UNIVERSITY OF LEEDS

This is a repository copy of Queue Management Project: User and Programme
Documentation..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/2223/

Monograph:
Clark, S.D. (1992) Queue Management Project: User and Programme Documentation.
Working Paper. Institute of Transport Studies, University of Leeds , Leeds, UK.

Working Paper 343

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

| university consortium eprints@whiterose.ac.uk
WA Universities of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

White Rose

university consortium
A ‘ Universities of Leeds, Sheffield & York

White Rose Research Online
http://eprints.whiterose.ac.uk/

IS

Institute of Transport Studies
University of Leeds

This is an ITS Working Paper produced and published by the University of
Leeds. ITS Working Papers are intended to provide information and encourage
discussion on a topic in advance of formal publication. They represent only the
views of the authors, and do not necessarily reflect the views or approval of the
Sponsors.

White Rose Repository URL for this paper:
http://eprints.whiterose.ac.uk/2223/

Published paper

Clark, S.D. (1992) Queue Management Project: User and Programme
Documentation. Institute of Transport Studies, University of Leeds. Working
Paper 343

White Rose Consortium ePrints Repository
eprints@whiterose.ac.uk

http://www.its.leeds.ac.uk/
http://eprints.whiterose.ac.uk/
http://www.its.leeds.ac.uk/

Working Paper 343
' January 1992

Queue Management Project

User and Programme Documentation

S. D. Clark

ITS Working Papers are intended to provide information and encourage discussion on a
topic in advance of formal publication. They represent only the views of the authors, and
do not necessarily reflect the views or approval of the sponsors

This work was sponsored by the Science and Engineering Research Council

Part A - User Documentation Flow Theory Model

Contents
PART A
Page
1 Introduction 3
2 Model Specification 3
3 Data Requirements 4
3.1 Time Information 5
3.2 Lane information 5
3.3 Physical information 5
3.4 Traffic information 6
3.5 Turning information 7
3.6 Signal information 8
3.7 Summary 9
3.8 Flow file 9
4 Model Display 9
4.1 Network window 11
4.2 Time/Space window 11
4.3 Window movement 11
4.4 Retaining windows 11
5 Model Interior 12
5.1 Greenshield's model 12
5.2 All flows are uncongested 13
5.3 Left turning traffic 13
5.4 Right turning traffic 13
5.5 Lane changing 13
5.6 Blocking criterion 14
5.7 Signal movements 14
5.8 Traffic may leave a junction
by an input link 14
6 Model OQutputs 14
7 Restrictions 15

8 Enhancements 16

Part A - User Documentation Flow Theory Model

PART B
Page
1 Introduction 18
2 Program Parts 18
3 Data Structures 19
3.1 Junctions 19
3.2 Flow : 20
3.3 Map 21
3.4 Signal o _ 21
3.5 Limit | 21
3.6 Entity arrays 21
3.7 Entities 22
3.8 Junction lists 22
3.9 Data array 22
3.10 Data record 22
3.11 Junction exit clear array 23
3.12 Junction blocked start/stop times 23
3.13 Direction lookup table 23
4 Algorithms 24
4.1 Input 24
4.2 Check 25
4.3 Graph 25
4.4 Lights 26
4.5 Run 26
4.6 Stat 29
4.7 Wave 30
5 Problems 30
5.1 Input 30
5.2 Check 31
5.3 Graph 31
5.4 Run 31
5.5 Stat 31
Appendix 1
Example model specification file 32
Appendix 2

Results 36

Part A - User Documentation - Flow Theory Model

1 Introduction

This document is intended for use by individuals who wish to use the
Traffic model developed on the Sun386i workstation. The model is an extension
of that developed by D.J.G. Ford on the IBM PC,

The first section deals with an outline discussion of the traffic flow theory
used in the model. The second section demonstrates how to define a model for
input into the program. The third section clarifies the arrangement of the
graphics output on the screen. The next section explains some of the internal
assumptions used in the model. The foliowing section explains the form and
content of the logging information collected by the model. The remaining two
sections constitute a general discussion on the model, namely its restrictions and
possible enhancements.

Other documentation which may be useful include:

0 Outline Specification for a Queue Management Computer
Model, S.D. Clark, 07/11/90;

0 A Graphical Model to Illustrate Queue Management
Techniques at Signalised Junctions within Saturated
Traffic Networks, D.J.G. Ford;

2 Model Specification

The program models traffic flow through a one-way signalised network of
multi-laned links, The arrangement of the network may be one-dimensional
(Linear) or two-dimensional (Grid). Each junction in the network may have up
to four approaches/exits, labelled North, South, East and West.

Traffic within the network behaves according to hydrodynamic traffic flow
theory, using a linear (Greenshield) speed-density relationship. This theory
provides us with :

The density of traffic at input approaches;
The speed of blocks of traffic;

The speed of a shock wave between traffic;
The speed of queue stopping waves;

The speed of queue starting waves;

The density of traffic leaving a queue;

Traffic in the model is represented by blocks of traffic of a certain length of
a given density. These blocks of traffic may merge with others or form queues of

Part A - User Documentation Flow Theory Model

stationary traffic. As blocks of free moving traffic join the rear of a queue the
length of the queue is increased, the amount depends upon the density of the
block. The position of this queue rear, over time, is marked on a graph. When
signals and receiving links allow traffic in a queue to move then blocks of free
moving traffic are generated at the head of the queue. The position of the queue
front is also marked on the same graph as the queue rear.

Traffic movement within the network is affected by the presence of queues
and other traffic. Most importantly if a queue spills back to an upstream exit
then the movement of traffic into that exit is also affected or even stopped.

3 Data Requirements
The data specifying the model is contained in two text files. These files

may be created or amended using any standard text editor. The first file contains
static information relating to the network. The second contains information on
flows at the input junctions. The data sets required for an execution of the model
are typed after the name of the program e.g.

traff welling welling.q
runs the traffic model, taking the data from the files welling and welling.q. If
the program is run without specifying these data files a usage message is
displayed.

The data required for the model falls into five categories:

Time information for the whole network;

Lane information for the whole network;

Physical information for each junction approach/exit;
Traffic information for each junction approach/exit;
Turning information for each junction approach/exit;
Signal information for each junction;

Flow information for each input junction.

An example network and data files are given in appendix 1.
As can be seen from the example the data is comma delimited where a list of
information, on the same line, is required. Also note that spaces or tabs may be
added to align values. The text following the : at the end of the line is a comment
and is ignored by the model. The input lines, including comment, must be less
than 99 characters.

Part A - User Documentation Flow Theory Model

Each of the items listed below are on a separate line. After the information
title the number in brackets specifies how may items of information are required
on this line. Generally each line consists of the information for each of the four
directions (N S E W) for this junction.

3.1 Time informatign

There are three pieces of time information, each of which should be in the
following order and on a separate line.

(i) Model run time (1). The total len;g'th 6f time that the model is to be run for.

(i) Run in period (1). This is the amount of time judged necessary for the network
to fill with traffic and reach a 'stable’ state. After this period Time/Space graphs
are drawn and statistics collected.

