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SECTION ONE 

PASSENGER DEMAND FORECASTING FOR NEW RAIL SERVICES - THE ISSUES 

1.1 INTRODUCTION 

This Seminar reports on a research grant undertaken for the Economic and Social 

Research Council that commenced in January 1989 and is due to be completed in 

December 1991. The aims of the project are: 

1. To develop forecasting approaches that are suitable for predicting the demand 

of new rail services. 

2. To assess the accuracy of these approaches in terms of their predictions of 

current and future patronage. 

3. By comparing the relative costs and accuracy of a range of forecasting 

approaches, the most appropriate methods for different levels of investment will 

be determined. 

4. To produce a manual of advice. 

The aim of this seminar is, quite, simply to present a draft version of this manual of 

advice and invite comments from practitioners. To this end we have invited to this 

seminar all those interested in developing new local rail services, including Central 

and Local Government, Rail Operators, Consultants, Academics and Pressure Groups. 

Feedback from participants will play a crucial role in this Seminar. 

In the rest of this Seminar, we shall present our draft manual of advice. In doing so, 

we hope to demistifj what can be a highly technical subject and provide useful advice 



on what techniques to use in particular circumstances. 

In the rest of this section the issues surrounding the opening of new passenger rail 

services and stations will be examined. The Institute for Transport Studies has been 

researching this topic since 1982, when a Collaborative Award in Science and 

Engineering research studentship was set up by the Science and Engineering 

Research Council and the Leeds Division of British Rail (BR) to evaluate the 

programme of new local rail stations in West Yorkshire. This work was reported in 

detail in 1987 [ 1, 21. 

When our research first started it did not seem to many as very topical. However, 

there has subsequently been something of a new stations and services 'boom'. Two 

main issues have dominated research. The fmt relates to forecasting. BR have 

developed a detailed forecasting methodology for existing services but it will be shown 

that this approach can not readily be extended to new stations and services. A new 

set of forecasting approaches have had to be developed. The second relates to 

assessing the most appropriate forecasting approach. New stations and services are 

generally modest investments (excluding underground railways) and, therefore, the 

appraisal methods deployed should not be too costly. However, a range of outputs are 

required to accurately assess new stations and services. 

These issues will be set out at greater length in the rest of this introduction. In 

section two, a range of aggregate approaches, based on zonal data, will be described. 

including trip rate and direct demand models. In section three, a range of 

disaggregate approaches. based on data at the individual level will be described, 

including methods based on revealed preferences, stated preferences and a 



combination of the two. Lastly, in section four, some conclusions will be drawn with 

respect to the choice of appraisal methodology and the policy implications of some of 

our findings. 

1.2 THE BOOM IN NEW STATIONS AND SERVICES 

There has been an undoubted boom in the opening (or re-openin& of new stations and 

services. Such has been the extent of the boom that it is a non trivial task to collate 

exact figures. Between 1981 and 1991 161 stations have been added to the BR 

network, with the vast majority on the Regional Railways' network (between 1982 and 

1990 135 stations opened and 11 closed]. In addition, 15 new lines have been 

opened, although one (Kettering-Corby) has subsequently closed 131. That this 

represents something of a policy U-turn is illustrated by Table 1. Monitoring work 

carried out by the author and others (in particular the Railway Dwelopment Society 

141) indicates that over 200 new stations have been opened on publicly owned 

passenger railways in Britain since 1970. Three phases may be detected. Up to the 

mid 1970s. station closures outweighed station openings as a result of the 

rationalisation programme initiated by Dr Beeching. The important threshold here 

was the 1974 Railways Act and the subsequent ministerial directive that services 

should be broadly comparable with those operated on 1 January 1975. This heralded 

a second phase in which only minor changes were made to the network, but with 

openings outweighing closures. A third phase, which began in the early 1980s has 

seen much more major changes to the network, with openings far exceeding closures. 

A number of factors contributed to this rise. In particular, the 1981 (Speller) 

amendment to the 1962 Transport Act, has facilitated the experimental opening of 

new stations and services that can subsequently be closed without undergoing the 



normal procedures. There may be some evidence that the 'boom', if not exactly ended, 

has certainly slowed down, at least as far as conventional rail is concerned (although 

light rail may continue the 'boom'). This slow-down is perhaps inevitable as the best 

sites have been developed, although recent rolling stock shortages may have also 

played a part. However, it is unlikely that new stations and services will become a 

non-issue. As the nation's geo-demographics constantly change, so must the rail 

network. In its recent strategy statement, BR envisages opening over 100 new 

stations and re-instating services on over 60 mlles of track on the Regional Railway. 

1.3 THE 'METHODOLOGY GAP' 

British Rail have developed a reasonably sophisticated approach to modelling the 

demand for existing services that has been given the acronym, MOIRA [5]. This 

approach consists of an elasticity-type model based on a number of time-series I 
studies that have developed elasticities with respect to fare, levels of service quality l 
and GNP. An example of such a study is the 'Leeds model' developed by Owen and 

4 



However, such an approach is inapplicable to the case of new rail stations and 

services for at least two, closely related. reasons. Firstly. elasticity models are only 

applicable where changes are marginal. The introduction of a new rail service is 

clearly non-marginal. Secondly. elasticity models are applied incrementally around 

the base lwel of demand. A problem here is that for local rail services, assuming a 

reasonably fine zoning system, zones with no nearby rail station can have zero base 

demand. No matter how big the change in service, with an elasticity approach 

demand would still remain zero. Elasticity approaches might still apply for Intercity 

services, where the zones will be at a coarser lwel and there is always likely to be 

some positive lwel of demand. New stations on the Intercity network might be 

modelled by examining the elasticity of demand with respect to access conditions. 

This is the principal behind Parkway Access Models. Elasticity model approaches may 

also apply where the existing local rail network has comprehensive coverage. This 

may be true of parts of Network South East's operating area, for example in Kent. 

However, for local rail services, particularly those operated by Regional Railways. there 

has been something of a 'methodology gap'. Fortunately, a number of different 

techniques have been dweloped in the mainstream of travel demand forecasting that 

may have relevant applications. These modelling approaches tend to be cross- 

sectional rather than time-series based, that is they examine a group of observations 

at a single period of time, rather than a single observation over a number of time 

periods. These approaches may be classiRed in terms of a number of dimensions, of 

which two are most relevant. The first is related to the specification of the unit of 

observation. A distinction is normally made between aggregate approaches based on 



zonal data, for example based on the definition of a station's catchment area(& and 

disaggregate approaches, based on data at a household, or more usually, individual 

level. The second distinction is related to the type of behaviour being measured. Here 

the distinction is between the Revealed Preference (RP) approaches, based on observed 

behaviour, and Stated Preference (SP] approaches, based on hypothetical behaviour. 

These different demand forecasting approaches will be outlined in more detail in 

sections two and three. 

Mention should be made here of two approaches that will not be investigated further. 

