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Abstract 

Studies on wild animals, mostly undertaken using 16S metabarcoding, have yielded ambiguous evidence regarding changes in the gut 
microbiome (GM) with age and senescence. Furthermore, variation in GM function has rarely been studied in such wild populations, 
despite GM metabolic characteristics potentially being associated with host senescent declines. Here, we used 7 years of repeated 

sampling of individuals and shotgunmetagenomic sequencing to investigate taxonomic and functional changes in the GMof Seychelles 

warblers (Acrocephalus sechellensis) with age. Our results suggest that taxonomic GM species richness declines with age and in the 

terminal year, with this terminal decline occurring consistently across all ages. Taxonomic and functional GM composition also shifted 

with host age. However, the changes we identified occurred linearly with age (or even mainly during early years prior to the onset of 
senescence in this species) with little evidence of accelerated change in later life or during their terminal year. Therefore, the results 

suggest that changes in the GM with age are not linked to senescence. Interestingly, we found a significant increase in the abundance 

of a group of transposase genes with age, which may accumulate passively or due to increased transposition induced as a result of 
stressors that arise with age. These findings reveal taxonomic and functional GM changes with age, but not senescence, in a wild 

vertebrate and provide a blueprint for future wild functional GM studies linked to age and senescence. 

Keywords: gut microbiome, age, senescence, metagenomics, transposase, Acrocephalus sechellensis 

Introduction 

Senescence—a decline in physiological function in later life— 

occurs in most organisms [1, 2]. However, its onset and rate often 

differ greatly among individuals within populations [1, 3]. One 

factor that may contribute to individual differences in senescence 

is variation in host-associated microbial communities. The 

intestinal tract of animals contains a diverse collection of 

microbes and their genomes (the gutmicrobiome; GM),which play 

an important role in host adaptation and fitness [4, 5]. The GM 

influences the regulation of essential processes, such as digestion, 

reproduction, and immune function [6, 7]. However, shifts in GM 

composition can be detrimental to the host; certain microbes 

may be pathogenic, while overall dysbiosis may impair host 

function [8, 9]. 

Studies in humans and laboratory animals have shown that 

GM composition generally changes rapidly in early life [10, 11] 

before stabilizing during adulthood [12]. This is often followed by 

greater GM instability in advanced age including a loss of diversity 

and changes to composition [13–15]. These late-life compositional 

shifts are generally characterized by a loss of commensal or 

probiotic bacteria and an increase in pathogenic microbes [16]. 

GM functional changes with age have also been identified. For 

example, healthy aging has been associated with microbes that 

enable increased biodegradation and metabolism of xenobiotics 

[16, 17], whereas unhealthy aging has been linked to increased 

production of detrimental microbial metabolites [16]. 

Studies have demonstrated links between the GM and senes-

cence in humans and laboratory animals, however, their GM 

composition varies markedly from their counterparts living in 

natural environments because of the artificial environments they 

are exposed to [18, 19]. It remains unclear if these effects can be 

generalized to wild animals [18–20]. 

Recent studies on wild organisms have not reached a 

consensus on what characterizes the aging microbiome. Some 

have documented altered GM composition [21–23], increased GM
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diversity [22, 24]„ and reduced GM stability [25] with increasing 

age. Other studies have indicated that GM characteristics remain 

relatively stable throughout adulthood [25–27]. However, these 

studies have been based on 16S ribosomal ribonucleic acid 

(rRNA) gene metabarcoding, which is limited in resolution [28– 

30]. Shotgun metagenomic sequencing enables higher taxonomic 

resolution (species or strain level), as well as informing on the 

functional potential of microbial communities based on gene 

content [31–33]. In humans and captive primates, metagenomics 

has revealed an increase in pathogenic microbial genes, and 

a decrease in beneficial genes, with age [17, 34, 35]. To our 

knowledge, no previous studies have investigated GM functional 

changes with age and senescence using shotgun metagenomics 

in a wild population. 

Also, most GM studies on wild animals have relied on a cross-

sectional sampling of differently aged individuals [36–38] and, 

therefore, may be confounded by the selective appearance/disap-

pearance of individuals with particular GM characteristics. A lack 

of longitudinal samples also makes it difficult to infer changes 

in GM stability with age [39]. Understanding what drives this 

GM variation is important, as it may lead to a deeper compre-

hension of the evolution of senescence and life-history trade-

offs [3], and enhance our ability to prolong healthy lifespans. As 

senescence occurs at different rates across individuals, a longitu-

dinal approach is crucial for accurately evaluating age-associated 

effects [40]. Given this rate variation, and because declines are 

expected to be greatest at the end of life, GM changes may be 

more closely associated with proximity to death than chronolog-

ical age. Including such information in analyses requires accu-

rate estimates of the point of death that are not confounded by 

dispersal. 

The long-term study of the Seychelles warbler population on 

Cousin Island provides a powerful natural system to study GM 

variation andhost senescence [3]. Its isolated nature allows for the 

longitudinal sampling of uniquelymarked, known-age individuals 

across their entire lifespan and the collection of accurate survival 

and reproductive success data [41, 42]. Previous studies using 16S 

metabarcoding have demonstrated that Seychelles warbler GM 

composition is linked to subsequent survival [43] but identified 

no overall patterns of GM senescence [26]. Additionally, host age 

was not associated with GM diversity, but a very marginal effect 

of host age on GM composition was reported [26]. 