(iii) Stepping time (1). At this time the program pauses after each time unit and
waits for the user to press return. In order for the return to be registered the
SunView cursor (arrow) must be in the Shell/Command tool window from which
the program is being run.

(iv) Cycle time (1). This is the signal cycle time for the whole network.

All times must be integers and be less than 32767 (32767 seconds
~ 9 hours).

3.2 Lane information
Only one item of lane information is required:

(i) Lane change (1). This is the percentage of traffic, by length, which moves into
a short lane if there is no turning traffic (see 5.5 (i1}).

3.3 Physical information

These pieces of information allow the physical characteristics of the road
network to be established. This information is required for every junction in the
network.

(i) Junction number (1). This single number is the reference tag for this junction.
The number must be unique and be between 1 and 12.

Part A - User Documentation Flow Theory Model

(ii) Junction name (1). The name of the junction is used to annotate the axis in
the Time/Space graphs. The name must consist of 20 (twenty) or fewer
characters.

(iii) Lanes per link (4). The number of lanes for each link is specified here. If the
link is an output or is sealed (no traffic) then this value is ignored. There can at
most be 4 (four) lanes per link.

(iv) Link lengths (4). A measure of the length of each lane in the link (stop line to
stop line) is required. The number of lengths needed depends upon the number
of lanes specified for this direction (on the line above). The lengths are taken in
a left to right order, as seen by traffic on the link. Where there are unequal lane
lengths, i.e. shorter lanes, then these must be either the first and/or last length
specified. Once again, if the link is an output link or is sealed then no lengths are
required. The units are metres.

(v) Connecting junction (4). The junction number which connects with this one in
each of the four directions is given here. If the junction is an input to or an output
from the network then this value MUST be 0 (zero). If the junction is sealed
then this value MUST be -1 (minus one).

(vi) Stop line (4). If this link is an approach to the junction then this value MUST
be 1 (one). If, on the other hand, it is an exit from the junction then this value
must be 0 (zero). If the link is sealed then this value is ignored.

(vii) Junction width (2). In order to establish when a queue blocks the upstream
junction a measure of the widths across the junction are required. The first
number is the width of the junction from North to South whilst the second is the
width from East to West. The units are metres.

3.4 Traffic information
This category of information provides measures of various traffic statistics.

(1) Jam density (4). The jam density, k;, is required for all types of link except
output links and sealed links. The units are in vehicles per kilometre (veh/km).

(i) Free flow speed (4). The free flow speed, uy, is required for all types of link
except output links and sealed links. The units are in kilometres per hour
(km/h).

Part A - User Documentation Flow Theory Model

3.5 Turning information

Information on how traffic splits when flowing through the network is
required next. This is done by specifying a percentage, i.e. a number between 0
and 100, to reflect the amount of splitting.

(i) Percentage traffic turning left (4). This value is the percentage of traffic in the
left 1ane which wishes to turn left.

(ii) Percentage traffic turning right (4). This value is the percentage of traffic in
the right lane which wishes to turn right.

For each link that receives {raffic, i.e. an input approach or an internal
exit, the amount of traffic which enters each lane requires specifying. Obviously
if there is only one lane in this link then this percentage is 100. If, however, there
is more than one lane in the receiving link then a percentage entering each lane
is required. The percentages are taken in a left to right order, as seen by traffic
entering the link.

(iii) North lane splits (4). This is the split of traffic entering the North link from
each of the other three directions. If this is an input link then the other three

percentages are zero and the percentages in position one are the lane splits for
the North link.

(iv) South lane splits (4). This is the split of traffic entering the South link from
each of the other three directions. If this is an input link then the other three

percentages are zero and the percentages in position two are the lane splits for
the South link.

(v) East lane splits (4). This is the split of traffic entering the East link from each
of the other three directions. If this is an input link then the other three
percentages are zero and the percentages in position three are the lane splits for
the East link.

(vi) West lane splits (4). This is the split of traffic entering the West link from
each of the other three directions. If this is an input link then the other three
percentages are zero and the percentages in position four are the lane splits for
the West link. '

Part A - User Documentation Flow Theory Model

3.6 Signal information
This information describes the timing and contents of the signal phases for

a junction.

(i) Offset (1). This is the number of time units that a junction's start of cycle stage
is offset from a chosen junction. The chosen junction in the network MUST be
given an offset of 0 (zero). Negative offset are acceptable.

(i1) Number of stages (1). The number of signal stages per cycle is given here. The
maximum number of stages per junction is 8 (eight).

(iii) Stage description (variable). For each signal stage a character string is
required to describe the signal settings. Each action starts with a direction (N S
E W). There then follows characters indicating the signal aspects. These
characters and their meaning are given below:

G - Green light

A - Amber light

H - Halt (red) light

L - Left turning arrow

R - Right turning arrow
D - Directly across arrow

Any direction not mentioned in the string is assumed to be Halt (red).
Thus the string
NGSL
sets the North links signal to Green;
South links signal to Left turning arrow;
East links signal to Halt (red);
West links signal to Halt (red);

Valid examples of other stage strings are ; NASAH, ERLSHR;
Invalid examples are : NSAH, NENHWR;

Part A - User Documentation Flow Theory Model

The stage string
XXX
is shorthand for all signals Halt (red). A stage description must contain 14
(fourteen) or fewer characters.

(iv) Stage duration (variable). For each of the stages described above a duration is
required. The total of these times MUST be the same as the cycle time for the
network.

a.7 ma
The order and format for all the data is summarised in table 1 overleaf.

3.8 Flow file
The flow file contains information about what input flows are to be used

during the execution of the model.

(i) Time. This is the time after which the following flows are to be used. The first
of these MUST be time zero.

(ii) Flows. These values are the input flows to use for each junction. Every
Junction in the model must have a line of information even if it does not have any
inputs. In this case the values supplied are ignored.

Information Category Amount Units
Time Time number (s)
Flow Traffic N,S,E, W (veh/h)

Table 2 Summary of flow data format

4 Model Display
The program creates a number of display windows to show the workings of

the model. The largest window displays a representation of the traffic network.
To the right of this window there may be other windows containing Time/Space
axis for North/South routes in the network. Below the traffic network window
there may also be Time/Space graphs for East/West routes in the Network.

Part A - User Documentation

Flow Theory Mcdel

Information Category Type Units
Model-time Time number (s)
Run-in-time Time number (8)
Single-step-time Time number (s)
Cycle-time Time number (s)
Lane change Lane percentage 1..100
Junction number Physical number 1.12
Junction name Physical - string max 20
Lanes per link Physical N,S,E, W 1.4
Link length 1 Physical N, S, E, W m
Link length n Physical N, S, E, W m
Connecting Jn Physical N,S,E, W -1,0,1..12
Stop line Physical N,S,E, W Oorl
Jn distances Physical NS, EW m

Jam density Traffic N,S,E, W veh/km
Free-flow speed Traffic N,S,E, W km/h
Percentage left Turning N,S,E, W 0..100
Percentage right Turning N,S,E, W 0..100
N Split lane (left) Turning N,S,E, W 0..100
N Split lane (right) Turning N, S, E, W 0..100
S Split lane (left) Turning N,S,E, W 0..100
S Split lane (right) Turning N,S,E, W 0..100
E Split lane (left) Turning N,S,E,W 0..100
E Split lane (right) Turning N,S,E, W 0..100
W Split lane (left) Turning N,S,E, W 0..100
W Splitlane (right) ~ Turning N,S,E, W 0..100
Offset, Signal number (s)
Number of stages Signal number 0.8
Stage descriptions Signal string, max 14
Stage duration Signal number, (s)

Table 1 Summary of model data format

.10

Part A - User Documentation Flow Theory Model

4.1 Network window
The network of links is represented as a rectangular grid of equal length

links. The actual length of the link is given, either above or to the right of the
link. Traffic signals are drawn as they would be seen by the approaching traffic.

