation study size. It may, however,
in certain cases be possible to express the variances in thé eatimates
of the numbers of trips éimpl# in terms of the variances and means of

the parameter estimates {Murchland, 1978).

For (b), it is very easy in principle to see what happens if the
input data‘is changed. Bub it can be time—consuming and costly in practice
to do this unless either one perturbs all the data at once (in which case
one is unlikely to know which changes had greatest effect) or one has
8 strategy for selecting those items of data which one suspects might
have the greatest effect. It will also be important in practice to
" have an adequabte means of ilsolating where the main effects of such
perturbations ére apparent. Perturbations to the data might be best

made in sﬁch_a way as to reflect their relative errors.
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For (¢}, there are at present no procedures known to the author
which have been developed, but there are at least two suggestions that have been
advanced which might indicate ways forward for the situation in which a set
of empirical separation factors are to be estimasted. Hewkins and Day (1979)
point out that, although a cost-interval matrix may be connected, the
connections between different parts of the matrix may be weak; for example,
a single occurrence of a particular cost-interval may alone act as the
'"bridge' between two parts of the matrix. We can refer to such a matrix as
being loosely or weakly connected. Then the relative values inferred for the
gets of separation factors that_are, in a manner of speaking, on either side
of this bridge, are pafticularly dependent on the number of trips in this
cell., If this number is small ~ and of course it could be zero — the effect
of data error on the relative values might be large, leading to.a-¥e&lative

ingtabllity in the estimates obtained for the unocbserved cells.

A second suggestion for a situation which might give rise to a
relative instability between the synthesised values for the unobserved
cells and those for the observed cells was made by Kirby in the course
of discussing the Hawkins and Day problem. It is best described by an
example. Suppose that the rows and columms of the cost-interval matrix
have been so re—ordered that the unobserved cells are contained in the
gquadrant as in Fig 7. (We do this for the sake .of clarity:; it is in

general neither necessary nor possible to so re—orderthe matrix).

BB 1 vj1 6
® 2 1 @y 2
7 1 % 6}f3 5
5. 7 5 L [T 3 Lunobserved cells

Fig.7 Cost interval matrix showing differences in the couplin: of the
‘factors applying to_the observable end unobservable portions

The situation shown in Fig 7 is such that the costs occurring in the
unobserved cells (bottom right hand quadrant) occur only in the opposite
quadrant. Thus, in ecalibration, the separation factors for these will
be determined in associatlion with generation and attraction factors that
do not apply to the uncbserved quadrant. This suggests a looseness in the
coupling of the different factors that may affect the reliability of
the elements synthesised for the uncbserved cells. But it should be
stressed that, at the present time, it ig only a matter of conjecture

that a lack of association between these factors might have such an effect.




T.3 Estimation procedure

Finslly, we note that, since partial matrix techniques in practice
are usually such as to reduce the numbers of observations that we have
of shorter-distance movements, the errors associated with those observations
are correspondingly greater than they would have been. If the calibration
process takes proper account of the presence of sampling variability
then there is likely to be greater chance of consistency between the
results of a calibration on a partial matrix and a calibration on a whole
matrix. Kirby‘and Leese (1978) showed that assuming (amongst other things)
that the survey method 1s homogenecus, one appropriate method would be
to earry out the calibration on ungrossed up data instead of the grossed

up data that is normally used.

§. EMPIRICAL QUESTIONS

So far as the author is aware, there has been very little work done
to test out the empirical validity of the partial matrix technique. For
example, to what extent is under or over estimation in the unobserved
cells likely to happen in practice, after ecalibrating on the ohbserved
cellS? Are there ways of determining what is a good patfern of roadside
interview stations and what is a bad pattern (from the point of view
of being able to estimate unobservedmovémentsfrcm this model)? Are there
ways of determining where it might be helpful to collect extra data to
improve the estimation proceduref Finally, what evidence is there that

the model is any good anyway?

An example of the kind of empirical work that would be helpful
is & systematiq comparison of the estimates for the unobserved cells
obtained using the partial matrix technigue with those given by the
survey data, when different patterns (and numbers) of cells are excluded
from a whole matrix (obtained for example from home interview data).
Cunliffe and Nesbitt. (197T) said (but did not report) that they had made
one such comparison, and Hardcastle (1978) has done another. It is
not known whether his vesult is typical, but Hardeastle found that, on
exeluding intrazonal cells, the separation factors obtained from a
calibration to the partial matrix were under—estimated in the short-

distance range compared with those found in calibrating the whole matrix.
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9. DISCUSSION

In this report we have reviewed the theoretical background to the
use of the partial matrix technique, the conditions under whieh it faiis
to work at all, and the examination of the circumstances in which it
mey be particularly prone to error. BSome of the problems discussed have
only been recently realised and the most a@propriate ways of resolving
them are very much the subjeet of current research and debate. It is
evident that there is a dearth of literature and research that have
investigated the basic properties of the technique, hitherto, and readers
with experience in the use of this technique are invited to let the
suthor know of their findings - good or bad! ~ in the use of this
technigque - particularly if they have undertsken some of the kinds of

analyses suggested in section 8.
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