Here, we use shotgun metagenomics to assess fine-scale 

changes in the GM with age and senescence in the Seychelles 

warbler. First, we determine how GM taxonomic diversity and 

composition changewith host age,particularly in a bird’s terminal 

year when GM dysregulation is expected to be at its greatest. 

Then we test the hypothesis that GM functional characteristics 

(assessed via microbiome gene content) will change with age, 

senescence, and in the terminal year. 

Materials and methods 

Study system and sample collection 

Seychelles warblers are insectivorous passerines endemic to the 

Seychelles archipelago. The population on Cousin Island (29 ha; 

04◦ 20′ S, 55◦ 40′ E) has been extensively monitored since 1985 in 

the winter (January–March) and summer (June–October) breeding 

seasons [3, 44, 45]. Each season nearly all new birds (offspring) are 

caught, in the nest or as dependent fledglings in the natal territory 

[45]. As many adult birds as possible are re-caught each season 

using mist nets. Bird age is determined using either lay/fledgling 

date [45] for the majority of individuals, if birds are first caught 

without a fledging date being recorded, eye color is used to 

estimate age instead (see [45]). 

The population on Cousin Island consists of ca. 320 individuals 

grouped into ca. 115 territories, defended year-round by a dom-

inant breeding pair [46, 47]. Territory quality is calculated each 

season using arthropod counts, vegetation density, and territory 

size information [45, 48]. 

Nearly every bird in the population (> 96% since 1997 [49]) 

has been caught and marked with a unique combination of a 

British Trust for Ornithology (BTO) metal ring and three plastic 

color rings, which enables them to be monitored throughout their 

lives [3, 50]. Individuals almost never disperse between islands 

and the annual resighting probability is ∼98%±1% [41, 42, 51]. 

If an individual is not seen for two consecutive seasons it is 

assumed to have died (an error rate of 0.04%) [41, 42]. Death 

dates for individuals were set as the final day of the season in 

which the birdwas last seen. Benign climatic conditions and a lack 

of predators result in relatively long-lived individuals (median 

lifespan 5.5 years, max lifespan 19 years) [46, 52]. Previous studies 

have found thatmale and female Seychelles warblers are sexually 

mature at 1-year-old, and senescence (survival and reproductive) 

begins at ca. 6 years of age [3, 41, 46, 53]. The annual survival 

of adults does not differ between sexes, remaining ∼80% up to 

6 years of age and then decreasing [3, 54]. Thus, there were no 

differences in survival senescence between the sexes [3, 46, 53]. In 

addition, elderly females in their last year of life (terminal year) 

had reduced reproductive success [55]. 

Fecal samples were collected from caught birds and stored 

as described previously (see [26]). Between 2017 and 2023 all 

caught birds were placed in a disposable flat-bottom waxed paper 

bag containing a sterilized plastic weighing tray underneath a 

sterilized metal grate [56]. This allows the bird to stand on the 

grate and feces to fall into the sterile tray,minimizing contact with 

the bird’s surface. After ca 15 minutes (after defecation) the bird 

was removed. The sample was collected, using a sterile flocked 

swab, and placed into a microcentrifuge tube containing 1 ml of 

absolute ethanol. Samples were stored at 4◦C in the field before 

being transferred to −80◦C for long-term storage. Contamination 

(hand) controls were collected from fieldworkers each season. 

The time-of-day that samples were collected and the number of 

days for which samples were stored at 4◦C, were recorded. A ca 

25 µl blood sample was also taken via brachial venepuncture and 

stored in 1 ml of absolute ethanol at 4◦C. 

Deoxyribonucleic acid extraction and sequencing 

Blood samples were processed with a salt extraction method 

[42] or Qiagen DNeasy Blood and Tissue Kit and the resulting 

deoxyribonucleic acid (DNA) was used for molecular sexing 

[52, 57]. 

DNA from fecal samples was extracted using the Qiagen 

DNeasy PowerSoil Kit with a modified protocol (see [56]). Samples 

were lysed using both mechanical agitation and enzymic pro-

cesses [56]. Individuals for which multiple longitudinal samples 

were available were prioritized for metagenomic sequencing to 

capture within-individual changes. In total, 155 fecal samples 

from 92 individuals across 7 years were sequenced, as well as 

three positive controls (two extractions from a ZymoBIOMICS 

Microbial Community Standard [D6300], and one extraction from 

a ZymoBIOMICS Fecal Reference with TruMatrix™ Technology 

[D6323]), and six hand controls. Library preparation was per-

formed in two lanes per run using the LITE protocol [58] and  

sequencing undertaken in two runs of 2× 150 bp NovaSeq X
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platform. The D6300 extraction control was sequenced on both 

runs to compare extraction and batch effects. 

Bioinformatics 

Shotgun metagenomic sequence analysis was carried out using 

the MATAFILER pipeline (see [5] and supplementary materials). 

Briefly,MATAFILER removes host reads, assembles reads, predicts, 

and annotates genes, builds metagenome-assembled genomes 

(MAGs) and metagenomic species (MGSs), and taxonomically 

assigned MGSs. Due to the high individuality of the Seychelles 

warbler GM and the high sequencing coverage required to assign 

MGS, Metaphlan4 was also used to taxonomically classify reads 

(see supplementary materials for details). 