During the execution of the model blocks of freely moving traffic are
represented as hollow blocks, scaled in width and length accordingly. Queues of
stationary traffic are represented by scaled, solid blocks of differing colours. The
colour of the queue depends upon its lane. This enables a correspondence to be
made between a ciueue in the network and its Stopping/Starting wave profile.
Below the network view is an area for text information. This area displays the
current model time, a request to press return or a warning. The warning message
concerns any traffic which moves into an approach (see 5.8).

4.2 Time/Space window
A time space window is drawn for each North/South or East/West route

which consists of two or more junctions. The axes are drawn to scale. The X axis
is a measure of time and is [model-run-time minus run-in-time] in length. The Y
axis is the length of the longest link in a lane. Consecutive junctions in a route
are appended to each other.

4.3 Window movement
The windows created by the program may be manipulated in a limited

manner. Any operation which causes a redraw of the window contents

(close/overlap/resize) results in the window being wiped clean and only new
images displayed. Movement is generally permissible, Quitting a window
abandons the execution of the entire program. Occasionally this puts SunView
into a sleep state for a couple of minutes.

4.4 Retaining windows

At the end of the model-run-time period the windows created by the
program are removed. In order to save a windows contents the program must be
prevented from stopping. This can be done by following the steps below:

1. Set the time of single-stepping to a number less than or equal to the model-
run-time; _

2. At time model-run-time do not press return:

3. Close the Network window and any Time/Space windows not required;

4. Move the Time/Space windows which you wish to retain out of harms way;

5. Run subsequent executions of the program from another Shell/Command Tool.

.._ll_

Part A - User Documentation Flow Theory Model

As long as you do not cause the termination of the original program the required
window stays on the screen.

5 Model Interior

This section attempts to describe the techniques used within the model
code. These techniques include assumptions made to facilitate a speedy and
accurate implementation of the theory. These assumptions are listed below and
individually justified later in this section.

1 - Greenshield's model is adopted to explain traffic behaviour;

2 - All fiows are uncongested;

3 - All left turning traffic is in the left hand lane;

4 - All right turning traffic is in the right hand lane;

5 - Lane changing occurs only when leaving an approach and when filling a short
lane;

6 - An exit is blocked if any traffic in the exit backs upstream into a junction;

7 - Shared lanes require signals set to green for all types of traffic in the lane for

it to
be able to move;

8 - Traffic may leave a junction via an input link.

5.1 Greenshield's model
As mentioned in section 2, Greenshield's model is used to provide traffic

behaviour characteristics. The simpler uses are:

0 Speed of a block of density k.
u=ur(l-k)
k;
o Speed of a shock wave between two blocks of density k, and k.
Ughock = Uf(1~ (kq +kp))
kK
o Speed of a stopping wave given a block of density k.
Ugtop = ur(k)
ki
0 Speed of a starting wave.
Ugtart = Of

Where k; is the links jam density
and uris the links free flow speed

- 12 -

Part A - User Documentation Flow Theory Model

Greenshield's model is also used to convert from flows to densities. When
traffic leaves an approach to join an exit the traffic is divided according to its
flow. Thus as a block crosses the stop line its density is converted to a flow (ora
proportion of it, depending upon how much of the block crosses the stop line).
This flow is then divided according to the split percentages given by the user.
These proportioned flows are then converted back to densities for the allocation
of traffic blocks on the receiving links. Once again, the ratio of flow over density
provides the block length.

The flow to density equation is the solution of :

0= ufk-gsz-q
k;

5.2 All flows are uncongested

From the form of the flow to density equation above, the solution is clearly
the roots of a quadratic. This provides us with two measures of density. Since we
are operating in uncongested conditions with regard to flows then the lower root
is chosen. This lower root corresponds to using the left hand side of the flow-
density curve. Problems may exist when, given the values of uy, kJ and q, there
are no real roots for this quadratic. If this event should occur then an error
diagnostic message is displayed and half the link's jam density is returned.

5.3 Left turning traffic
This condition requires that all the traffic that wishes to turn left should

be placed in the left hand lane.

5.4 Right turning traffic
This condition requires that all the traffic that wishes to turn right should

be placed in the right hand lane.

5.5 Lane changing

Lane changing occurs in two situations:

(1) When leaving a junction. As a block of traffic crosses an approach stop line, it
is converted into a flow and proportions assigned to appropriate destination
links. For each destination link the flow is proportioned amongst the lanes within
the link. Thus traffic leaving a lane within an approach to a junction is spread
over all receiving lanes. These flows are accumulated for all blocks of traffic

- 13 -

Part A - User Documentation Flow Theory Model

leaving the approach and converted back into blocks, of a given density and
length, in the receiving lanes.

(i1) Filling short lanes. Only short lanes which causes the link to 'fan out' are
implemented, i.e. short lanes extending back from a stop line. Traffic is moved
into these lanes according to the following criterion. If there is turning traffic of
the appropriate type then the amount of turning traffic is taken, by length, from
the neighbouring lane. Once again if there should prove to be insufficient traffic
in the neighbouring lane then all the traffic is moved into the short lane and a
warning message issued. If there is no turning traffic of the appropriate type
then the lane change percentage as specified by the user, is taken from the
neighbouring lane. In this latter case the traffic in the short lane is straight
ahead traffic.

5.6 Blocking criterion
Blocking back is caused when any lane within the link fills the upstream

junction. If a lane is shared or the movement is directly across the junction then
any blocking back of traffic in any exit link causes movement out of the approach
to stop. If the lane is not shared and consists of only left or right turning traffic
then movement will only be prevented if the receiving link is blocked..

5.7 Signal movements

The signals provide for movement out of the lane when the signals provide
permission for ALL traffic in the lane to move over the stop line. Thus, for
example, if the lane consists of both left and direct traffic then the signals need to
be set for left and direct traffic movement.

5.8 Traffic may leave a junction via an input ‘
Normally in a one way traffic system vehicles are not permitted to cross

into an approach link. In order fo increase the number of situations which may
be modelled by the program such movement is allowed. The consequence of this,
however, is that such traffic is no longer modelled. With a linear network, so long
as the approach is an input link, i.e. traffic beyond it is not normally modelled
once the traffic has left the junction, then this is not a problem.