Firstly, there is a considerable literature on determining the optimal station spacing 

for rapid transit lines which was initiated by Vuchic [71. This approach may be 

relevant to Light Rapid Transit systems and, possibly, for identifying new station sites 

in continuously built-up rail corridors. For example, an application of this approach 

carried out by Preston [ 11 on the Leeds-Bradford corridor indicated there may be scope 

for five intermediate stations (compared to the current two). Secondly, some studies 

have made use of historical extrapolation to estimate the usage of re-opened lines, 

taking into account population changes and different lwels of service [81. This 

approach has some broad parallels with the BR methodology for existing stations. It 

can not be used for brand new stations but has proved to be a surprisingly useful 

measure for station re-openings. 

1.4 THE SCALE OF INVESTMENTS 

A number of different types of new stations have been opened in Britain in the recent 

past. The vast majority serve residential areas and are largely unmanned (at least 

outside the Network South East area). There have been a number of stations that 



attract, rather than generate travel. These may serve factories, offices and education 

establishments, with the Cross City Line in Birmingham providing good examples with 

Longbridge, Five Ways and University stations respectively. Other stations may 

provide better access to central business areas (eg. Argyle Street in Glasgow), out-of- 

town shopping centres (eg. Gateshead Metro Centre, Meadowhall) and airports (eg. 

Stansted). These stations will require their own specialised forecasting approaches, 

although for small-scale developments estimating rail trips as a function of either 

proposed employment levels or retail floorspace may suffice. Similarly new stations 

on the Intercity network such as Bristol Parkway and Birmingham International 

require their own forecasting methodology, as discussed above. 

The majority of the new stations opened in recent years are unmanned halts, serving 

residential areas. Their design is relatively basic and hence costs are correspondingly 

low. The capital costs of a typical West Yorkshire new station, based on two wooden 

platforms capable of accommodating four car trains, simple shelters, access ramps 

and lighting were around £100,000 at mid 1984 prices. Indeed these low costs were 

an impetus to the new station boom, although it does seem that the real costs of 

station construction have subsequently increased. The latest information available 

to us is that the standard West Yorkshire style new station can cost in excess of 

£200,000. This is reflected in the capital cost figures used in Table 2. Operating 

costs of maintaining and administering a new station were put at a notional £1,700. 

This ignores the additional fuel and braking costs of stopping a train, which for an 

hourly service, may come to an additional £1,700 or so [91. The key assumption 

though is that the additional stop can be accommodated without any additional 

resources in terms of rolling stock and staff: in essence that there is some slack in the 

timetable. 



A: Capital Costs £90k, Recurrent Costs B k  pa 
B: Capital Costs £150k, Recurrent Costs £4k pa 
C: Capital Costs £225k, Recurrent Costs £4k pa 

Assumes all revenue net to the rail operator. Surveys for six West Yorkshire 
stations indicated that around 13% of revenue, on average, was abstracted from 
existing rail, and these figures therefore should be adjusted upwards. One 
survey of a new station located within lkm of an existing station indicated that 

If this assumption holds then Table 2 shows that fairly low levels of demands will be 

sufficient to financially justi@ a new station. This table updates work we originally 

carried out for BR's Policy Unit [lo, 21. The basis for the calculations are Net Present 

Values based on a 30 year project life and an 8% interest rate [see the technical 

appendix at the end of this section]. For example, new station A with a mean fare of 

£1.50, which may be thought of as a single platform rural station, will require around 

24 ons and offs per day. Using trip rates derived in West Yorkshire (see Section 2.2). 

this was estimated to require a population of less than 800. By contrast new station 

C, with a mean fare of only 50 pence, which may be thought of as a double platform, 



inner city station, requires around 160 ons and offs per day. This in turn might 

require a population of over 5,000 within 800 metres of the station. 

These calculations assume that the additional stop does not deter existing travellers. 

The argument for this assumption is that passengers are unable to perceive time 

penalties as small as one or two minutes. However, when a number of new stations 

are being considered on the same line this assumption is unrealistic. There are likely 

to be some existing passengers at the margin who are likely to be put off travelling by 

rail. This factor is likely to further count against inner city sites where the trains are 

generally already well loaded and where the additional time penalty is most likely to 

cross the critical threshold. In addition, as the number of new stations that are 

opened increases the assumption of spare capacity becomes less likely as services are 

slowed down and the likelihood of overcrowding increases, and hence rolling stock 

requirements increase. Thus service levels and stopping patterns need to be 

considered simultaneously. 

On their own new stations are relatively modest investments but it may be usehl to 

consider three scales of investment: 

(i) The lowest scale is the one-off unmanned halt on an existing rail service with 

capital costs under £0.5 million (in many cases substantially so). 

(ii) The middle scale consists of packages of unmanned halts or an individual 

manned local station on existing rail services. The costs here may be in the 

range £0.5 to £10 million and in many cases they are at the lower end of the 

range. 



(iii) The upper scale involves new stations on a new service. The costs may include 

upgrading a freight only rail line to passenger services, new rolling stock and 

in some cases new sections of track. The cost may range from £0.75 (the 

Walsall-Hednesford line) to over £12 million [the Ivanhoe line). These costs are 

still well below the costs of most Light Rapid Transit schemes [for example the 

first phase of the Manchester Metrohk is £90 million). An important 

threshold is £5 million because schemes with capital costs in excess of this are 

eligible for grants from central government under Section 56 of the 1968 

Transport Act. However. any application requires a detailed assessment study 

to be undertaken that examines a range of options and considers non-user 

benefits [such as congestion relief, environmental improvements and 

developmental effects) as well as revenue and user benefits [see 11 11). This in 

turn requires a detailed forecasting methodology capable of predicting not only 

the volume of rail traffic but also the extent to which this is diverted from other 

modes. This again argues in favour of a model structure incorporating an 

explicit mode choice model, rather than an elasticity type model. 



Technical A~~endiX to Section One 

The Net Present Value of a project may be defined as: 

N 

NPV = B" - C" 
n=o (I+r)" 

where 

Bn = Benefits in year n. For a financial appraisal, this is net revenue to the 

rail operator. 

c n  - - Costs in yearn. These may be defined as capital costs, K, in year 0 and 

recurrent costs, RC, in all subsequent years 

r = Interest rate. The Government test discount rate is currently 8Oh 

N = Project life. For rail this is usually assumed to be 30 years, although for 

wooden platform new stations this may be over-optimistic. 

Assuming benefits, B, and recurrent costs, RC, are constant in each yearn, equation 

1 can be set to zero and rearranged to give the break-even revenue required: 



For the new station scenarios given in Table 2 the results for a 30 and 15 year project 

life are as follows: 

This shows that halving the project life, increases the revenue required for financial 

break-wen by about a quarter. 



SECTION TWO 

AGGREGATE APPROACHES TO DEMAND FORECASTING 

2.1 PREVIOUS WORK 

Aggregate methods are based on zonal data. They may be cross-sectional and/or 

time-series based. BR's initial demand forecasting approach was based on a cross- 

section of intercity flows and was given the acronym. MONICA (Model for Optimising 

the Network of Inter City Activities) [121. However, in application it was found that the 

model failed to accurately predict the effects of changes in service levels and was 

superseded by the time-series based MOIRA approach discussed in section 1.3. 