Gut microbiome analyses 

A total of 162 samples were successfully processed bioinformat-

ically (153 fecal samples, 4 controls). Positive controls were suc-

cessfully recovered, and hand controls did not contribute to sub-

stantial contamination in samples (Fig. S1). 

The 153 fecal samples (Fig. S2) included 71 from 40 females 

and 82 from 51 males. In total, 41 individuals had one sample, 

41 had two, eight individuals had three, and one individual had 

four samples. Age at sampling ranged from 0.6–17.0 years (mean 

5.7± 0.3 SE).Of these, 48were from22 individuals in their terminal 

year (the year in which they died); with ages in terminal year 

ranging from 1.4–17.0 years. From all these samples, 1025 unique 

metaphlan4 species-genome-bins assignments were used for the 

subsequent taxonomic analysis (mean 29.3± 2.0 SE per sample). 

All statistical analysis was performed using R version 4.33 [59, 

60]. variance inflation factor scores (car version 3.1.2) were used 

to test for collinearity between variables in all models; all had a 

score < 3 indicating no issues with collinearity [61]. 

Taxonomic gut microbiome changes with age 

Taxonomic gut microbiome alpha diversity 

A rarefaction curve of Metaphlan4 species was constructed with 

iNEXT version 3.0.1 to determine the read depth required to 

recover 95% of theoretically present species (Fig. S3) [62]. Tax-

onomic classifications were rarefied to a depth of 5500 reads 

before alpha diversity analysis; two samples were removed due to 

insufficient read depth. Species richness and Shannon diversity 

metrics were calculated per sample using R packages phyloseq 

version 1.46.0 and microbiome 1.24.0 [63, 64]. Wilcoxon rank sum 

tests were used to examine whether different sequencing plates 

affected species diversity (Shannon index, P= .353) and species 

richness (Observed index, P= .124), both were not significantly 

different. 

A linearmixed effectmodelwith aGaussian distribution (lmer), 

and a generalized linear mixed effect model with a negative 

binomial distribution (glmer.nb), were used to model changes in 

species diversity (Shannon index) and richness (observed taxa), 

respectively, using lme4 version 1.1–35.5 [65]. Fixed effect vari-

ables included in models were: host age (years); terminal year 

(yes/no); sex (male/female); breeding season (winter/summer); 

sample year (as a factor: 2017–2023); territory quality; storage 

days at 4◦C (days); time of day collected (minutes since sunrise 

at 6:00 a.m.). Bird ID was included as a random effect. 

Storage at 4◦C in the field ranged from 4 days to 104 days (mean 

36.3± 1.8 SE). A quadratic age term, and an interaction between 

terminal year and host age, were tested to assess whether GM 

changes became more extreme with age or if GM changes in 

the terminal year differ depending on age. These terms were 

dropped if not significant to allow interpretation of the main 

effects. Age was measured in years, but all samples taken when 

birds were>12 years of age were designated as 12 years because 

these samples were rare (n = 9, max age=17 years). Previous anal-

ysis shows that body condition is not associated with Seychelles 

warbler GMdiversity and composition, thus, it was not included in 

analysis [43]. Model diagnostics were run using DHARMa version 

0.4.6, with no significant issues in each chosen model [66]. Herein, 

all models were tested with the same variables unless stated 

otherwise. 

A within-subject centering approach was used to separate 

between-individual (cross-sectional) GM differences with age 

(which could be driven by the selective appearance/disappear-

ance of individuals with particular GM characteristics), from 

within-individual (longitudinal) change (which could indicate 

senescence) [67]. This involves calculating the mean age of each 

individual across all its sampling events (mean age) and the 

within-individual deviation from that mean age at each separate 

sampling event (delta age). These terms replace host age in the 

model. The fixed effect of terminal year was also replaced by 

a “terminal year bird” term (yes/no) which indicates whether 

individuals have at least one sample collected in the terminal 

year or not. An interaction between the terminal year bird and 

delta age, as well as quadratic delta age, were tested to assess 

whether within-individual GM changes were more extreme in 

birds with a sample taken in the terminal year of life and/or 

in older individuals, respectively (which would be indicative of 

senescence). In addition, an interaction between delta age and 

mean age was included in the models to test if within-individual 

changes with time occur differently depending on host age. The 

analysis was repeated with non-rarefied reads to determine if 

rarefaction influenced the results. These terms were dropped if 

not significant to allow interpretation of the main effects. 

Taxonomic gut microbiome composition 

A permutational multivariate analysis of variances (PERMANOVA) 

was carried out on a Euclidean distance matrix calculated using 

centered log ratio (CLR)-transformed reads, using the adonis2() 

function in vegan version 2.6.6 [68]. A blocking effect of Bird ID was 

used to account for repeated measures. The same predictors were 

included as for the main model in the Alpha diversity analysis 

above.Differences in composition were visualizedwith a principal 

component analysis (PCA) in phyloseq version 1.46.0 [64]. 