6 Model OQutpu :

The model outputs are in two forms, graphical and textual. The graphical
form has been covered in section 4, so this section deals with the textual ocutput.
When the model has finished, the windows holding the traffic network and the
Time/Space graphs are closed. The information collected during the execution of

- 14 -

Part A - User Documentation Flow Theory Model

the model is processed. The model then writes this information to a text file. The
text file has the same base name as the static model specification file but with
the extension .out added. Thus if the model specification file was called welling
then the output file is called welling. out. The contents of this text file are also
listed by the program using the Unix more utility. This utility pauses every
screen full of information and moves on a line if return is pressed or one page if
the space bar is pressed. The Q key quits the listing. For help press the H key.

For an example of the output see appendix 2. The information provided is
described below:

(i) Histograms of Queue lengths

For each lane in the link a histogram showing the distribution of the queue
lengths is provided. The class widths are a multiple of 5 (five). The frequencies
represent the number of lengths equal to or less than the given frequency.

(ii) Table of statistics
For each link a table of summary statistics, one entry for each lane, is
provided. These statistics are:

The mean queue length,;

The standard deviation of the queue lengths;
The variance of the queue lengths;

The maximum queue rear;

The maximum queue rear at the start of green.

(iii) Blocking times

This table reports the start and finish times for any blocking back
oceurring in junction exits. Only blocking which starts after the run-in-time is
reported. If the blocking has a finish time of -1 (minus one) then at the end of
the model execution the blocking back was still occurring.

7 Restrictions

Most of the restrictions in the model have been covered elsewhere. Here I
shall detail a few of the more important ones and introduce a few more. It should
be noted that these restrictions were adopted for two reasons:

They reduce the complexity of the programming task;
They reduce the complexity of the model specification.

- 15 -

Part A - User bocumentation Flow Theory Model

(i) Pseudo one-way systems only. This is perhaps the severest restriction and the
most difficult to remove. The restriction means that most grid type networks can
not be accurately modelled.

(ii) Maximum of four approaches/exits in a junction. If this restriction was
relaxed a number of problems would have to be addressed. The representation of
the network in the window would be cumbersome, requiring diagonal as well as
horizontal and vertical links at least. If this was implemented then the network
may as well be displayed geometrically exact, rather than rectangular.
Movements directly across/left/right would have to be redefined so as to enable
more than one lane to receive the traffic.

(iii) Left/Right turning traffic originating from only one lane. At the moment
left/right turning traffic originates from one lane. It may be useful to have
turning traffic originating from two or more lanes.

(iv) Lane turning occurs in the junction. It would be more realistic if the changing
of lanes occurred in the link itself.

(v) No pedestrian crossings. Partway along the length of a link a pedestrian
crossing with stochastic demand may be desirable.

(vi) No platoon dispersion. At the moment all traffic in a block travels at the
same speed. This is acceptable in short links. In longer links, however, the block
may lengthen to reflect differing traffic speeds within the block.

(vii) Uniform junction cycle times. Rather than assuming the same cycle time for
all junctions in the network, cycle times for each junction could be used.

(viii) Uniform starting wave speeds. In real life we might expect the position of
the rear of the queue in the receiving link to affect the starting wave speed of
traffic leaving a queue.

8 Enhancements
As seems reasonable, the main enhancement would be to relax some of the

restrictions mentioned in section 7. I shall grade each restriction in f{erms of my
estimation of the effort required to overcome it (10 - a great deal, 1 - little).

(1) Full two way network (10);
(i1) An 'unlimited' number of approaches/exits (10);

16

Part A - User Documentation Flow Theory Model

(iii) Multiple turning lanes (4);

(iv) Lane changing (4);

(v) Pedestrian crossings (4);

(vi) Platoon dispersion (2);

(vii) Independent cycle times (1).

(viii) Non uniform starting wave speeds (1)

One additional enhancement would be to record the total number of
vehicles hours spent in the network. Since we have both a density and a length
for the block then the product of these two should give us the number of vehicles.
If the blocks of traffic are stamped with their time of input into the model
(creation), on leaving the network the difference between the current and
creation time is the time the vehicles in the block have spent in the network. The
only problem with this is when two blocks, of different creation times, merge and
when blocks form queues and visa-versa. Some aggregate creation time would
need to be constructed in these cases. This measure would enable some over-all
performance measure to be usefully constructed. This could take about 3 units of
effort.

w- 17 -

Part B - Program Documentation Traffic Model

1 Introduction
This document provides additional information for those who want or need

a greater technical understanding of the Traffic model.

Undoubtedly the best way to try and understand program code is to read
it. Most of the important ideas in the code are commented within the code.

The first section contains a discussion of the program building blocks'
(source, header and make files). The second section describes the data
structures used in the model. The third section describes some of the reasoning
behind key algorithms in the model. The remaining section deals with potential
problem areas.

2 Program Parts

The program is written in the C programming language. The graphics
routines are supplied by the SunGKS libraries. Thus in theory the program is
eminently portable to any platform which has a K&R compatible C compiler and
at least a level 1a implementation of GKS, The only Sun specific portion of the
code is that which establishes the SunWindows for the network and Time/Space
windows (functions wsl draw view, draw time space ns and
draw_time space ewin graph.c)

The execution of the program progresses via the following phases:
Input - Read in the model specification from file;

Check - Validate the specification and report all errors;

Graph - Establish SunWindows and draw graphic images;

Run - Run the model from start to finish;

Stat - Produce output;

-18 -

Part B - Program Documentation Traffic Model

The interdependence between the file elements of the program is explained
below,

model.c —-—-- input.c
model.h | input.h
junction.h | Jjunction.h

- check.c
check.h
junction.h

I

I

I

|

|- graph.c

| graph.h

| Junction.h
I I

|- run.c ---- lights.c

| run.h | lights.h

| Jjunction.h | Junction.h
I | I

|

- stat.c |- wave.cC
stat.h wave.h
junction.h junction.h

3 Data Structures

The program uses some data structures to enable the encapsulation of
data to take place. Other structures are used to permit information to be
transmitted more easily between functions. Structures are arranged in two
forms, either as an array or a linked list.

3.1 Junctions (junction)

This data structure is held in an array which consists of MAX JN
elements (13 initially). For programming convenience element zero is not used,
so MAX JN-1 elements are available. Each element holds the junction data for
the correspondingly numbered junction, as given by the user in the data file.

no, The junction number, same as the array element number;
name. The junction name, NAME_LEN-1 characters at most;
lanes(]. The number of lanes per link, NO_JN elements;
length[1[]. The lengths of each lane. The first subscript is the link,
the second is the lane. NO_JN links and MAX_LANE lanes at
most;
connecting[]. The connecting junction for each link, NO_JN elements;
stop(]. 1 for an approach link, 0 otherwise, NO_JN elements;
NSwidth. The North to South junction width;

-19-

Part B - Program Documentation Traffic Model

EWwidth, The East to West junction width;

jam_density[]. The jam density for each link, NO_JN elements;

free_flow[]. The free flow speed for each link, NO_JN elements;

turn_1f]. The percentage of traffic turning left out of each link, NO_JN
elements;

turn_r[]. The percentage of traffic turning right out of each link,
NO_dJN elements;

split[I[I[]. The percentage split between lanes in each link. The first

~ subscript is the destination link, the second is the source link
whilst the third is the lane. NO_JN links and MAX_LLANE
lanes at most;

offset. The signal phase offset;
stages. The number of signal stages, MAX_STAGE at most;
stage[l{l. The stage description strings. The first subscript is the

stage number, MAX _STAGE at most. The second subscript is
the characters, MAX_STAGE_LEN at most;

timel]. Each stages duration. MAX_STAGE elements at most;

longest[]. The length index of the first longest lane for each link.
NO_JN elements;

lastlongl]. The length index of the last longest lane for each link.