However, there have been few models of local rail demand, and those that have been 

developed tend to be time-series based and concentrate on commuting [13, 141. We 

have, though, identified two aggregate approaches that are worthy of further 

development. Firstly, there are trip rate models (TRM) that estimate the usage of a rail 

station as a function of its catchment area population. Models of this type have been 

developed for long-distance rail travel by Rickard 1151. Secondly, there are what might 

be called direct demand models (DDM), that estimate rail flows as a function of the 

origin's population, the destination's attractiveness, the level of rail service and the 

degree of competition from other modes. Such models are often based on the gravity 

model Tij = f(O,D,C,;') where TIJ = number of trips between i and j, 0, = population of 

origin i, Dj = population of destination j and C,J = Cost of travel (or, as  a proxy, 

distance) between i and j. The MONICA model was of this type, as was the model 

developed by White and Williams (161 for the Reading-Tonbridge line. 



2.2 TRIP RATE MODELS [TRM) 

Surveys of users of six new stations in West Yorkshire identified two main catchment 

areas: the 0-800m zone, accounting for 62% of users and with the vast majority 

walking, and the 800m-2km zone, accounting for 25% of users with the majority still 

walking. It is only from beyond 2km when the majority use mechanised access modes 

(see Table 3). It should be noted that the determination of station catchment areas 

is, in itself, worthy of specialist study (see, for example, [171). It is a weakness of 

aggregate procedures that catchment areas (=zoning systems) have to be pre-defined 

before we can progress any further. There is considerable evidence that stations 

serving large towns and cities with high levels of rail service have much wider 

catchment areas than stations serving small towns, suburbs and rural areas with only 

moderate levels of service. The assumption of symmetrical catchments is also a heroic 

one. Rather than circular, catchment areas are likely to be elliptical with a 

considerable tail in the opposite direction to the main outward movement of rail traffic 

(especially if fare is distance related). 

4 

Source: I l l  

27 Over 2km 13 33 19 17 



West Yorkshire - 

East Garforth 

Given information on actual usage, simple trip rates can be easily developed as shown 

by Table 4. This table gives data for the first nine stations opened in West Yorkshire 

and two opened in the East Midlands. Overall, it is estimated that an average of 

around 29 rail trips per day per thousand population are made by people living within 

800m of a station and 4 trips per day per thousand population by people living 

between 800m and 2km from a station. A further 16% of trips are made by people 

living beyond 2km. It should be noted that these figures refer to new stations only 

one or two years after opening and as a result may be underestimated. However, it 

is clear (from the standard deviations, for example) that there are massive variations 

in trip rates. The highest trip rates for people living within 800m is recorded at East 

Garforth, which may be typical of prime commuter belt, and the lowest trip rates are 

either for sites close to central areas (Sandal. Deighton, Bramley) or for free-standing. 



industrial towns (Langley Mill). The other main source of variation is the percentage 

of trips coming from beyond 2km. For stations close to a main centre, this figure will 

be between 0 and 10%. For stations on the edge of the built up area a more typical 

figure will be 20%. For the one free-standing town in our sample the figure is over 

40%. This partially reflects the greater proportionate use of this station for long 

distance travel. 

More sophisticated trip rate models might incorporate the socio-economic composition 

of the population, the lwel of rail service and that of competing modes. A model of 

this sort has been dweloped for Greater Manchester PTE and has been termed a 'trip 

end' model [211. Examples of the types of model that were developed are given by 

Table 5. These models were calibrated with data for 36 stations on the Altrincham, 

Bury, Oldham and Rochdale lines using ordinary least squares multiple regression 

provided by the SAS (Statistical Analysis Systems) computer package. For both 

models, the dependent variable was the log of the number of boarding passengers at 

each station on a weekday. In addition to the population within 2 kilometres of a 

station, significant explanatory variables included the proportion of the population 

within social classes I and I1 (Professional and Managerial), the proportion in social 

class IIIM (Skilled Manual), rail frequency, rail fare per mile, bus frequency and car 

speed. Model 1 has a high R2 but was affected by a number of statistical problems. 

In particular, the model is affected by simultaneity problems in that we are unable to 

assess the extent of cause and effect between demand and supply. For example, does 

a station have a high level of service because it has high demand or does it have high 

demand because it has a high lwel of service? The answer to this problem is to 

correctly speci@ a set of demand and supply equations and estimate them using Two 

Stage Least Squares. Howwer, specifying the system of equations is not 



straightforward and is, in most cases. thwarted by lack of data. A more pragmatic 

approach may be to develop generaused cost measures in which variables that are 

likely to be affected by simultaneity (frequency, fare) are combined with those that are 

not (in-vehicle time). This is done in model 2 and may be justified in that the 

elasticities of rail fare and frequency come down from initial values of - 1 .O1 and 1.22 

to -0.66 and 0.52 respectively. Based on empirical evidence from elsewhere, it is the 

latter values that seem the more plausible (see also Section 4.2). 

However, the main problem with trip rate models is that they fail to take into account 

the attractiveness of destinations and that, consequently, the specification of 1-1 of 

service variables are imprecise. For example, the rail and bus frequencies are based 

on services to central Manchester even though some trips are being made to non- 

central Manchester destinations. Somewhat surprisingly, when the dependent 

variable was split between trips to central and non-central Manchester, the models 

performed better (in terms of goodness of fit) for the non central Manchester trips. An 

important lesson from this Greater Manchester work was that a high R' is not, on its 

own, a reliable indicator for model selection. 





2.3 DIRECT DEMAh'D MODELS 

Instead of predicting the number of trips by rail k from origin i @,d, we define direct 

demand models as estimating the number of rail trips between origin i and destination 

j by mode k (T,,d. An example of a model of this type was what we termed the 

Aggregate Simultaneous Model (ASM), as opposed to the conventional, four-stage 

aggregate sequential model used in many Land Use and Transportation Studies. This 

model was calibrated with data on 99 flows estimated from BKs 1981/82 Passenger 

Train Surveys for 39 small town, suburban and rural stations in West Yorkshire. Two 

preferred model forms were dweloped: a log linear and a semi-log model. These are 

represented by models 1 and 2 respectively in Table 6. The formulations were partly 

chosen because they reduced problems of multicollinearity (correlation between 

variables) and heteroskedasticity (non-constant variance of the error term) that in 

combination can bias the parameter values and their statistical significance. 

However, the models only have a moderate goodness of fit, almost half the variation 

is unexplained. In particular, the ASM underpredicted flows from long established 

commuter stations. In part, this may be because these commuter stations draw users 

from beyond 2 kilometres or have, over time, attracted people who, all other things 

being equal, have a greater than average preference for rail travel. If six outliers of 

this type were excluded the R2 of model 1 increased to 0.66. 

Based on comparison of the R2 measure. the constant elasticity model was just 

preferred to the variable elasticity, semi-log model. Howwer, recent simulation work 

by Fowkes and Wardman 1221 shows that when there is a lack of variation in the data 

(as is likely to be the case with an aggregate model), a double log model may be 

erroneously preferred to a semi-log model. All in all, the evidence for constant 



elasticity models may not be as strong as it first appears. 