Taxonomic gut microbiome differential abundance analysis 

Two different differential abundance analysis (DAA) methods 

were used to identify differentially abundant GM species with 

host age (as recommended by [69, 70]; ANCOMBC2 version 2.4.0 

and GLLVM version 1.4.3 [71, 72]. ANCOMBC2 calculates log fold 

change of species one at a time before adjusting p-values,whereas 

GLLVM calculates log fold change of all species all at the same 

time, accounting for correlation between species [71, 72]. A total 

of 22 common species, defined as species found in 20% of the 

population at >0.01% abundance, were retained. Species that 

were significantly differentially abundant in the same direction 

using both DAA methods were considered robustly significant. 

Variables included in each model were the same as in models 

above. 

Functional gut microbiome changes with age 

Functional gut microbiome alpha diversity 

Initially, 4727 different eggNOG orthologues (mean=3616.6± 64.4 

SE per sthe ample) were identified in our gene catalogs. A rarefac-

tion curve of eggNOG orthologues was constructed using iNEXT to
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Table 1. A generalized linear mixed effect model with a negative binomial distribution (glmer.nb) investigating GM species richness in 

relation to within-(delta) and between-(mean) individual variation in age among Seychelles warblers (n=151 samples, 91 individuals). 
Conditional R2 =53.1%. Reference categories for categorical variables are shown in brackets. 

Predictor Estimate SE z P 

(Intercept) 2.705 0.317 8.536 <.001 

Delta Age −0.308 0.095 −3.233 .001 

Mean age −0.036 0.023 −1.534 .125 

Terminal year bird (yes) −0.189 0.142 −1.329 .184 

Season (winter) 0.020 0.157 0.126 .900 

Sex (female) −0.020 0.144 −0.139 .889 

Days at 4◦C −0.238 0.137 −1.734 .083 

Time of day 0.237 0.122 1.938 .053 

Territory quality −0.081 0.125 −0.645 .519 

Sample year (2017) 

2018 0.439 0.280 1.568 .117 

2019 0.399 0.323 1.233 .217 

2020 0.701 0.351 1.997 .046 

2021 0.755 0.338 2.231 .026 

2022 0.725 0.346 2.099 .036 

2023 0.879 0.400 2.197 .028 

Delta age 
∗ mean age 0.034 0.014 2.440 .015 

Random 

Individual ID 151 observations 91 individuals Variance .2321 

Note: Significant (P < .05) predictors are shown in bold. 

determine sample completeness [ 62]. Samples were then rarefied 

to 100000 reads based on >95% completeness. One sample was 

removed due to insufficient reads. Following rarefication, 4685 

eggNOG orthologues were retained (mean=3054.3± 47.1 SE per 

sample). Due to the (negative) skewness of the observed richness 

and Shannon diversity of eggNOG annotations, a scaled exponen-

tial transformation and an exponential transformation were used 

for analyses, respectively, to improve residual fit. Both these alpha 

diversity indices were then analysed with linear mixed models 

containing the same predictors as for taxonomic alpha diversity 

above. 

Functional gut microbiome composition 

To test for changes in functional microbiome beta diversity, 

a PERMANOVA of Euclidean distances calculated from CLR-

transformed read abundances per orthologue was used, using the 

same model structure as for taxonomic compositional analysis 

(described above). Differences in composition were visualized 

with a PCA plot as above. 

Functional gut microbiome differential abundance analysis 

DAA was performed on eggNOG annotations using their assigned 

categories from the database of clusters of orthologous genes 

(COG; Supplementary Table S1) [73] using  ANCOMBC2 and GLLVM 

as described above [71, 72]. Post-hoc DAA were performed on 

individual eggNOG members found within differentially abun-

dant COG categories to establish the drivers of any significant 

differences (see Supplementary material for details). 

Results 

Taxonomic gut microbiome changes with age 

Taxonomic gut microbiome alpha diversity 

GM species richness declines with host age, and individuals in 

their terminal year had significantly lower species richness than 

those in a non-terminal year (Table S2 and Fig. S4). However, 

Shannon diversity was not significantly associated with host age, 

and did not differ between samples taken in a terminal or non-

terminal year (Table S3). A quadratic age term, and an interaction 

between host age and terminal year were not significantly associ-

ated with species richness or Shannon diversity (P > .05) and were 

dropped from the final model. 

The within-individual centering approach revealed that 

a decline in GM species richness with host age occurred 

longitudinally within individuals (Table 1, Fig. 1). However, the 

slope of declining species richness within an individual (delta 

age) decreases with increasing mean age, i.e. a decline in GM 

species richness with time occurs more at earlier host ages than 

in later life (Table 1, Fig. 1). Indeed, after the age of 6 there doesn’t 

appear to be any significant decline in GM species richness with 

increasing age (Fig. 1). This shows that contrary to our prediction 

that GM may show senescent effects, within-individual changes 

were less extreme in older individuals (in the ages we know 

senescence is occurring). There was also no evidence of between-

individual selective disappearance effects (Table 1). Shannon 

diversity did not change significantly with mean or delta age 

(Table S4). There was also no evidence of a quadratic relationship 

between within-individual delta age and species richness or 

Shannon diversity, hence the quadratic age term was dropped 

from the final model. We also tested for an interaction between 

within-individual age and whether an individual’s final sample 

was in their terminal year, but this was not significant (P > .05) 

and was dropped. Additionally, the results were consistent with 

Table 1 when non-rarefied reads were used (Table S5). This result 

indicates that within-individual changes in species richness with 

age had a similar slope whether the bird was sampled in its 

terminal year or not. 

