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POLICY BRIEF
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Abstract 

The chemical pollution crisis severely threatens human and environmental health globally. To tackle this challenge the 

establishment of an overarching international science–policy body has recently been suggested. We strongly support 

this initiative based on the awareness that humanity has already likely left the safe operating space within planetary 

boundaries for novel entities including chemical pollution. Immediate action is essential and needs to be informed 

by sound scientific knowledge and data compiled and critically evaluated by an overarching science–policy inter‑

face body. Major challenges for such a body are (i) to foster global knowledge production on exposure, impacts and 

governance going beyond data‑rich regions (e.g., Europe and North America), (ii) to cover the entirety of hazardous 

chemicals, mixtures and wastes, (iii) to follow a one‑health perspective considering the risks posed by chemicals and 

waste on ecosystem and human health, and (iv) to strive for solution‑oriented assessments based on systems think‑

ing. Based on multiple evidence on urgent action on a global scale, we call scientists and practitioners to mobilize 

their scientific networks and to intensify science–policy interaction with national governments to support the nego‑

tiations on the establishment of an intergovernmental body based on scientific knowledge explaining the anticipated 

benefit for human and environmental health.

Keywords: Chemical pollution, Science–policy body on chemicals, Planetary boundaries, One‑health perspective, 

Systems thinking
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A call to action
Climate change and biodiversity loss are well known to 

pose a threat to humankind and the global environment 

and are rightly in the focus of global policies and the pub-

lic. However, a third major challenge on a global level 

of the same significance is the chemical pollution crisis 

that severely threatens human and environmental health 
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globally and has not been sufficiently addressed by global 

and national policies. Governmental organization such 

as the European Commission [1, 2] and intergovernmen-

tal organizations such as the United Nations Environ-

ment Programme (UNEP) [3], have developed strategies 

and enacted legally binding regulations and multilateral 

agreements to control and manage chemical pollution to 

foster a toxic-free environment and enacted legally bind-

ing regulations, respective host the secretariats of legally 

binding multilateral agreements. Recently, UNEP pub-

lished the first synthetic report, in which chemical pol-

lution and wastes was listed as one of three top-priority 

issues together with climate change and biodiversity loss 

[4]. However, while international science–policy bodies 

are established to address climate change (Intergovern-

mental Panel on Climate Change, IPCC) and the loss of 

biodiversity (Intergovernmental Science–Policy Plat-

form on Biodiversity and Ecosystem Services, IPBES), an 

overarching intergovernmental science–policy body to 

address pollution and its negative effects on humans and 

the environment on a global scale commensurate with 

the scope of the problem is still lacking.

Such a science–policy body on chemicals and waste has 

recently been suggested by several renowned environ-

mental chemists and toxicologists, striving for enhanced 

bidirectional communication between policy-makers 

and scientists on a global scale with broad involvement 

of the wider scientific community to mobilize worldwide 

expertise to respond to this severe threat for humankind 

[5]. We strongly support this initiative. We highlight the 

need for horizon scanning and the establishment of early 

warning mechanisms on risks related to chemicals and 

waste to cover the growing universe of compounds and 

keep or reduce chemical pollution well below planetary 

boundaries for novel entities which include synthetic 

chemicals [6], but also to prevent exceedance of local and 

regional boundaries with clear impact on biodiversity, 

ecosystem services and human health. Immediate action 

to reduce global chemical pollution is essential and needs 

to be informed by sound scientific knowledge and data 

compiled and critically evaluated by an overarching sci-

ence–policy interface body with wide involvement of sci-

entists and practitioners as suggested by Wang et al. [5].