Aside from some particular specification and measurement problems, the ASM is 

affected by problems common to cross sectional models. In particular, it lacks a 

dynamic structure (which is important when patronage growth over time is 

considered) and is afflicted by simultaneity problems. The model was also shown to 

lack temporal transferability. Models 1 and 2 were recalibrated with 1984 data (based 

on self-completion questionnaires) and, out of 14 parameter values, 5 were shown to 

have significantly changed their value, at the 5% significance level. Despite these 

problems, the ASM has been applied to around 80 sites in 12 different counties. It 

has become evident that its spatial transferability is limited and that it is relatively 

insensitive to service level changes. 



A possible improvement might be to develop separate models for work and non-work 

journeys (or, alternatively, peak and off-peak trips). It was necessary to develop a 

non-work trip model for West Yorkshire, to be used in conjunction with the 

disaggregate models of work trips described in the next section. This model was 

calibrated for 64 flows based on 1984 data and is given as model 3 in Table 6. 

2.4 OVERVIEW 

In this section we have shown that simple aggregate models can easily be dweloped 

and applied to forecast the demand for new passenger rail services and stations. 

Howwer. trip rate models, based solely on population, exhibit a large amount of 

variation and are only likely to be applicable if used to forecast demand in very similar 

circumstances to that in which they are calibrated. Direct demand models may be 

more transferable as they take into account a number of factors other than 

population. Howwer, in the case of new stations and senrices, they have to be based 

on cross-sectional data and as a result are particularly prone to problems of 

simultaneity. Moreover, the aggregate models we have discussed have a fundamental 

problem in that we have to dehe  the unit of aggregation (the catchment area of a 

station or service) before we commence our analysis. Partly because of this, 

disaggregate approaches have been dweloped in which definition of catchment areas 

is less vital. It is to these that we turn to in the next section. 



Technical Apuendix to Section Two: Definition of Variables 

JA) Trip End Model' 

L = As a prefix, denotes a logarithm has been taken 

POP - - Population within 2 kilometres of a station 

RSoc2 - - Proportion of population within 2 kilometres of a station in social 

classes I and I1 

RSOC3 

FRW 

FDIST 

BFREQ 

CSPEED 

GCRA 

GCBU 

GCCA 

Proportion of population within 2 kilometres of a station in social 

Number of rail departures per day 

Mean Rail Fare divided by distance from central Manchester 

Number of bus departures per day 

Mean car speed for a journey to central Manchester 

Generalised Cost of Rail (see below but, in this case, excludes 

walk time) 

Generalised Cost of Bus 

Generalised Cost of Car 

jB1 'Aggregate Simultaneous Model' - All Pumoses 

FLOW - - Number of trips from i to j and j to i per average autumn weekday 

OPOP - - Population usually resident within a straight lime distance of 800 

metres of the station 

OPOP2 - - Population usually resident within a straight line distance of 800 

metres and 2 kilometres of the station 

RSOC - - Number of residents within social classes 1 and 2 within 800 



metres of the station divided by OPOP 

DRX - - Number of work places within 800 metres of the destination 

station divided by the economically active population 

GCOTH - - Index of competition, expressed as: 

GCRA/(GCRA + GCBU + GCCA) [Model 1) 

GCBU + GCCA [Model 2) 

where: 

GCRA - - Generalised cost of rail = 2 x [walk + wait time) + in-vehicle time 

+ fare/VOT 

, 

where: 

Walk = Access and egress time 

Wait - - Calculated as a function of headway = 3.0 + 0.185 service interval 

Fare - - Half Standard Return 

VOT - - Department of Transport value of behavioural non-working in- 

vehicle time 

GCBU - - Generalised cost of bus = 2 x [walk + wait time) + in-vehicle time 

+ fare/VOT 

where: 

Walk - - Calculated as  rail walk time divided by the number of bus stop 
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pairs on competing bus routes within 800 metres of a station 

Wait - - Calculated as a function of headway = 1.46 + 0.26 service interval 

GCCA - - Generalised cost of car = in-vehicle time + operating costs/VOT 

+ parking charge/VOT 

where: 

Operating costs are taken as fuel costs only, assuming fuel consumption of 44km per 

gallon in urban conditions and 62km per gallon in rural conditions. 

In-vehicle time based on link flow speeds of 46km per hour in urban conditions and 

80kph in rural conditions. 

Ic) Aggregate Simultaneous Model - Non Work W s  

FLOW Number of non work trips (excluding education) from i to j and j to i per 

average weekday 

OPOP As above 

REMP Retail employment within the central area shopping zone 

RS Rail service frequency during off peak periods (0930- 1500 hours and 

1800 hours and beyond) 

BS Bus service frequency during off peak periods 

IC Dummy variable, = 1 for stations serving medium sized towns, with 

services timetabled to connect with inter city services. Else = 0 

INTOPP Proxy variable to take into account the number of competing or 

intervening variables 



SECTION THREE 

DISAGGREGATE APPROACHES TO DEMAND FORECASTING 

3.1 PREVIOUS WORK AND BASIC THEORY 

When used to forecast the demand for new local rail stations and services, aggregate 

approaches have a number of weaknesses. They fail to establish the importance of 

factors that exhibit greater intra-zonal than inter-zonal variation. This is particularly 

true of walk and wait time which may be critical in the choice of public transport 

mode. They fail to take into account micro-lwd information on economic activity 

which will clearly affect travel demand. More generally, aggregate models lack a firm 

behavioural basis, although direct demand models can be shown to have a tentative 

link with utility theory [231. 

These shortcomings may be overcome by making use of individual data on the times 

and costs of the mode actually used and at least one alternative (or preferably a full 

choice set of alternatives) in order to calibrate a mode choice model. Such 

disaggregate models are normally based on observations of actual behaviour, which 

is normally referred to as a Rwealed Preference (RP) approach. A number of studies 

have used a disaggregate RP approach to evaluate new rail investments in the UK [241. 

the US [25] and the Netherlands [26]. 

An alternative disaggregate approach that has emerged over the past decade is that 

of Stated Preference (SP), which is a generic term that refers to a range of hypothetical 

questioning techniques 1271. The key difference, compared to RP approaches, is that 

SP approaches are based on hypothetical rather than actual behaviour. The earliest 



transport applications of the SP approach in the UK were developed by consultants 

SDG for BR I281 and the credibility of SP approaches. at least in determining relative 

valuations, was enhanced by the Department of Transport's Value of Time Study 1291. 

In application, as we shall see, there are some problems with the SP approach. A 

simpler approach to forecasting the demand at a new station is to ask the question 

"if a new station was opened at i with level of service Q how often, and for what 

journeys, would you use it?". This approach, which we have termed the Stated 

Intentions (SI) approach has been used in a number of studies to forecast usage of 

new stations, for example in Scotland and Somerset. However, such an approach is 

likely to lead to a gross overestimate of demand, unless adjusted [30]. 

In the rest of this section, we shall examine these three disaggregate approaches in 

more detail, but before doing this we shall briefly outline the behavioural basis for 

disaggregate models and outline the commonly used logit model. 