Taxonomic gut microbiome composition 

A PERMANOVA analysis found that cross-sectional host age was 

a marginally significant predictor of GM taxonomic composition 

(Table 2), but terminal year was not (Table 2). Sample year, season, 

and catch timewere significant and explain the largest proportion 

of GM compositional variance (Table 2) followed by days sample
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Figure 1. GM species richness in relation to within-individual, longitudinal differences in age (delta age in years) in Seychelles warblers. The solid lines 

represent model predictions with 95% confidence intervals calculated from the generalized linear mixed effect model (Table 1). Lines are model 
predictions at mean age of 3 and 7 before and after the start of senescence in this species [3]. Each point represents an individual GM sample, 
distinguished by mean age of <6 and greater or equal to 6, and the dashed lines connect samples from the same individual (n=151 samples, 91 

individuals). 

stored at 4◦C and sex. An interaction between age and terminal 

year was not significant (P >0.05). A PCA showed limited sample 

clustering according to age, which is consistent with the small 

amount of variance explained in the PERMANOVA ( Fig. S5). 

Taxonomic gut microbiome differential abundance analysis 

Five of the 22 commonGM species found in the Seychelles warbler 

population (i.e. in >20% individuals) differed significantly in rela-

tive abundance with age in the GLLVM analysis (Escherichia coli, 

Lactococcus lactis, Brucella pseudogrignonensis, Lactococcus garvieae, 

Microbacterium enclense), but none were differentially abundant 

with age in the ANCOMBC2 analysis (Fig. S6A and B). Similarly, 

six species were differentially abundant in the terminal year in 

the GLLVM analysis (L. garvieae, Pantoea anthophila, E. coli, Rothia 

sp AR01, M. enclense, B. pseudogrignonensis), but none were differ-

entially abundant with terminal year in the ANCOMBC2 analysis 

(Fig. S6C and D). Thus, there is no clear consensus of significant 

variation in the abundance of specific GM species with age or in 

the terminal year. 

Functional gut microbiome changes with age 

Functional gut microbiome alpha diversity 

Alpha diversity of eggNOG gene orthologues declined significantly 

with host age for both observed richness and Shannon diversity 

metrics (Table S6, Fig. S7). Alpha diversity of eggNOG orthologues 

did not differ between terminal year and non-terminal year sam-

ples (Table S6). Additionally, the interaction between host age (or 

quadratic age) and terminal year was not significant (P > .05). 

The decrease in functional alpha diversity with host age is 

best explained bywithin-individual longitudinal changeswith age 

for both tested indices (Table 3, Fig. 2). Cross-sectional, between-

individual age was a marginally significant predictor of Shannon 

diversity but not observed richness (Table 3). Alpha diversity did 

not differ between individuals that had at least one sample taken 

in their terminal year and those that did not. The interaction of 

terminal year bird and within-individual age, quadratic within-

individual age, and the interaction between within-individual 

age and mean age were also not significant (P > .05) predictors 

of either index. Sample year was a significant variable of both 

eggNOG observed richness and Shannon diversity. 

Functional gut microbiome beta diversity 

A PERMANOVA analysis identified factors that were significantly 

related to GM functional composition (Table 4). Host age, but not 

terminal year, was a marginally significant predictor of functional 

composition (Table 4). An interaction between age and terminal 

year was not significant (P > .05). The largest effect sizes were 

found in relation to season, sample year, sex, and days stored at 

4◦C (Table 4). Time of day was not significant related to GM func-

tional composition (in contrast to GM taxonomic composition). A 

PCA plot showed limited clustering of GM samples according to 

age, consistent with the small amount of variance explained by 

this variable (Fig. S8). 

Functional gut microbiome differential abundance analysis 

Only one cluster of orthologous genes (COG) category was dif-

ferentially abundant in relation to age. The COG category “X”, 

which represents mobilome COGs such as prophages and trans-

posons, significantly increased in abundance with age in both 

the ANCOMBC2 and the GLLVM analyses (Fig. 3). Several COG
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6 | Lee et al.

Table 2. A PERMANOVA analysis of GM taxonomic composition in relation to age and terminal year in the Seychelles warbler. The 

PERMANOVA was performed using a Euclidean distance matrix of CLR-transformed taxon abundances. N=153 samples from 91 

individuals. Bird ID was included as a blocking factor. 

Predictor df R2 F P 

Age 1 0.009 1.368 .043 

Terminal year 1 0.007 1.051 .569 

Season 1 0.013 2.021 .001 

Sample year 6 0.056 1.479 <.001 

Sex 1 0.007 1.096 .064 

Days at 4◦C 1 0.008 1.193 .034 

Time of day 1 0.010 1.583 <.001 

Territory quality 1 0.005 0.813 .982 

Note: Significant (P < .05) predictors are shown in bold. 

Table 3. A linear mixed effect model investigating variation in GM functional diversity (observed richness and Shannon diversity) in 

relation to within-(delta) and between-(mean) individual age in Seychelles warblers (n=152 samples, 90 individuals). Functional 
diversity is based on eggNOG annotations. Observed richness and Shannon diversity were transformed using a scaled exponential and 

exponential function, respectively. Conditional R2 =35.6% and 13.7%, respectively. Reference categories for categorical variables are 

shown in brackets. 