There is an increasing awareness that humanity, par-

ticularly the population and industry in high-income 

countries, have already likely left the safe operating space, 

i.e., transgressed the planetary boundary for novel enti-

ties [7]. In addition, international assessment and regu-

lation of chemical pollution clearly lags behind the rapid 

and enormous increase in production and diversity of 

chemicals. Therefore, we see important tasks of the new 

body in improving prevention of pollution, reducing 

and eliminating data and management gaps on a global 

scale, identifying pollution problems with the poten-

tial to exceed regional and global boundaries, as well as 

developing strategies to tackle these issues holistically 

and systemically. Clearly communicating science and 

policy needs to solve this societal problem, the body is 

required to conduct assessments that go beyond current 

approaches, which are limited in terms of the geographi-

cal regions covered, the number of chemicals considered 

and the lack of considering ambient mixtures, the consid-

eration of science-based and absolute pollution reduction 

targets and the lack of systems thinking. Major challenges 

for a novel science–policy body on chemicals and wastes 

are (i) to foster global knowledge production on expo-

sure, impacts and governance, and go beyond data-rich 

regions (e.g., Europe and North America), (ii) to cover 

the entirety of hazardous chemicals and mixtures, (iii) 

to follow a one-health perspective considering the risks 

posed by chemicals on ecosystems, ecosystem services 

and human health, (iv) and to strive for solution-oriented 

assessments based on systems thinking and appreciat-

ing the complexity of driving forces, pressures, states, 

impacts and possible responses to reduce chemical pollu-

tion to remain within safe boundaries [7].

Foster global knowledge on exposure and impacts

Several UN Sustainable Development Goals (SDGs) 

aim to globally ensure healthy lives (#3), access to clean 

water and sanitation (#6), responsible consumption and 

production (#12), and the protection of aquatic and ter-

restrial life (#14 and #15). Attaining these goals requires 

an efficient contaminant monitoring, control, and miti-

gation. Nine planetary boundaries have been identified 

including “novel entities” comprising new chemical sub-

stances, new forms of existing substances and modified 

and new life forms [8]. There is sufficient evidence for 

chemical impacts on environmental and human health 

on local to global scales [9], although its quantification 

is challenged by complexity [10, 11]. However, even if 

a well-defined planetary boundary for novel entities 

including chemical pollution is still lacking, the rate of 

increase of chemical production and use is alarming and 

exceeds that of most other indicators including popula-

tion growth rate, emissions of carbon dioxide and agri-

cultural land use [12]. A recent paper concluded that 

“humanity is currently operating outside the planetary 

boundary” on novel entities and that “the increasing rate 

of production and releases of larger volumes and higher 

numbers of novel entities with diverse risk potentials 

exceed societies’ ability to conduct safety related assess-

ments and monitoring” [7]. At the global level, three 

criteria have been defined to be fulfilled to pose a threat 

to the Earth system [10]. Next to the (i) occurrence of a 

disruptive effect on a vital Earth-system process and (ii) 
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a lack of reversibility, they include (iii) discovery only 

when the problem is already occurring at a global scale. 

One example for exceeding planetary boundaries may 

be plastic pollution combining global distribution and 

irreversibility [13] of the phenomenon with potential 

impacts on Earth systems [14, 15]. Extraordinary efforts 

are needed to mitigate plastic pollution and transform 

the global plastics economy [16] aiming at zero plastic 

pollution [17]. The excessive generation of plastic wastes 

generated worldwide (1.6  million tonnes per day) dur-

ing the COVID-19 pandemic runs the risk to reverse the 

momentum of global efforts to reduce plastic waste pro-

duction [18], resulting in severe pollution problems on all 

continents [19, 20]. Early warning strategies informed by 

monitoring data from many regions of the world, evalu-

ated in assessments by the global scientific community, 

and organized in an international science–policy body is 

key to ensure or re-establish that the safe operating space 

for global societal development is not exceeded.