Disaggregate models have their basis in random utility theory, where utility is a 

measure of the satisfaction gained from consuming a particular good. Because 

transport is a derived demand (ie. we do not normally travel for travel's sake), we 

normally gain negative satisfaction from transport and hence we are really dealing 

with disutility. The concept of utility is closely linked with that of generalised cost 

(GC) with the two being linked, in the range of interest to us, by the formula U = - 

6GC, where S = a scalar. Random utility theory (and common sense) tells us people 

will normally choose the good with the greatest utility or, more accurately in a 

transport context, the mode with the least disutility. For the binary situation this can 

be expressed as: 



pi 1 

where 

pi 1 

RU 

Rut1 

where 

1 

Dij I 
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- - Prob (RU,, > RUiJ 

- - Probability of person i choosing mode 1 

- - Random Utility eg., assuming a linear additive function 

= ?Dill 3 1  + G I  

- - the value of the jth relevant attribute (time, cost etc) 

- - parameters to be estimated 

- - an error term which introduces a stochastic (or probabilistic) 

element so as to take into account unobservable aspects and 

omitted factors. 

Different model forms may be developed depending on the assumed distribution of the 

error term. The most commonly used form is the reciprocal exponential distribution, 

which is a form of Weibull distribution. This may be represented as: 

Prob (E < K) = exp (-exp (-K)) 

where K = any constant value. 

This distribution produces the S-shaped, ogive curve as shown by Figure 1. By 

comparison, adopting a deterministic approach, in which the error term is ignored, 

will result in an 'all or nothing' assignment to either mode 1 or mode 2. The 

distinction between probabilistic and deterministic approaches will be returned to 

later in this section. 



Figure One: Com~arison of Pmbit. Logit and Deterministic Curves 
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Assuming that the errors are identically and independently distributed (IID) we may 

derive the multinomial logit model (MNL) for any number of modes m as: 

For the binary choice between two modes this can be re-written and simplified as: 

Equation 4 can be easily transformed to give: 



This is referred to as the Berkson-Theil transformation and has the advantage that it 

can be estimated by regression although it assumes that either the response of each 

individual i is not discrete (0 or 1) but consists of some series of probabilities (for 

example, a scale such as 0.9, 0.7, 0.5, 0.3, 0.1) or that individual discrete choices 

have been aggregated to form proportions. The former approach can be adopted 

within an SP experiment, whilst the latter approach forms the basis for the 

development of logit models with aggregate data, based on either RP or SP approaches. 



3.2 DISAGGREGATE REVEALED PREFERENCE APPROACHES 

Disaggregate RP models were developed by us with data from the 1981 West Yorkshire 

Corridor Study, which collected information on the journey to work as part of the 

study into the Value of Time mentioned earlier [29]. The model form chosen was the 

hierarchical logit (HL). This form was chosen because it overcomes the Independence 

of Irrelevant Alternatives QIA) property which affects the more widely used 

multinominal logit model (MNL) outlined above. The main problem with the MNL 

stems from the IIA property which precludes the possibility of differential 

substitutability and complementarity. In other words, the probability of choosing any 

option in relation to any other option is unaffected by expansion or contraction of the 

choice set ie: 

P 1 = exp (U, - U,) = constant, with respect to adm'iional modes 
PI 

(6) 

It was hypothesised that rail users, all other things being equal, are proportionally 

more likely to be drawn from bus than car. This was c o n h e d  by a generalised 

likelihood ratio test, a statistical test that indicated that, in this case, the IIA axiom 

does not hold and, therefore. an HL model structure was preferred to the MNL model. 

HL models are based on a decision tree structure. Suppose we assume that the mode 

choice process is divided into two stages: 

j = the choice between private and public transport (the upper nest) 

k = the choice between public transport modes (the lower nest). 



It should be stressed that we do not necessarily adopt this structure because we 

believed people choose modes like this; it is merely a device to overcome the 

undesirable properties of MNL. 

The perceived utility to individual i of choosing mode type (j,k) may then be written: 

1 1  i U& = uj + uk + U# + e, + ek + elk 

(7) 

Assuming that the E terms are IID for each individual and that var (q) and var (E,) are 

zero, results in the MNL. If either var (5) or var ( E ~ )  are not zero, then there will be 

correlation between the U;, terms. For example, suppose var [Ek) = 0 but var (5) # 0. 

then individuals with high values of U for bus will also have high U values for rail. 

To take this into account, and assuming no common measurable attributes amongst 

public transport modes (which will not be realistic in areas where rail and bus fares 

are identical). an HL model can be developed as follows. 

where 

(91 

and is known as the logsurn or expected maximum utility (EMU). In our example, it 

represents the combined attractiveness of public transport. 



HL models were estimated indirectly using the BLOGIT package [311 with the 

composite cost term (or expected maximum utility (EMU)) being calculated with 

FORTRAN programs. A bottom-up approach was adopted. with the lower nest (or 

split) estimated first, followed by the upper nest. It is acknowledged that direct 

estimation (or full information Maximum Likelihood) is preferable to indirect 

estimation [32] but the requisite software was not available. More recently, packages 

such as ALOGIT have become available which make direct estimation relatively 

straightforward. 

At the calibration stage problems were encountered in including socio-economic 

variables. The preferred model was thus market segmented and consisted of an MNL 

model for non car owning households and an HL model for car owning households. 

The structure of this model is given by Table 7. A model of this form proved very data 

intensive, as it required information on modes used, times and costs disaggregated by 

car ownership, and sufficient data only existed to validate the model for five new 

stations and make predictions for a hrther three potential sites. A simpler 

formulation is provided by a single market HL model, as shown by Table 8. The 

spatial transferability of the HL/MNL model was tested by applying the model to a 

different data set. A likelihood ratio test showed that the model was not transferable 

but, in part, this was due to problems with the quality of the validation data set. It 

is not the purpose of this seminar to comment in detail on the models in Tables 7 and 

8, but it should be noted that some perverse results were achiwed, for example 

insignificant parameter values and high adjusted rho-squared measures. It should 

be noted here that the rho-squared measure in maximum likelihood estimation is not 

comparable to that of RZ in regression analysis and that, for example, an adjusted rho- 

squared measure of between 0.2 and 0.4 can represent an excellent fit (53.  Such 



results may be attributed to the fact that, out of necessity, we were using an RP data 

set of only limited quality. 

Alternative Specific 
Constant 
In Vehicle Time 
Out of Vehicle Time 
Expected Maximum 



A further example of an RP model is one that we developed in conjunction with 

consultants Transportation Planning Associates [33] in order to predict the demand 

for a new rail service to the towns of Brighouse and Elland in West Yorkshire. This 

was done by calibrating a model based on the travel behaviour of individuals living in 

the nearby towns of Mirfield and Sowerby Bridge and then applying this model to 

times and cost data collected in the Brighouse-Elland area. The details of this model 

are presented in Table 9. It is again based on an HL model in the belief that certain 

choices are not independent. 