Observed richness 

Predictor Estimate SE df t P 

(Intercept) 0.99 0.17 124.77 5.68 <.001 

Delta age −0.12 0.04 137.00 −3.31 .001 

Mean age −0.03 0.01 89.42 −1.97 .052 

Terminal year bird (yes) 0.01 0.08 83.34 0.17 .870 

Season (winter) −0.06 0.10 136.94 −0.64 .525 

Sex (female) −0.06 0.08 81.33 −0.79 .430 

Days at 4◦C −0.19 0.09 127.35 −2.23 .028 

Time of day −0.07 0.08 137.00 −0.88 .381 

Territory quality −0.07 0.08 129.62 −0.88 .381 

Sample year (2017) 

2018 0.13 0.15 135.76 0.82 .416 

2019 0.08 0.18 135.88 0.46 .647 

2020 0.36 0.20 136.54 1.82 .071 

2021 0.39 0.19 136.94 2.04 .044 

2022 0.56 0.19 128.48 2.90 .004 

2023 0.57 0.23 122.81 2.50 .014 

Random 

Individual ID 152 observations 90 individuals Variance 0.050 

Shannon diversity 

Predictor Estimate SE df t P 

(Intercept) 757.59 182.06 119.47 4.16 <.001 

Delta age −117.01 41.06 135.71 −2.85 .005 

Mean age −27.30 13.54 83.56 −2.02 .047 

Terminal year bird (yes) 17.93 79.75 76.74 0.23 .823 

Season (winter) 173.07 104.67 127.74 1.65 .101 

Sex (female) −4.98 80.46 69.67 −0.06 .951 

Days at 4◦C −48.55 95.70 133.26 −0.51 .613 

Time of day −21.18 81.57 132.14 −0.26 .796 

Territory quality −0.74 85.97 136.99 −0.01 .993 

Sample year (2017) 

2018 88.02 168.08 136.67 0.52 .601 

2019 32.22 200.48 136.71 0.16 .873 

2020 169.50 210.62 131.73 0.81 .422 

2021 464.12 206.85 136.39 2.24 .026 

2022 484.95 202.78 124.82 2.39 .018 

2023 453.37 238.55 116.14 1.90 .060 

Random 

Individual ID 152 observations 90 individuals Variance 5046 

Note: Significant (P < .05) predictors are shown in bold. 
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Wild gut microbiome changes with age | 7

Figure 2. GM functional diversity measured as (A) observed richness and (B) Shannon diversity in relation to within-individual host age (years). 
Functional diversity calculations are based on eggNOG orthologue groups. Solid lines represent model predictions (± 95% confidence interval) from 

linear mixed effects models (Table 3). Each point represents a unique GM sample, and the dashed gray lines connect samples collected from the same 

individual (n=152 samples, 90 individuals). 

Table 4. A PERMANOVA analysis of GM functional composition in relation to age (and other factors) in the Seychelles warbler. The 

PERMANOVA was performed using a Euclidean distance matrix calculated using CLR-transformed (eggNOG) abundances. N=153 

samples; 91 individuals; bird ID was included as a blocking factor. 

Predictor df R2 F P 

Age 1 0.007 1.096 0.044 

Terminal year 1 0.006 0.890 0.292 

Season 1 0.011 1.823 0.042 

Sample year 6 0.052 1.374 0.020 

Sex 1 0.008 1.250 0.001 

Days at 4◦C 1 0.010 1.569 0.007 

Time of day 1 0.008 1.200 0.139 

Territory quality 1 0.007 1.094 0.413 

Note: Significant (P < .05) predictors are shown in bold. 

categories were significantly differentially abundant with envi-

ronmental variables including Cat A (RNA processing and modifi-

cation) with season and Cat C (Energy production and conversion) 

with sample year ( Figs S9 and S10). 

Within category X (mobilome), only COG2801 (transposase 

genes) was found to significantly increase in abundance with 

age in both GLLVM and ANCOMBC2 analyses (Fig. S11, Table S1). 

A within-subject centering approach within a linear mixed model 

showed an increase in COG2801 was associated with both within-

individual (longitudinal) age and between-individual (cross-

sectional) age (Table S7, Fig. 4). However, the interaction between 

within-individual age and terminal year, as well as the interaction 

between within-individual age and mean age, was not significant 

(P> 0.05). 

COG2801 located within MGSs (509 COG2801 copies from 160 

MGS) were most closely related to the group insertion sequences 

(IS) 3 family of transposases (30%), other IS family transposases 

(12%), partial or putative transposases (33%) or other/unknown 

function (25%; Table S8). An increased abundance of COG2801 in 

the GM may be due to either an increase in the abundance of 

COG2801-carrying microbes or increased replication of the trans-

posase gene itself. However, contrary to the first hypothesis, we 

found no relationship between the total abundance of COG2801-

carryingMGSs (n=160) and host age (Table S9). To further test this, 

COG2801-MGSs were matched with metaphlan4 annotations at 

the genus level; the abundance of COG2801-metaphlan4 genera 

was not significantly associated with host age (Table S10). Hence, 

the increase in COG2801 abundance with host age could not be
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8 | Lee et al.