NO_JN elements.

3.2 Flow (flows)
This structure is held as an array of MAX_JN elements. This array holds

the flows of traffic, per hour, at each of the input links along with the time after
which they are to be used.

time. The time after which this flow is to be used;
plL. The flow at the link. MAX_JN entries and NO_JN
approaches.

In addition, element zero of this structure (which is never used to hold
flow information since we do not have a zero junction) is used to hold count
information. The variable flow[0].time holds the number of junctions in the
network so that we can, for each time, read in the correct number of junction
lines. The variable flow[0].p1[0][0] holds the number of different flows to be used
in the mode.

- 20 -

Part B - Program Documentation Traffic Model

3.3 Map

This is a two dimensional array of integers. Its purpose is to hold a spatial
‘map' of the network. This map gives information on where a junction is located
in relation to all others. This information is primarily used when displaying
information in the Windows. The first and second dimensions are 2*MAX_JN
making (2*MAX_JN)? elements in total, The first subscript is the Y
(North/South) direction, whilst the second is the X (East/West) direction.

3.4 Signal (signal)

This structure is held as an array of MAX_JN elements. The first element
is ignored (see junction). The structure records the current signal stage number
for the whole junction and its start time.

stage. The stage index in junction of the current stage;
time. The time at which the current stage started.

3.5 Limit (limit)

This structure holds the limits of the map in one direction. This gives us
the extent of the map given in 3.2. There are two instances of this structure, one
for the Y direction and one for the X direction.

max, The maximum index of the map;
min. The minimum index of the map;
dist. The maximum real distance in the map.

3.6 Entity arravs
These arrays hold pointers to the list of entities within the model. Within

each list the entities for a given junction and link are held. The elements of the
list must be in lane front position order.

block_list[][]. The list of block entities. The first subscript is the
junction number whilst the second is the link. The first
dimension is MAX_JN, the second is NO_JN. Element zero of
block_list is not used;

queue_list[][]. The list of queue entities. The first subscript is the
junction number whilst the second is the link. The first
dimension is MAX_JN, the second is NO_JN. Element zero of
queue_list is not used;

-91.-

Part B - Program Documentation Traffic Model

3.7 Entities (entity)

The entities are the basic elements in the model. They represent both
blocks of free moving traffic and queues. They are held in linked lists, with the
first element tied to an array of pointers (see 3.6).

moved. TRUE if the entity has been moved during the current cycle, FALSE
otherwise. This prevents traffic which has moved from one link into
another being moved in the receiving lane during the current time
period. Has no meanirig for a stationary .queue; |

lane. The lane of this entity. MAX_LANE at most;

k. The density of this entity in vehicles per metre;

pos1. The front position for this entity. Given as a distance in metres
from the stop line;

pos2. The rear position for this entity. Given as a distance in metres
from the stop line. Must, by definition, be no less than pos1;

pos3. The previous value of posl;

pos4. The previous value of pos2;

next. A pointer to the next entity in the list, NULL if end of list.

3.8 Junction lists (jn_list)
This structure is held as a single linked list. The list contains all those
junctions which are free to receive traffic.

jn. The junction number;

d. The junction link,

next. A pointer to the next junction in the list, NULL if end of list;
3.9 Data array

These arrays hold pointers to the list of data records kept by the model.
One copy of the data record is held for every lane within the approach link,

data_logfl[]. The first subscript is the junction number whilst the second
is the link. The first dimension is MAX_JN, the second is
NO_dJN. Element zero of data_log is not used;

3.10 Data record (data_log)

This structure holds the logging information collected by the model during
its last cycle. They are held in linked lists, with the first element tied to an array
of pointers { see 3.9).

-929 .

Part B - Program Documentation Trafﬁc. Model

lane. The lane of this data record. MAX_LANE at most;
width. The width of a class on the X axis;
xien. The number of X classes necessary;

prev_stop. TRUE if the during the previous time interval the signal was set to
stop, FALSE otherwise, Used to say when a switch from stop
to go occurred so that the queue rear at start of green can be

recorded;

gmax. The maximum queue rear at start of green for the last cycle;

max, The maximum queue rear during the last cycle;

data[]. The frequency count of queue lengths. Each element corresponds to
one X class. There are at most MAX COL -classes;

next. A pointer to the next data record in the list, NULL if end of list;

3.11 Junction exit clear array
These arrays hold pointers to the list of blocked exits start and stop times.

A list of stop/start times is kept for each junction and exit link.

jn_exit{][]. The first subscript is the junction number whilst the second
is the link, The first dimension is MAX_JN, the second is
NO_JN. Element zero of jn_exit is not used;

3.12 Junction blocked start/stop times (blocked)

These structures hold the start and stop times of any exit blockages that
may take place. The stop time is marked as -1 when the structure is first created
with a start time. They are held in linked lists, with the first element tied to an
array of pointers (see 3.11).

start. The time at which blocking started;
stop. The time at which blocking finished;
next. A pointer to the next element in the list, NULL if end of list;

3.13 Directions lookup table (z[1[]1)

This structure permits the block movement routine to be more succinctly
coded by enabling the same code to be used irrespective of the source links
direction. In essence z is a lookup table which given a current direction and the
desired turning movement returns the destination direction. The first subscript
is the current direction, the second is the turning movement. For each direction
the following turning movements are available:

-93.

Part B - Program Documentation Traffic Model

P Previous direction (opposite of current)

L Left junctions direction

R Right junctions direction

D Directly across junctions direction

The full table is thus
movement
current P L R D

N S E w S
S N W E N
E W S N W
A\ E N S E

4 Algorithms
Its is difficult to talk about program code in the abstract thus this section

contains an overview only. More detailed descriptions may be found in comments
within the code. Each program element is taken in turn.

4.1 Input
There are a number of routines which read in a set of information from the

static model specification and flow files, All information is read a line at a time
and then split into individual items using one of the routines below. The routine
to use depends upon where we are in the specification file.

Single floating point number (split no)

This function is used to split a line consisting of a single number, e.g.
model time information and signal offsets. The function returns a floating point
number which, if appropriate, is caste down to an integer;

Single character string (split name)
This function takes a string of up to NAME_LEN-1 characters or until the
first colon from the input string. This is used to get the junction name;

A set of four integers (split_int nsew)

This function returns four integers from in a comma delimited form in a
string. The assumption that there are four values is made;

- 924 -

Part B - Program Documentation Traffic Model

A set of four floating point numbers (split flt nsew)

This function returns four floating point numbers. These numbers are
comma delimited and in a string. The assumption that there are four values is
made;

A variable, but known, number of floating point numbers (split time)

This function takes an input string, a position to start in that string and
returns the floating point number following that position. This number can be
caste down to an integer if necessary. - ' |

A variable, but known, number of strings (split str)
This function takes an input string, a position to start in that string and
returns the string (terminating in a comma or colon) following that position.