IVT = In-Vehicle Time 



The Brighouse-Elland model was again calibrated by a bottom-up approach but this 

time involving three stages. The first stage (the lower nest) involved predicting the 

choice of access mode, given rail is the chosen main mode. The alternatives 

considered were walk, bus, park and ride and kiss and ride (with the latter being the 

base). The second stage (the middle nest) predicts the choice between bus and rail, 

given that public transport is the chosen main mode. The information from the lower 

nest is incorporated by the logsum variable, the parameter value of which should 

always be greater than 0 and less than or equal to 1. The third stage involves the 

choice of main mode, with the information from the middle and lower nest again being 

incorporated by a logsum variable, the parameter value of which should again be 

between 0 and 1, but should also be less than the value of the previous logsum 

parameter. These restrictions on the value that the logsurn parameter can provide a 

useful in-built diagnostic test. 

The data supported the hierarchical structure but also illustrated a number of 

problems with RP models. Although over 1100 interviews were undertaken, only a 

small number of observations (280) were used in the calibration stage due to non- 

relevant choices and missing information on times and costs. This is a similar 

breakdown to that of the 1981 West Yorkshire study, where 4598 interviews were 

undertaken of which only 850 were used in the final models. This reflects the data 

inefficiency of RP methods based on household interviews, particularly when dealing 

with a minor mode such as rail. To overcome this, use was made of choice based 

sampling, but this meant that the alternative specific constants in the model have to 

be adjusted to reflect the population's modal shares, rather than the sample's. The 

formula used to cany out this adjustment was as follows: 



ai = a; - loge (H~IHJ 

where 

a, - - adjusted (unbiased) ASC for alternative i 

a ' ,  - - unadjusted (biased) ASC for alternative i 

- H', - proportion choosing alternative i in the sample 

9 - - proportion choosing alternative i in the total population. 

Partly as a result of the low number of observations, a large number of the parameter 

values were insignificant at the 5% level (9 out of 17), whilst there was some 

indication of correlation between time and cost variables. Overall goodness of fit was 

modest. This all reflects the statistical inefficiency of RP methods. 

A problem with disaggregate models in forecasting arises because the individual 

choice estimates have to be expanded over the population of interest in order to obtain 

a reliable. unbiased forecast of group behaviour. The problem arises because, for non 

linear functions such as the logit model, a function of averages of variables is not the 

same as the average of this function. Hence, use of aggregate data with a model 

calibrated with disaggregate data will lead to systematic biases [34]. This has become 

known as the 'aggregation problem'. This can be solved quite easily if a random 

sample of individuals amongst the relevant target population can be obtained. 

However, such a 'sample enumeration' approach can be very costly. 

A way of using aggregate data in a manner that purportedly reduces this problem is 

the incremental logit model [351. This model has been extended so as to incorporate 

an HL structure and accommodate new modes [36, 371 and has been termed the 



Extended Incremental Logit model (EIL). The main advantage of the EIL is that it 

reduces data requirements to existing modal shares and the differences between the 

utilities of new and existing public transport modes. An example of a form of the EIL 

is given in the Technical Appendix 3.1. 



3.3 STATED PREFERENCE APPROACHES 

Stated Reference (SP) experiments involve presenting respondents with hypothetical 

sets of attributes for a number of choices. In the experiments we have undertaken, 

a binary choice between the existing mode (either bus or car) and the proposed rail 

service is examined. The attributes normally considered are in-vehicle time, walk- 

time, frequency and cost. Respondents are presented with up to 18 sets of these 

attributes for both choices and are then asked to indicate their response in terms of 

a discrete choice (ie. they are asked whether they would choose rail or their existing 

mode). Other forms of response include rating, either semantic (eg. dehitely use rail, 

probably use rail, no preference, probably use existing mode, definitely use existing 

mode) or numeric, and ranking. Discrete choice response is preferred because it most 

accurately parallels the actual decision to be made [58]. An early example of one of 

our designs is given in Technical Appendix 3.2. This was for a study examining a new 

service between Leicester and Burton-on-Trent (the Ivanhoe Line [381). Other SP 

studies we have undertaken included that of a service between Nottingham and 

Worksop via Mansfield (the Robin Hood Line [391) and between Blackbum and 

HelliAeld (the Ribble Valley Line [401). 

SP methods tend to be used for two reasons. Firstly, RP methods may be impossible 

because a comparable local rail service does not exist. This was believed to be the 

case in the two major studies we undertook in the East Midlands. Secondly, SP has 

a number of advantages over RP. It can be more data efficient, as by asking a series 

of hypothetical questions several observations per individual can be collected. It also 

has advantages of statistical efficiency. For example, the survey can be designed so 

as to ensure orthogonality between key variables (ie. avoid correlation) and ensure 



variation in key attributes. 

In our earliest designs we ensured orthogonality between the attributes by adopting 

fractional factorial designs but in subsequent work it became apparent that some 

correlation between cost and time attributes may be desirable [411. The most 

important consideration in the design of SP experiments is the inclusion of an 

adequate spread of 'boundary values', ie. the attribute valuations for which 

respondents will be indifferent between two options. For example, if the only 

difference between two options was that the first had 10 minutes less journey time but 

cost 20p more than the second option, then the boundary value of time would be 

2p/min. By seeking respondents choices between options containing a range of 

boundary values of time it is possible to infer the value of time of the respondents. 

Usually there will be more than two attributes changing their levels between two 

options and so boundary values are only determined as a function of other variables. 

It is often beneficial to hold all but two attributes at a constant level between options 

so as to predetermine the boundary value between these two attributes. We call these 

'fured boundary values', and the inclusion of a range of these will sort each individual 

into an interval (or 'bin') according to their responses. We call this 'bin analysis' and 

an example is presented in Table 10a. 



In Table 10a 100 respondents have chosen between 4 sets of 2 options. 90 of them 

are prepared to pay (at least) O.Sp/min to save time, 75 to pay lp/min, 40 to pay 

2p/min, and 15 to pay 3p/min. Table lob shows a 'bin analysis' of these data. 

From Table lob we can deduce that the average value of time lies in the range lp/min 

to 2p/min. By interpolation we could form a point estimate as: 

As can be seen, this is achieved without the 'black box' of disaggregate logit computer 

packages, and so carries considerable weight. 



Our work has been based on self completion questionnaires. although it is 

acknowledged that in some respects interviews are better, particularly if performed 

with a lap-top computer so that adaptive designs can be considered. Howwer, such 

methods are still at an early stage of development and we feel that, at present, self 

completion SP experiments are the most cost-effective in this particular choice 

context. 