Figure 3. DAA of functional GM COG categories in Seychelles warblers using (A) ANCOMBC2 and (B) GLLVM. Each COG category is represented on the 

y-axis. Points and error bars are distinguished according to significance (P < .05). 

Figure 4. CLR-transformed COG2801 abundance in relation to (A) within-individual (delta) host age and (B) between-individual (mean) host age in the 

GM of Seychelles warblers. The solid line represents model predictions (± 95% confidence intervals) from a linear mixed effect model (Table S7). Each 

point represents a GM sample with dashed gray lines connecting samples from the same individual (n =153 samples, 91 individuals). 
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attributed to an increased abundance of COG2801-carrying bac-

teria. Additionally, within COG2801, ten gene catalogs were com-

monly shared across 50% of samples. Each of these ten COG2801 

gene catalogs was not significantly (p >0.05) differentially abun-

dant with age individually when tested using both ANCOMBC2 

or GLLVM analysis (Fig. S12). Thus, the increase in abundance 

of COG2801 with age was not being driven by the abundance 

of a single prevalent, gene catalog but rather the cumulative 

abundance of many. 

Discussion 

We used a repeated metagenomic dataset from individuals in a 

Seychelles warbler population to investigate how GM taxonomic 

and functional characteristics varied with host age. We identified 

a linear decrease in species richness, and small shifts in GM 

taxonomic composition, with host age. Additionally, species rich-

ness was lower in samples taken during an individual’s terminal 

year, but taxonomic composition did not differ between terminal 

and non-terminal samples. We also identified a linear decrease 

in the GM’s functional richness and diversity, and differences in 

functional GM composition, with host age. Finally, COG categories 

representing the mobilome increased in prevalence with bird age, 

driven by an increase in the abundance of COG2801, a group of 

transposases. 

The small reduction in GM richness, but not Shannon diversity, 

with age suggests a loss of rare taxa that is not linked with a major 

restructuring of the evenness of the GM. The reduction in species 

richness was also age-dependent, with younger individuals expe-

riencing greater reduction in species richness over time compared 

to older individuals, indicating that changes in GM species rich-

ness is not associated with senescence. This also concurs with 

the small changes in GM composition with age we identified; i.e. 

showing a limited number of differentially abundant taxa with 

increasing host age. This result is consistent with a previous 16S 

metabarcoding analysis of senescence of the Seychelles warbler 

GM despite the increased taxonomic resolution afforded by a 

metagenomics approach [26]. Additionally, the three dominant 

phyla identified in themetagenomics analysis (accounts for 95.6% 

of all taxonomic assignments) were the same three dominant 

phyla identified through the 16S analysis (Proteobacteria, Acti-

nobacteria, and Firmicutes) [26, 43]. Overall, the results support 

the conclusion that, taxonomically,most of the GM stays the same 

with increasing age, apart from the loss of a few rare taxa. 

Taxonomic changes in GM species diversity and composition 

with age have been repeatedly demonstrated in humans and 

captive animals [16]. However, in these species, late-life changes 

in the GM may be due to external factors such as antibiotic use, 

lifestyle, and dietary changes [18, 20]. An increasing number of 

wild animal studies are finding little evidence of a late-life shift 

in GM taxonomic diversity without such external factors (see 

[26,74]). Our study supports this conclusion despite the repeated 

sampling and increased resolution yielded by shotgun metage-

nomics, which can potentially reveal more nuanced changes at 

lower taxonomic levels. 

Few studies have directly investigated functional changes in 

the GM with age in wild animals [75]. Some studies have been 

undertaken using functional inferences from metabarcoding 

sequence homology. However, this can be misleading due to 

being limited to variation within the same genus thus providing 

potentially inaccurate functional profiles. [76,77]. In our study 

using a higher resolution metagenomic approach, we found 

evidence of small, linear, changes in GM functional diversity 

and composition with age in the Seychelles warbler. Functional 

observed richness and Shannon diversity declined with age, 

which suggests not only that rare functions are lost, but that the 

evenness of these GM functions also changes linearly with adult 

age. Age-related decreases in functional richness and shifts in 

functional composition have previously been identified in elderly 

humans [78,79]. Such changes have been linked to the onset of 

specific disease states, such as inflammation and pathogenesis 

and changes to diet degradation and digestion, in humans and 

laboratory mice [80]. However, other studies have either found 

no change in functional alpha diversity, or even an increase 

in microbial functional richness and diversity with age [35,81]. 

Whether the loss of functional diversity, and minor changes in 

functional composition, with host age in Seychelles warbler is 

linked to declines in health and condition remains unclear and 

requires further study. The decline in taxonomic richness (but not 

taxonomic diversity) along with declines of functional richness 

and diversity with host age suggests that as the host age, less rare 

taxa contribute to the number and evenness of functional genes 

in the GM. 