Current separate approaches are insufficient. Exist-

ing data clearly support that chemical pollution and its 

impacts occur from the local to the global scale, despite 

current assessments and policies. Chemicals can be 

transported over long distances via the atmosphere and 

water cycles and hence affect regions far from where 

they were produced, used, or emitted (Fig. 1). Persistent 

organic pollutants have been detected in humans glob-

ally [21–24] and in their food [25], in aquatic biota even 

at the remotest places such as polar regions, high-moun-

tain lakes, offshore waters and deep ocean trenches [26, 

27] and in terrestrial food webs [28]. At the same time, 

there is evidence that climate change may remobilize 

legacy pollution in sediments [29] and glaciers [30] that 

has been thought to be permanently removed from the 

biosphere [31]. However, also less persistent chemicals 

of emerging concern (CECs), including pharmaceuticals 

and modern pesticides, occur ubiquitously in the global 

environment because of their widespread and continued 

use by societies all over the world [32–35].

The manufacture of hazardous chemicals is rapidly 

growing in low- and middle-income countries. Produc-

tion is typically for use in high-income markets with 

poorly treated industrial wastewater discharged into 

domestic sewers [36]. Particularly high concentrations 

of hazardous chemicals are emitted from pesticide [37], 

textile [38] and drug [39] production. Manufactur-

ing antibiotic drugs is often accompanied by very high 

concentrations in sewers that may act as a reservoir for 

antimicrobial resistant (AMR) bacteria [40]. Even if anti-

microbials occurrence in the environment above Pre-

dicted No Effect Concentrations (PNEC) for resistance 

selection [41] remains a local phenomenon, the rapid 

Fig. 1 Global distribution of chemicals
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spread of AMR bacteria by global mobility, migration and 

trade provides an almost perfect scenario for the exceed-

ance of global boundaries [11]. It is predicted that by 

2050, the number of deaths attributable annually to AMR 

bacteria will reach about 10 million, exceeding those of 

cancer, HIV and other diseases [42]. There is increasing 

evidence that even regional pollution problems can thus 

rapidly transform to global-scale issues that cannot be 

tackled at national and regional scales and require global 

action and steering globally by an international body.

While chemical pollution data in North America and 

Europe is increasingly becoming available, supported 

by continental scale science–policy networks such as 

the European NORMAN network [43], there is still a 

substantial lack of data from many countries in Asia, 

Africa and South America, as shown for pharmaceuti-

cals [33] and pesticides [44], even if monitoring studies 

in data-poor countries such as Brazil [45], Sri Lanka [46], 

Kazakhstan [47], Nigeria [48] and Kenya [49] are slowly 

increasing. These emerging data indicate that concentra-

tions of hazardous chemicals in low-income countries 

may be significantly higher than in Europe today. This is 

due to a combination of waste mismanagement [50] and 

global waste trade [51], poor sanitation and water treat-

ment, the continued use and emission of high-risk chem-

icals phased out in high-income countries and the high 

use of region-specific compounds such as antiretroviral 

and antimalarial drugs and pesticides that may provide 

so-far unrecognized risks [52, 53].

Mitigating pollution problems in low-income countries 

is not only essential to protect human health, biodiver-

sity, and ecosystem functions there, but has also direct 

benefits for all other regions. This effect may be high-

lighted for global trade of food, which has been shown 

to largely account for human exposure to pesticides and 

other hazardous chemicals in Europe and the US [54, 55]. 

Examples are the export of fruits and vegetables from 

South Africa and South America to Europe and transfer 

of meat from South America to Europe. The close nexus 

between unsustainable chemistry and agriculture for the 

production of food and other sectors for consumer goods 

with severe impacts on human health and ecosystems in 

producing regions, combined with the worldwide dis-

tribution of the hazardous chemicals with global trade, 

clearly demands for strategies on sustainable chemistry 

[56] on a global scale. An international body should care-

fully review existing regional strategies such as the EU 

Chemical Strategy for Sustainability [2]—including their 

regulatory mechanisms and effectiveness in mitigating 

pollution—and conclude on requirements for a toxic-

free environment on a global scale. This overarching goal 

requires, among others, incentives and initiatives to close 

data gaps on pollution, risks and promising governance 

instruments in many regions of the world, supported 

amongst others by better uptake of digitalization meth-

ods [57] to derive and prioritize needs for global preven-

tion, monitoring, regulation and mitigation.