In our earliest work, which examined the case for a Leicester-Burton rail service, the 

SP survey was customised for existing bus and car travellers to central Leicester from 

the outer Leicester suburbs and the Ashby/Coalville area. Altogether, 1,254 

individuals were contacted, of which 638 (51%) returned questionnaires. Each 

individual was presented with 16 sets of hypothetical times and costs for train and 

their existing mode and were asked to indicate which mode they would use. The 

models were calibrated by maximum likelihood, with the BLOGIT package again being 

used. The resultant models of mode choice are given by Table 11. Compared to the 

RP mode choice models that have been developed in this work, the SP models' 

parameter values tend to have greater statistical significance (although this is, in part, 

because there are repeat observations for each individual respondent), socio-economic 

variables can be explicitly included and, because of the orthogonal design, the 

problems of collinearity between times and cost which appear to have affected the RP 

models are avoided. 
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Parameter 

ASC (Train) 
IVT 
OVT, 
o w  
COST 
FREQt 
FmQb 
MALE 
INCOME > S9.999 
AGE > 39 
LEISURE 

Notes: OW, denotes O W  train. OW, denotes OVT car, FREQ, and FmQb 
represent the number of trains and buses per hour 

Examples of later models we have developed are given by Table 12. Like the models 

in Table 11, they are based on binary logit. SP can be used to develop more 

complicated models in theory but in practice it is advisable to keep an experiment 

relatively simple. Table 12 shows that models can be developed based on very small 

numbers of individuals (only 29 in the case of the bus v train model), although we 

would normally aim for substantially larger sample sizes. Nonetheless, the t-statistics 

and the rho-squared measure suggest a relatively good fit. One feature of SP data is 

that it facilitates the examination of non-linearities. For example, in the car v train 

model the three levels of rail frequency are specified separately (this is sometimes 

referred to as piecewise estimation), whilst natural logs have been taken of walk and 

in-vehicle time so that the resultant values of time decrease as walk or in-vehicle time 

increases. 

+1.327 
-0.863 
+0.359 

-0.189 
LEIC SUBURBS 

Adjusted Rho Squared 
No. of Observations 

Bus-Train Model 

Value 

-0.086 
-0.067 

-0.056 

Car-Train Model 

-1.022 

0.25 
2549 

(t-statistic) 

(10.21) 
(9.84) 

[19.61) 

Value 

- 1.907 
-0.064 
-0.082 
-0.040 
-0.035 

(t-statistic) 

(8.89) 
(16.96) 
(5.69) 
(1.88) 

(17.35) 

(7.64) -0.581 

0.22 
4314 

(7.08) 
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in turn will reduce the absolute size of parameter values and hence utilities. For 

example. in binary choice situations in which rail is the minor mode (ie. it has lower 

average utility than the other mode in the choice set), this will lead to overestimates 

of the probability of choosing rail. This example is likely to be typical of many 

situations in which a new station or service is being considered and is an example of 

what has been termed the scale factor problem [42]. Suggested solutions based on 

re-scaling with RP data or by pivoting around known elasticities or known parameter 

values are inappropriate in this instance as RP data can not exist for a new mode and 

neither will reliable, local, parameter/elasticity esttmates. 

However, there are two methods by which forecasts can be derived: 

(i) The deterministic method assigns an individual to the mode with the highest 

utility, given the estimated parameters and the costs and times which would 

prevail for train and bus/car in the situation to be forecast. This is best done 

with models developed for as small as possible sub-groups of the sample. 

(ii) The probabilistic method calculates the probability of choosing train for each 

individual given the estimated utility differences for the situation to be forecast. 

Aggregate shares are simply the weighted sum of individual shares. 

The two methods give different results. In binary choice, because of the shape of the 

logit function (see Figure One), if rail is the minor mode (ie. a share of less than 0.5, 

which is the case in most actual situations) the probabilistic forecast will be greater 

than the deterministic given our belief that IS is too high in SP experiments. Where 

rail is the major mode. the reverse will be true. The deterministic method has an 



advantage in that, because the scale factor applies equally to all coeffcients and hence 

does not affect relative utilities, the scale factor problem is avoided. The disadvantage 

is that the deterministic method, by detbition, does not include the stochastic 

component of random utility (ie. the error term). and so does not permit occasional 

choices of non optimal modes as would occur in practice due to special factors 

affecting individuals. Given that we believe rail to be a minor mode, the probabilistic 

forecasts are likely to overstate rail's market share and the deterministic forecasts 

understate it, it may be then assumed that these two forecasts bound the actual 

value. Therefore, an average of these two forecasts may provide a reasonable 

approximation of the true value. This point is represented empirically by Table 13. 

Recent empirical work by Mark Wardman 1431 indicates that the residual deviation 

from an SP model may be around 20% greater than that in a comparable RP model 

and the problems stemming from the scale factor problem may not be too severe. 

However, there is some conflicting evidence and there is no general agreement at the 

present time. Where possible, it may be worth combining RP and SP approaches to 

produce hybrid preference models. The approach to this would be as follows. Firstly, 

the utility weights are calculated for each alternative. from SP studies and combined 

with the attribute levels faced in practice, to produce utility terms UsP,. These are 

then rescaled with RP data on actual choices, as follows: 

46 



(11) 

Wardman's work, admittedly in a non-rail context, produced parameter estimates (and 

t-statistics in brackets) for Do of 0.39 (4.69) and for J3, of 1.18 (18.21). 

Another way of combining RP and SP approaches has been explored in a recent study 

we have been involved in with consultants, Transportation Planning Associates, that 

examined Transpennine rail services. Here, an RP model was used to estimate 

parameter values of 'conventional' variables such as IVT, OVT, Cost, Frequency and 

Interchange, whilst an SP model was used to estLmate the effects of 'softer' variables 

such as delay, overcrowding and different forms of rolling stock 



3.4 STATED INTENTIONS APPROACHES 

The conventional application of SP models is to apply them with information on the 

origin/destination of existing trips and aggregate, engineering times and costs. An 

example is the Walsall-Hednesford rail study 1441. A number of problems emerge 

here. The use of a disaggregate model with aggregate data will lead to biases [which 

might be reduced by using the incremental logit), whilst the engineering times and 

costs will be greatly affected by measurement error. Moreover, in many areas detailed 

information on current travel by car and bus does not exist and is very expensive to 

collect. An alternative that has been developed by the Institute for Transport Studies, 

in conjunction with Local Authorities, is to carry out a self-completion survey of the 

area where a new service is to be introduced in order to collect information on existing 

travel patterns as well as allowing respondents to state their intention of using the 

new service [451. However, such SI data, unless adjusted, is prone to a number of 

systematic biases, which are likely to lead to gross overestimates of demand. These 

biases include: 

(i) Self selectivity bias. In a self completion survey. rail users are more likely to 

return the survey form than non users. To adjust for this bias Heggie and 

Papoulias [461 propose that non respondents should be treated as non users 

of the new facility. 

(ii) Non commitment bias. Respondents are not committed to behave in the way 

they have responded. This may be exacerbated by misperceptions. When 

respondents come to actually use the service they may fmd the timings 

inconvenient, the trains overcrowded or unreliable. 



(iii) Policy response bias. Respondents may answer strategically in order to achieve 

the desired policy response (eg. get the new station opened). 

Thus work by Couture and Dooley 1301 showed that in the case of a new transit 

system in Danville, Illinois such a simplistic approach resulted in a ratio of intended 

to actual users of three to one. A study of South Wigston station (Leicestershire) 

indicated that assuming non respondents are non users reduces the bias but 

predicted usage was still between 38% and 73% higher than actual usage 1471. 

As a result, SP surveys are undertaken to assess the extent of these biases. For 

example, the SP survey of the Leicester-Burton rail service followed an SI survey in 

which 29,873 households were contacted, with 4,820 returned, representing a 

response rate of 16%. The socio-economic characteristics of this sample were 

compared with those of the population, as given by the 1981 Census, in order to 

ensure representativeness. 