Despite the small changes in functional diversity and com-

position with age in the Seychelles warbler, we only identified 

one specific functional category whose abundance was signifi-

cantly associated with host age. An increase in the abundance 

of COG2801 transposases occurred with age. However, this was 

not due to an increase in COG2801-carrying microbes. COG2801 

are a group of transposases that are primarily found in bacteria 

(89.5%) and have been shown to be the most widely transferred 

genes among prokaryotes [82]. Most COG2801 genes found within 

MGSs were group IS3, which use a copy-out-paste-in mechanism 

to replicate [83]. This could lead to an increased number of trans-

poson copies in the same individual bacterial genome over time, 

or to horizontally transfer to other bacterial genomes. [84,85]. 

Thus, the increased abundance of COG2801 with age in Seychelles 

warbler GM’s may be the result of self-replication, independent of 

microbial host cell DNA replication. An increase in transposition 

has been observed when bacteria are stressed and COG2801 is 

one of the most horizontally transferable eggNOG genes [86,87]. 

Therefore, as vertebrate hosts get older, the GM may be exposed 

to a greater number or intensity of stressors, such as mucus 

barrier thinning or inflammation, which may induce activation 

of COG2801 [88]. However, there was not an accelerated increase 

(i.e. a quadratic relationship) of COG2801 abundance with host 

age, which would be expected if the cumulative effects of host 

senescence were driving these changes. Therefore, stressors to 

the host that occur linearly in adulthood, such as cell death 

in the gastrointestinal autonomic nervous system [89,90], may 

better explain the increased abundance of COG2801 with host 

age. 

We also focused on assessing terminal year effects in the 

Seychelles warbler GM. Only species richness was found to be 

significantly lower in the final year of a bird’s life. Moreover, the 

effect of terminal year was uniform across age, i.e. it was not more 

extreme in older individuals. Previous research has identified age-

dependent terminal-declines in fitness components (reproductive 

success and survival probability) in the Seychelles warbler [55]. 

However, the lack of age-dependent terminal changes in GM 

characteristics identified in our study suggests that the GM does 

not undergo senescence in association with these other traits. As 

such, the declines in microbial species richness in terminal year 

samples (and linearly with age) may rather reflect the stabiliza-

tion of the GM with age rather than a senescence effect. These 

results concur with the previous 16S metabarcoding analysis of
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10 | Lee et al.

the Seychelles warbler GM which found little evidence of GM 

senescence [26]. 

Across analyses, environmental factors explained most of the 

variance in the Seychelles warbler GM.This concurs with previous 

research on this species [26, 43, 56] as well as studies of other 

taxa [21,91,92]. Temporal variation -specifically year and season-

explained the most variance in both taxonomic and functional 

GM composition. This may be explained by many factors includ-

ing climate variability, differences in insect prey availability, or 

host population density [93–95]. Most Seychelles warbler individ-

uals breed in the summer rather than the winter season, and 

GM shifts may therefore reflect reproductive activity and related 

hormonal changes [24]. Time of day was also associated with GM 

composition.Differences in insect activitymight drive this pattern 

due to light availability and/or temperature [96,97]. However, such 

patterns could also be due to host intrinsic circadian rhythms [98]. 

In addition,differences in the amount of time sampleswere stored 

at 4◦C resulted in differences in the GM characteristics and it is 

very important that these are controlled for. Given that samples 

are stored directly in absolute ethanol, the changes related to 

the time in storage at 4◦C are likely to do with DNA degradation 

affecting the assignment of reads rather than an actual biological 

change in storage. 

These factors lead to a substantial amount of noise in GM 

studies that can confound studies on aging, reproduction, and 

disease outcomes in wild populations. Therefore, accounting for 

these factors is important when investigating the GM in natural 

systems. 

Our findings highlight the need for more studies investigat-

ing the functional characteristics of wild microbiomes as taxo-

nomic relationships might not capture functional GM changes 

that occur (e.g. the increased prevalence of COG2801). However, 

researchers should not totally discount the utility of 16S metabar-

coding for investigating general GM questions, as it may, in many 

cases, provide sufficient taxonomic resolution to answer specific 

questions [28]. Indeed, we identified similar taxonomic patterns 

using shotgun metagenomics to those revealed by a previous 

metabarcoding study on the Seychelles warbler [26]. The cost-

effectiveness of 16S rRNA allows greater sample sizes, and thus 

power, to resolve certain questions. A combination approach that 

harmonizes both 16S metabarcoding and shotgun metagenomics 

has been proposed to maximize sample size, although such anal-

yses are limited to genus-level comparisons [99]. On the other 

hand, shotgun metagenomics not only allows higher taxonomic 

resolution and functional analysis of the GM, but also an assess-

ment of the interaction between taxa and their functions. As 

described with transposable elements, our functional analysis 

uncovered changes in GM function that were not detectable using 

16S metabarcoding analysis. 

In conclusion, while we found that the Seychelles warbler GM 

changes in terms of diversity, composition, and even functionwith 

age, this happens gradually over the adult lifespan and there is 

little evidence of late-life GM senescence. While species richness 

is lower in the terminal year, this occurs at all ages and is not 

more extreme in the oldest individuals. Interestingly, we found 

that the abundance of a group of transposase gene increases con-

siderably with age in the GM, probably because of more frequent 

transposition within the GM community over time. Future work 

is required to determine exactly why these transposable element 

changes occur and what impact they may have. Additionally, 

work should investigate the generality of these conclusions by 

assessing whether functional changes occur in the GM of other 

wild vertebrates. 
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