Cover the whole range of hazardous chemicals 
and mixtures
Since the 1970s, global production, trade and consump-

tion of chemicals has increased substantially, particularly 

in emerging economies [12], and increasingly complex 

products have been designed to meet numerous func-

tionalities [58]. A recent worldwide inventory revealed 

that more than 350,000 industrial chemicals and mixtures 

have been registered for production [59] and may finally 

end up in the environment. As most regulations handle 

per-chemical dossiers, restrictions for specific chemicals 

often result in their replacement by other, often equally 

persistent and hazardous chemicals, reflected by the 

emerging global distribution of these new compounds 

[60]. Although several international treaties including 

the Stockholm, Rotterdam, Minamata and International 

Maritime Organization (IMO) Conventions regulate the 

production, use and trade of persistent organic pollutants 

(POPs) and other hazardous substances, the large major-

ity of potentially hazardous compounds in use [59] and 

detected in the environment [61] is not considered by any 

of these conventions.

Substantial progress in analytical multi-compound 

screening techniques opened new doors to extend moni-

toring to a large number of potentially hazardous target 

chemicals complemented by more exploratory non-tar-

geted approaches and help to slowly approach the full 

complexity of the chemical pollution problem [34, 62]. 

At the same time, awareness is growing that chemicals 

exert impact on the local to the global scale as complex 

mixtures of a multitude of chemicals, and there is sub-

stantial evidence that ignoring mixture exposure and 

effects significantly underestimates pollution risks and 

impacts [63]. A better exchange on and understanding 

of the global ambient and human exposure to complex 

mixtures of chemicals is supported by new approaches 

of FAIR and open science [64, 65], openly accessible data 

infrastructures as provided by NORMAN [66, 67] and 

extensive web-based applications on chemical properties 

and hazard data for almost one million compounds such 

as the US-EPA CompTox Chemicals Dashboard [68] and 

PubChem [69]. These resources will allow for a quantum 

leap in the global data exchange, rapid growth of accessi-

ble knowledge and derivation of key management actions 

as required for effective assessments and the design of 

effective preventive and management actions by the sug-

gested international science–policy body and for political 
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decisions on pollution control and mitigation all over the 

world.

One of the great challenges for a novel science–pol-

icy body on chemical pollution and waste would be to 

respond to the rapidly increasing numbers of produced 

and used chemicals worldwide and develop strategies 

for a holistic approach on preventing, monitoring, regu-

lating, and mitigating chemical pollution rather than 

chemical by chemical. Key elements of an unbiased strat-

egy to explore pollution trends and upcoming risks may 

be the global promotion of non-target screening [62] 

and effect-based methods [34, 70] in environmental and 

human (bio)monitoring based on harmonized criteria in 

quality assurance [71]. These measures support grouping 

of chemicals for regulation and advanced assessment of 

chemical mixtures [72–74] and the restriction of poten-

tially hazardous chemicals to essential use only [75].

Follow a one‑health perspective
Although the impact of chemical pollution on environ-

mental and human health has historically been addressed 

separately, “the convergence of people, animals, and 

our environment has created a new dynamic in which 

the health of each group is inextricably interconnected” 

[76]. Environmental pollution is a key driver of human 

health impairment and at the same time of environmen-

tal health threats including losses of biodiversity and eco-

system functions and services to humans. Since humans 

and wildlife share many targets for biologically active 

chemicals [77] and adverse outcome pathways [78], prob-

lematic chemicals affect both, so that also innovative 

solutions for a pollution-free planet [3, 79] will protect 

both. Therefore, we suggest the new science–policy inter-

face body to follow a one-health perspective addressing 

chemical risks on humans and ecosystems.