4.2 Check

The purpose of check is to ensure that the data file supplied by the user
describes a physically correct network. This includes checking that values are
consistent across links and that each junction has at least one approach and one
exit. The junction map of the network is also constructed as a check for
overlapping junctions and for spatial use later.

4.3 Graph
The functions in graph establish the network and time space windows on
the Sun meonitor.

Initially the function get map limits establishes the extents of the map
in the X and Y directions. Functions x_size and y size find the minimum and
maximum map indices along either a single X row or Y column. The minimum
and maximum values for all these rows or columns then give global minimums
and maximums.

Next the network window is drawn. Function ws1 draw_view establishes
the physical window on the monitor. Function ws1 set trans sets the
transform from World to Device coordinates. The extent of this transform is
determined by the X and Y limits. In any case the X and Y values are in the
range 0 to 24. The rectangular grid network is then drawn by the function
draw_network. Each junction in the network is drawn using draw_jn. The
length of the longest lane in a North or East link is draw either above or to the
right of the link by function draw scale.

-95 -

Part B - Program Documentation Traffic Model

The final stage is to draw the Time/Space windows. The functions to draw
both North/South type and East/West type windows are similar. The function
draw_time space #4# establishes the physical window. Function
set_time space ## sets the transform from World to Device coordinates. The
extent of the World transformation is given by model run time minus run in time
(for the time axis) and by the maximum junction lengths along a route (space
axis). The function draw_time space axis ## then draws both the axis and
labels them with the junction name.

The function time space ## is used during model execution to draw the
stopping and starting wave profiles during the final signal cycle.

NB ## denotes either ns or ew.

4.4 Lights
These functions control the setting and displaying of the traffic signals.

The function init_stage sets the signal stage for the start of the model.
This uses the offsets from a previous junction and the signal durations. The time
at which this stage would have commenced, in the past, is also established. This
is achieved by counting down the stage durations until the offset has been
reached. This time is always a number less than or equal to zero.

The update phase function checks to see if the current stage has come to
an end. If it has then it returns TRUE and also the new stage string. If this is
time zero then TRUE and the stage string are always returned. If an update of
the stage is required then the new stage string is decoded and the lights for that
junction drawn. During signal drawing the NE and SE coordinates of the signal
box and the red, amber and green lights are reflected for use in drawing the SW
and NW signals.

4.5 Run

The run module is the most complex and important element of the model.
This module does some necessary initialisation and then advances the model
from time zero to completion. The stages that it executes each time interval are:

-96 -

Part B - Program Documentation Traffic Model

Ensures the signals are set correctly;

Adds blocks to the input junctions;

Merges the blocks just input;

Establishes which exits are blocked,;

Moves the blocks in the model;

Merges the internal blocks;

Update queue stopping waves;

Update queue starting waves;

If appropriate, draw stopping and starting waves;
If appropriate, collect statistics.

4.5.1 Initialisation

The signal stages are set to the appropriate stage and start time, given
previous signal time offsets. The data records used to hold information collected
after the run in time are created. The lists of block and queue entities
are set to empty.

4.5.2 Ensure signal set correctly

This involves a call to a routine in lights. This routines goes through all
the junctions in the network checking for a signal change. If a change has
occurred then the signals for that junction are redrawn.

54__5_3 Adds blocks to the input junctions

At the start of each cycle, the flows at an input junction are used to
generate input traffic. The flow per time unit is converted into a density per
metre and this density forms a block at the rear of all traffic in the queue. The
length of the block is given by the ratio of flow over density. It is perhaps worth
mentioning here that whenever an entity (queue or block) is added to a list then
the entities in a lane MUST be in order of their front position. It doesn't matter if
different lanes are mixed together but as you travel down the list the front
positions for each lane must increase. This is to ensure that when block
movement occurs, all blocks are moved in order, starting with the one nearest the
stop line.

4.5.4 Merges the blocks just input

So that full advantage of the recently input traffic blocks may take place,
they are merged with any other blocks at the rear of the input link, It should be
noted that this merge only deals with traffic at the input links.

-927 -

Part B - Program Documentation Traffic Model

4.5.6 Establishes which exits are blocked

A linked list is compiled of all junctions which are free to receive traffic. All
links which are not internal exit links are clear. Thus approach links, input links,
output links and sealed links are free to receive traffic at all times. An internal
exit link is only clear if there is no traffic (queue or block) in the junction. This
means that if any traffic has a rear position in the range [link length] to {link
length minus junction width] then the exit is blocked for incoming traffic.

4.5.7 Moves the blocks in the model _

This is the core of the model. It performs the functions of moving blocks in
a link, filling short lanes and moving traffic from one link into another. The
movement goes in two phases for each approach in the model. The first phase
does the following:

o Establish the distance this block can move given other traffic and
Greenshield's speed-density relationship.

o If movement does not cause traffic to cross the stop line then advance
it and move some into a short lane if necessary.

o If movement does cause traffic to cross the stop line then accumulate
the flows into running totals.

The second phase takes the flows generated in the first phase and creates blocks
in the appropriate receiving links.

4.5.8 Merges the internal blocks
This time the internal blocks only are merged. This is because some of the
previous movement may have caused some blocks to abut each other.

4.5.9 Update queue stopping waves

For stage one, if there is a block with a zero front position and either the
signals or a blockage prevents it from moving then a queue is formed. This queue
is initially set to empty. The second stage takes any queues, including the empty
one possibly created during the first phase, and advances their rear if there is a
block of traffic at the rear. The speed of this stopping wave is given by
Greenshield's equation.

- 928 -

Part B - Program Documentation Traffic Model

4.5.10 Update queue starting wave

If there is a queue with a zero front position, the signals are set to green
and the receiving link is clear, then the queue starts to discharge traffic. The
amount of traffic to discharge is given by Greenshield's equation. Queues with a
non zero front position should always generate traffic at their head.

4.5.11 If appropriate, draw stopping waves, starting waves and collect statistics

After the run in time of the model the state of the iraffic network is
reported to the user. The positions of the queue fronts and rears are graphed on
the appropriate Time/Space diagrams, if they are not zero. Performance statistics
are also collected. .

4.6 Stat
The functions in stat initialise, collect and report the output statistics.

The function init_stat creates the data records to hold the information
for each lane in an approach link. The maximum values and frequency counts are
also initialised. '

During the execution of the model the performance statistics of the model
are collected. For a queue in a specific lane the corresponding data record is
found. The cell count appropriate to the queues length is increased by one. The
current queue rear is then compared with the queue rear maximum value. If the
queue rear is greater than this maximum then the rear is recorded as the new
queue maximum, Similarly if this is the start of green for the queue then the
current queues rear is compared with the maximum queue rear at start of green
to, perhaps, record a new maximum, Also the duration of any blocking back from
an exit junction is recorded. If the exit is clear then a search is made for a
previously unfinished blockage. If one is found then the current time is recorded
as the stop time for the blockage. If the exit is not clear then a search is made to
see if this blockage has already been recorded. If it is recorded then no action is
taken, otherwise this is the start of a new blockage. A new blockage record is
created with a start time of the current time. This new record is added to the end
of the list of blockage durations for this junction exit.