Diseases caused by chemical pollution have been esti-

mated to be responsible for 9  million premature deaths 

in 2015, three times more than from HIV, tuberculosis 

and malaria together and 15 times more than from war 

and violence [80]. For neuro-developmental toxicity, a 

global pandemic has been uncovered with one in every 

six children having a neuro-developmental disability, 

including autism, attention deficit disorder, mental retar-

dation, and cerebral palsy. Exposure to more than 200 

neurotoxic chemicals has been identified as possible 

cause including metals, POPs and organic solvents [81]. 

Mixtures of polybrominated flame retardants have been 

shown to play an important role in neurodevelopmental 

effects [82]. Human reproduction is also at risk by chemi-

cal pollution. Within the last century a significant decline 

of total human fertility rates has occurred, while male 

reproductive disorders have increased [83, 84]. Exposure 

to mixtures of endocrine disruptors is hypothesized to be 

one of the drivers of this phenomenon [85].

Human health threats triggered by chemical pollution 

are typically accompanied by impairments of ecosys-

tems and a decline of biodiversity [86, 87]. For Europe 

it has been shown that aquatic ecosystems are exposed 

to ambient mixtures of toxic pollution [88] at a level 

of which chemicals are of similar importance for the 

impaired ecological status as other well-accepted driv-

ers, such as habitat degradation and excessive loads of 

nutrients [89]. In the oceans, legacy POPs still occur at 

concentrations that cause a continuous decline of distinct 

predatory marine mammals such as killer whales [90]. In 

freshwater ecosystems, continuously emitted endocrine 

disruptors may lead to population effects at very small 

concentrations, as demonstrated for contraceptive drugs 

which may cause intersex in wild fish [91] and collapse 

of fish populations [92]. Antifouling agents, globally used 

in high tonnages in ship paints [93], can act as endocrine 

disruptors and have been shown to cause the extinction 

of mollusc populations in harbours suffering from high 

exposure [94, 95]. In addition, they may also impair mac-

rophyte communities [96] and even caused regime shifts 

in lake ecosystems [97].

The current biodiversity crisis has severe impacts on 

essential ecosystem services for humankind exceeding 

planetary boundaries for many biomes [98, 99]. This is 

particularly concerning for the drastic decline of flying 

insect biomass threatening pollination of the majority of 

plant species in nature and for food production, nutrient 

cycling and food sources for higher trophic levels [100]. 

Agriculture intensification, including increased pesticide 

and fertilizer usage, is one of the potential reasons for 

the decline of insects [100] and insectivorous grassland 

birds [101, 102]. The anti-inflammatory drug diclofenac 

applied in cattle was shown to cause near-extinction of 

vultures feeding on carcasses of animals treated with 

this compound in India and Pakistan [103], with severe 

effects on public health [104]. A strong link between eco-

system integrity and human health was also suggested for 

pesticide application in Africa. Pesticides has applied in 

Kenya have been shown not only to affect invertebrate 

communities but also to promote tolerant hosts for para-

sites and thus, pave the way for transmission of diseases 

such as schistosomiasis, with 218 million people infected 

worldwide and up to 280,000 deaths per year [105].

The close interlink between chemical pollution and 

impacts on human and environmental health, including 

losses of biodiversity and impaired ecosystem functions 

[106, 107], strongly demands for a one-health perspec-

tive from the local to the global scale. Thus, a global sci-

ence–policy body on chemicals and waste should adopt 

this perspective from the very beginning and aim to 
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maximize synergies of human and ecosystem health pro-

tection striving for a pollution-free and healthy planet 

[3, 79]. This goal requires involvement and collabora-

tion of experts from the different scientific communities 

(chemistry, human health, (eco)toxicology, epidemiology, 

biodiversity, social sciences, economy) and the close col-

laboration with existing intergovernmental organizations 

such as the Strategic Approach to International Chemi-

cals Management (SAICM), World Health Organization 

(WHO) and IPBES.

Strive for solutions‑oriented assessments based 
on systems thinking
Already established for pollution problems at the regional 

scale [108], the drivers–pressures–states–impact–

response (DPSIR) causal–analytical scheme may be also 

useful to address this challenge at a global scale. Chemi-

cal emissions as a global pressure (P) for ecosystems 

and human health is highly complex with respect to the 

resulting mixture composition status (S), which may be 

dynamic in time and space but also regarding the associ-

ated potential impacts (I) on wildlife and human health. 

The diversity of driving forces (D) and actors involved 

in the emissions is large, and include agriculture, indus-

try, global trade, and consumers, while those are in turn 

subjected to global change. Chemical pollution thus 

creates a high diversity of pollution states in different 

regions of the world with different impacts on biodiver-

sity, ecosystem functions, exposure and health effects on 

human populations. It is then the focus on the response 

opportunities and consideration of a wide range of pos-

sible responses that matters for solving the problem, with 

potential solutions on all aspects of the DPSI-chain, i.e., 

on drivers, states and impacts. The earlier in that chain 

the response is effective, the less the risks and impacts.

We see the need for an international science–policy 

interface body on chemical pollution to take the high 

complexity of this system and the “solutions space” of 

possible responses into account from the very beginning 

[109]. Solution spaces can range from technical and man-

agement options for local application until governance 

options including regulatory and financing mechanisms 

at the global scale [110]. Systems thinking emphasizing 

the “how” and “why” of intervention outcomes should 

combine complexity-aware evaluation of monitoring 

data (critical mixture components, influence of time etc.) 

with broad stakeholder involvement and virtual simula-

tion models that allow for scenario calculations [111]. 

Existing integrated fate-exposure models such as the UN 

Environment scientific consensus model USEtox may be 

used and expanded to test for different exposure and risk 

scenarios and possible interventions [112]. The power of 

these models to estimate near-field human exposures has 

been demonstrated recently by high-throughput screen-

ing of chemicals of concern in toys [113] and in building 

materials [114]. Long-range transport models for organic 

chemicals have been developed to understand pollution 

problems far from the regions, where chemicals have 

been produced and applied [115]. Consistent model-

ling frameworks for the distribution of chemical pollut-

ants by global trade of goods and waste are less available 

although first examples exist such as the global food sys-

tem [54].

Our call to support the initiative on a global 
science–policy body
Along the lines discussed above, we see a clear need for 

the establishment of a global science–policy body on 

chemicals and waste, as suggested by Wang et  al. [5], 

bringing together global scientific expertise on chemical 

pollution and governance, ecosystem and human health, 

as well as biodiversity to “strengthen the science–pol-

icy interface and the use of science in monitoring pro-

gress, priority-setting, solution focus and policy making 

throughout the life cycle of chemicals and waste” as sug-

gested in the UNEP Global Chemicals Outlook II [79]. 

This is a call to scientists and practitioners to mobilize 

their scientific networks and to intensify science–policy 

interaction with national governments to support the 

negotiations on the establishment of an intergovernmen-

tal body based on scientific knowledge, explaining the 

urgency of global action on chemical pollution and dis-

cussing the anticipated benefit for human and environ-

mental health on the way towards a pollution-free planet 

and a sustainable economic development within the safe 

operating space of the planetary boundaries. This initia-

tive can only be successful if scientists and policy-makers 

join forces and combine expert and practical knowledge 

across continents and institutional silos in the suggested 

global panel to close the dramatic data gaps on chemical 

pollution in many parts of the world, identify the most 

important pollution problems and develop solution 

strategies to tackle them based on close science–policy 

interfacing and broad stakeholder involvement. A strong 

mandate and support from national governments and the 

international community are required to give prevention 

and mitigation of pollution an adequate weight in regula-

tion, industry, and private behaviour to protect our com-

mon one health on our one planet.
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