When the model has run to completion, the information collected is written
to file and then displayed using the Unix more command.

-29.

Part B - Program Documentation Traffic Model

4.7 Wave
These functions provide the traffic characteristics, according to

Greenshield's model. The functions to convert from flow to density and vice-versa
along with speed functions are given here, Perhaps the most important aspect of
these functions is the units for the various measures. Where the measure is
directly supplied by the user, e.g. free flow speed or jam density, then the
measures are in the units supplied. Where the measure is generated by the
model, e.g. a blocks density or speed, then the distance measure is metres and
the time measure is seconds. The table below gives a s_ﬁmmary of the units used:

Input Output
Function Flow Density Speed Jam density
qtok veh/h . km/hr veh/km veh/m
U . veh/m km/hr veh/km m/s
U_stop) veh/m km/hr veh/km m/s
U_start ; veh/m km/hr veh/km m/s
U_shock . veh/m km/hr vel/km m/s

The only other point worth mentioning is that due to rounding errors the
discriminant in the quadratic may go to a very small negative number rather
than zero. To overcome this problem, if the value is small and negative then it is
reset to zero.

8 Problems

During the execution of the model various problems may manifest
themselves. For each stage given in section 2 potential problem areas are
suggested. When a major fault occurs during the execution of the model the
program halts with a diagnostic error message.

5.1 Input
The problems here will mainly concern an incorrectly formatted data file.

Commas may be missing from lists of items. If this is the case then the remaining
items in the list may contain uninitialised rogue values. These are difficult to
detect and may only come to light because of strange behaviour in the run stage
of the model. The user may also supply insufficient or too much information, in
this case the program will abandon with an invalid end of file message. Ensure
that there are the correct number of lane lengths and split percentages.

-30 -

Part B - Program Documentation ' Traffic Model

5.2 Check
There are not likely to be any major faults here. The program reports all

inaccuracies in the data file before abandoning.

5.3 Graph
Given a correctly specified model (ensured to a large extent by Check)

there are no instances of error conditions here.

9.4 Run
Since this phase contains most of the code for the model it is most prone to
faults.

Dealing with signal settings first, the program only checks the validity of
signal stage descriptions at run time, During the first signal cycle is when these
errors are likely come to light. The program prints the signal stage description
which is in error. It should be noted that any reference to an approach direction
which is not an approach is treated as an error.

The next problem with Run is when the flow to density (gtok) equation
gives non-real roots. The only solution to this is to lessen the flow by altering the
turning and lane split percentages. Another problem occurs if a zero jam density
is passed to any of the speed functions, since all these functions have the jam
density as a divisor.

To accommodate a nearly unlimited number of entities within the network
the memory to hold information about them is taken from the heap using malloc.
If there should prove to be insufficient memory for an entity then the malloc will
fail and the program abandons. The program must be re-compiled using a larger
heap size with the makefile.

Inside the function to remove an entity (free entity) checks are made
for impossible (?) situations which mean that an entity can not be removed. If you
get these messages then there is a serious problem with maintaining linked lists
in the program. This problem did occur in the initial stages of development
because memory freed was immediately being reused to create a new entity,
resulting in important information disappearing.

5.5 Stat

The only problem likely to occur in stat is an inability to take memory from
the heap to hold the logging information (see 6.4).

-31-

Flow Theory Model

Appendix

x 1 - Example model specification fil

Appen

=

deryrunp

bt -
271 ™
<22
S
bA B AS 4 .\omw
.\.sﬁ_“.\ [
b 5P s Lo

i

__ g

715 Gy <1y N\a@

“ank

Network

W -7

- 32 -

Appendix Traffic Model

Static file

1200 : Model run time

360 : Run in time

1200 : Start stepping

90 : Cycle time

40 : LANECHANGE

1

Yorkshire Post
1, 1, 3, 1, : NSEW direction (lanes)
200, 100, 187, 100, " : NSEW lane 1 length ‘
0, 0, 187, 0, : NSEW lane 2 length
0, 0, 80, 0, ‘ : NSEW lane 3 length
0, 0, 2, 0, : NSEW connecting jn
1, 0, 1, 0, : NSEW stop line Y/N
10, 10, : NS EW junction widths
150, 150, le5, 100, : NSEW jam density
50, 0O, 50, O, : NSEW free flow speed
0, 0, 0, g, : NSEW % turning left
0, 0, 0, Q, : NSEW % turning right
100, O, 0, a, : NSEW lane split

22 1 Offset

4 : Stages

EG, EANHA, NG, NAEHA, : Movements

40,17,27,6, : Time

2

MET
1, 1, 2, 2, : NSEW direction (lanes)
232, 128, 141, 187, : NSEW lane 1 length
g, 0, 141, 187, : NSEW lane 2 length
0, 0, 3, 1, : NSEW connecting jn
1, 1, 1, 0, : NSEW stop line Y/N
8, 12, : NS EW junction widths
175, 200, 165, 165, : NSEW jam density
45, 44, 47, 50, : NSEW free flow speed
36, ©5, 5, 0, : NSEW % turning left
64, 35, 4, 0, ¢ NSEW % turning right
100, O, 0, 0, : North NSEW lane split
0, 100, 0O, 0, : South NSEW lane split
30, 64, 45, 0, 1 West NSEW lane split
70, 36, 55, 0, : NSEW lane split

82 : Offset

4 : Stages

EG, BANAHSAH, NG5G, EABNASA, : Movements

65,4,14,7, : Time

- 33 -

Appendix Traffic Model

3

Post Office
1, 1, 2, 2, : NSEW direction (lanes)
186, 180, 200, 141, : NSEW lane 1 length
0, 0, 200, 141, : NSEW lane 2 length
0, Q, Q, 2, : NSEW connecting Jjn
1, 1, 1, 0, : NSEW stop line Y/N
8, 11, : NS EW junction widths
200, 142, 165, 165, : NSEW jam density
29, 49, 44, 47, : NSEW free flow speed
11, 88, 14, 0, , : NSEW % turning left
52, &, 2, 0, : NSEW % turning right
100, 0O, 0, 0, : North NSEW lane split
0, 100, 0, 0, : Spouth NSEW- lane split
0, 0, 49, 0, : East NSEW lane split
0, 0, 51, 0, : NSEW lane split
56, 25, 46, 0, : West NSEW lane split
44, 775, 54, 0, : NSEW lane split

0 : Offset

4 : Stages

FG, EANAHSAH, NGSG, EAHNASA, : Movements

39,6,41,4, : Time

- 34 -

Appendix

Flow file

0
500,
330,
300,
120
500,
150,
240,
240
500,
90,
270,
360
500,
60,
360,
480
500,
270,
240,

360,
420,

180,

270,

360,
330,

390,
330,

20,
90,

: NSEW
: NSEW
! NSEW

+ NSEW
+ NSEW
: NSEW

: NSEW
: NSEW
: NSEW

: NSEW
: NSEW
: NSEW

: NSEW
1 NSEW
: NSEW

s Jyte gyte] (o jte gte] 80 0 o Jte Jt's)

1o e te]

in
jn
Jn

Iin
in
in

jn
in
in

in
jn
jn
jn
in
in

35

M

[t I el

Traffic Model

Appendix Traffic Model

Appendix 2 - Results

Histogram for Yorkshire Post, N junction, lane 1.

Freq
70 |
65 | *
60 | * % *
55 |* * * *

50 |***********
45 |***********
40 |***********
35 |************
30 |************
25 |************
20]*********k**
15 1************
10 l************
5 |************
[-——————————————————————————————————— Queue length
1111113111111111311112
112233445566678889001122334455666788890
50

Histogram for Yorkshire Post, E Jjunction, lane 1.

Freg

150 t*

140 *
130 |*
120 [*
110 |+
100 |*

90 |~*

B0 |*

70 |*

60 |* * %
50 |* **

40 |* * k%
30 |* %k ke * Kk
20 | x&FEkFkkkkdk
10 |***********
| o e e e e e e e e e Queue length
11111111111112:11111
1122334455666788890011223344556667888
50505050505050505050505050505050505050

Appendix Traffic Model

Histogram for Yorkshire Post, E junction, lane 2.

Freg

180

168 f*

156 | *

144 |*

132 |*

120 | *

108 |[*
96 |*
g4 |* *
72 | * k%

60 [* %* %k X%
48 l'k W g ke
36 E* * %k
24 fh¥dkdokkk
12 [Fkxxkk A
|=—————— Queue length
11113111311211111111
1122334455666788890011223344556667888
50505050505050505050505050505050505050

Histogram for Yorkshire Post, E Jjunction, lane 3.

Freg
180 |
leg |*
156 |*
144 |=*
132 |=*
120 | * =
108 |* =
96 |***
B4 |*xkx*
T2 | kk%k

RO | *x**%
48 | *wkk
36 |*HkkE
24 | REkxEK
12 | *kkkk%
| e Queue length
112233445566678
5050505050505050

Appendix Traffic Model

| lane | Mean | 5d] Variance | Q Max | G Rear |
ULV 2oz 1 16670 1 2irave 1 80 1 6L |
21 a4) 1nenn 1 133871 1 411 525
a1 s2s 1 68151 es.499 1 3041 360

Histogram for MFI, N junctiomn, lane 1.

Freqg
240 |
224 | *
208 |*
192 |[*
176 |**
160 |**
144 | #*%*
128 | **
112 | **x

g5 |*x*kx*
BO | *kkk
64 |*****
48 "k**'k*
32 |‘k*****
16 |*rwkrkk
[—=———— e Queue length
11311111111113111111122222222
1122334455666788890011223344556667888900112233
505

| lane | Mean | sd | Variance | 0 Max | G Rear |

o e !
| 1 | 10.67 | 8.146 | 66.356 | 34.7 | 33.0 |

Appendix Traffic Model

Histogram for MFI, 5 junction, lane 1.

Freq
120 |
112 | *%
104 | **
96 I * %

BY | xkFxkk
80 |'k*'k'k*'k
72 |******
6d | FE*kFRKK
56 |*kkkkk%
48 | Khkkkkkk
4 | FEFIFH KKK
32 | RkkkkkKkk*
24 | kkkkkkkkk
16 |*********
8 I************
[e e Queue length
1111111
1122334455666788850011223
50505050505050505050505050

Histogram for MFI, E junction, lane 1.

Freg

120 |
112 | *
104 |*

96 =¥

88 ~*

80 [*

72 | *
) |~k *
56 |'k * %
48 |* E

AQ | ***x
32 |****
24 l*****
16 |**k**xx

8 I*****

e e e e e Queue length
1111111111
1122334455666788890011223344
50505050505050505050505050505

Appendix Traffic Model

Histogram for MFI, E junction, lane 2.

Freg

112 |
104 |*

96 |*

88 |*

80 |*

72 |*

64 |*

56 |*

48 | * *
40 |* ®
32 | * * %

24 |*** * dok ok
16 |********

8 |*HkkExkEkK

|- ———— Queue length
11131111111
1122334455666788890011223344
50505050505050505050505050505

| lane | Mean | sd | Variance | Q Max | G Rear |
[=mmm e e e e I
| 1| 9.47 | 6.761 | 45,705 | 25.4 | 25.1 |
[== e - !
| 2 | 16.58 | 12.815 | 164.221 | 50.0 i 44.9 |

Histeogram for Post Office, N junction, lane 1.

Freg

180 |
168 |*
156 |*
144 |*
132 | *
120 | **=*
108]***

g6 '****
B4 | *xkk
72 |****
60 | *Er**
48 |*****
36]*****
24 |FKxKE
12 |*****
[e Queue length
1111111111111111111
1122334455666788890011223344556667688
50505050505050505050505050505050505050

Appendix Traffic Model

Histogram for Post Office, § Jjunction, lane 1.

Freg

135 |

126 |*

117 | =

108 |*
99 |=*
90 | *
81 |=*
72 | xE*

63 | *krkkx
54 |*kkkkk
45 | KKKk KKKk
36 | FrxKEEEK
2'7 |********
18 |********

9 |*********

| ———————————— e ——— Queue length

11111111111111111
11223344556667888B900112233445566678
505050505050505050505050505050505050

[=== |

| lane | Mean | sd | Variance | ¢ Max | G Rear |

==]

] 1 | 17.24 | 12.546 | 157.404 | 66.7 | 57.3 |

Appendix Traffic Model

Histogram for Post Office, E Jjunction, lane 1.

Fredq
120 |
112 | *
104 |+

96 |*
88 [*
80 =

PN ETT T
64 1******
56 |*kkkkwk
48 1*******
40 JEEEKEEN
32 [‘k*****:\’
24 F*******
16 |*hkkkwk
B | Hwkwkkkk
[~ e e e e e Queue length
113113111111111132311112
112233445566678889001122334455666788850
50

Histogram for Post OCffice, E junction, lane 2.

Freqg
112 |
104 |*

96 |*
88 |*
80 [|*

T2 | Hkkkkk
G4 | FrEKKK

56 | FkkKkkkk
A | KFEAEKN
A0 | *EFKFKKK
32 | kkkkkkk
D& | HAKRKKKK
16 | *xkkakdok

8 |********

[e Queue length
111111131111311131111311112
112233445566678889001122334455666788890
50

| lane | Mean | sd | Variance | Q Max | G Rear |
|- e |
| 1 | 15.91 1 210.453 | 109.260 | 49.6 | 43.8 |
- e — |
| 2 | 16.55 { 10.827 | 117.231 | 51.7 ! 45.5 |

Appendix Traffic Model

Amount of time an exit is blocked

| Junction | Direction | Start | Stop | Dur |
[= e e e e e e e e |
| MFI I W I 366 | 367 | R
[== e e e e e e e I
| I t 486 | 487 | 1 |
=== e e e e I
| | i 494 | 496 | 2 |
[o e e e e e e e e e e e e e e I
| | i 672 | 873 | 1]
[=== e e I
I 1 I 837 | 839 | 2 |
[e e e e e e e I
| Post Office | W i 371 | 372 | 1 |
[e e e e e e e e I
[i i 382 | 383 | 1 |

	WP343 cover.pdf
	WP343.pdf