Nottingham-Worksop 

Leicester-Loughborough 



Table 14 shows that we have now applied this approach in four major studies; the 

three studies (1381 to 1401) mentioned at the beginning of section 3.3 and a fourth. a 

study of improved rail services between Leicester and Loughborough [48]. This fourth 

study was carried out as an extension to the Leicester-Burton study and as a result 

made use of the SP model developed in that study. 

Table 14 shows that a typical response rate to the SI survey is 17%. although this can 

be exceeded in areas of high socio-economic status where the proposed rail service is 

perceived to be highly relevant (eg. the villages between Leicester and Loughborough). 

The response rate to the follow-up SP survey is much higher, being consistently above 

50%. although this is from respondents who have indicated their willingness to take 

further part in the survey. Response rates can be boosted by offering prizes and 

sending out reminders but may also artificially stimulate interest in the new service 

and thus bias results. 

On average, it is estimated that SI forecasts of rail usage are greater than SP forecasts 

by around 50% if non respondents are assumed to be non users. There is, however, 

considerable variation with car users particularly likely to overstate their demand. 

These findings on the accuracy of the SI approach are within the range found by 

Hockenhull, but recent work at Steeton and Silsden station (in West Yorkshire) 

suggests that the difference between SI and SP forecasts may be less acute 1491. 

However, this reflects a different set of circumstances. At the time of the South 

Wigston survey, no decision had been made as to whether a new station should be 

opened whilst at the time of the Steeton survey, the station was already under 

construction. The incentive to bias survey responses was therefore much greater in 

the former case than the latter. The SI/SP approach requires validation but the South 



Wigston and Steeton studies do indicate that it can provide reasonably accurate 

forecasts if applied carefully. 

3.5 OVERVIEW 

We have shown in this section that a number of disaggregate approaches to 

forecasting the demand for new passenger rail services and stations. Although only 

different ends of a continuous spectrum, it has been shown that disaggregate 

approaches have a number of theoretical advantages over aggregate approaches. In 

particular, they are able to assess the effect of variables which are vital to the choice 

of public transport mode, such as walk and wait time, that exhibit little inter-zonal 

variation. It should, though, be noted that the disaggregate approaches, as developed, 

do have their limitations. In particular, they are based on logit models which have 

fvred coefficients and therefore can not take into account taste variation [59]. In 

theory, more mathematically advanced model forms such as multinomial probit can 

overcome this problem but, in practice, a more sensible approach might be to dwelop 

logit models that are segmented, for example, by income [29]. However, the main 

problems with disaggregate approaches emerge at the applications stage. Our 

forecasts are required at the aggregate lwel of a new service or a new station. If we 

can afford to collect information on a random sample of individuals in our population 

of interest (or, better still, such information already exists) then this is not a problem. 

Howwer, in practice this is not often possible and we have to make some use of 

aggregate data in producing forecasts. 

We have also shown that there are two main disaggregate approaches. RP approaches 

have the advantage of being firmly rooted in actual choice behaviour and are not 



affected by the 'scale factor' problem. Howwer it should be noted that in RP models 

there is likely to be measurement error in the independent variables, due to mis- 

reporting of times and costs. Moreover, they have disadvantages of data and 

statistical inefficiency when compared to SP approaches. SP is particularly suited to 

examining the effect of new choice situations and of variables that do not contain 

much variation in current situations (eg. type of rolling stock on a particular service). 

Howwer, an SP experiment needs to be designed very carefully, particularly so as to 

contain relevant boundary values, whilst in application care needs to be taken to 

ensure that non-traders are correctly represented. In forecasting with SP a particular 

problem emerges, that has been termed the scale-factor problem, which stems from 

the fact that there may be measurement error in the dependent variable ie. we are 

observing hypothetical rather than actual behaviour. Howwer, there are a number 

of pragmatic ways around this problem. Furthermore. as with all disaggregate 

approaches, there may be practical difficulties in applying SP. A possible solution. 

which also allows generated trips to be considered. is to carry out an SI  survey and 

then to design an SP experiment that may correct the biases inherent in such an 

approach. 

Overall, the relative advantages of SP and RP approaches seem fairly balanced, and 

if resources are not a constraint it may be sensible to dwelop approaches that are a 

combination of the two. Of course, in most situations, resources are a constraint and 

in the next section. we shall go on to determine how to choose between RP and SP 

approaches. 



Technical Appendix to Section Three: 

3.1 The Extended Incremental Logit [EILI Model 

For the single market HL model given by Table 8, the EIL can be written as 

I P,  [ exp (uL - u,) + exp (uh - u& I' 
Pm = 

P, [ exp (uL - u,) + exp (uL - urn) I' +[I - P,l 

(1) 

where 

P', (P,) = Proportion choosing Public Transport in the after (before] 

situation 

U'(U) = utility measure in the after before) situation 

XT= old Public Transport mode (bus) 

NT = new Public Transport mode (rail) 

@ = EMU [Logsum) parameter. 

From Table 8 

U, = -0.132 *Wait Time -0.184 * WalkTirne -0.092 * IVT - 0.044 * Cost 

U', = -0.132 *Wait Time -0.184 * WalkTime -0.080 * IVT -0.044 * Cost 

6 = 0.205 

The lower split shares would then be 



As, in most cases, we would assume no change in the utility of the existing Public 

Transport mode, exp (U', - U,) simplifies to 1. 

For completeness, and assuming no change in private transport utilities, private 

transport's share (denoted by subscript M) in the after situation may be defined as: 

Alternatively, this can be written as: 



3.2 Example of a Stated Preference Questionnaire 

In this final section m would Like you to consider again your journqr 
to Leicester hut now you a d  also have the opportunity to travel by 
train. W mul.d like to kncw how you would react if travel by lxls and 
by train to Leicester was as described by the 16 situations Listed on 
the following 2 pages. 

In aqnring the mtb3s of travel, you mst ass- that 
everything else besides the costs and t h z s  presentad muld be the 
sanr. as for the journey you actudlly.mde, for q l e ,  you muld 
still want to be at your final destination at the - time. 
Train and E h s  are described in terns of the following factors:- 

(a) IN-VEHICLE TIME. This is - tine, in minutes, actually .spent on 
the train or bus. 

(b) CUIXF-VLBICLE TIME. This consists of the time, in minutes, spent 
. getting to or fran the bus. or train and the tine spent wai t ing.  

(c )  EARE. This is how nu& you wwld have to pay, in pence, for a 
single journey. DD NOT adjust these fares in order to take into 
account any travel cards etc. you m y  pssess or other reductions 
you would he eligible for. 

( a ~ m ~ ~ ~ ~ m ~ u s ~ s m t ~ ~  umama). 
arrive in Leicester at the sam times as at present. T p h i  m y  
depart for Leicester, Mmihys to Saturdays, every d f  hour, 
every hour and mce every two hours, arriving at leicester at the 
following th-3:- 

and then at '15 
and 45 minutes 
past the hour 

until 

and then at 
45 minutes 
past the hour 

until 

Once wery two hours 
6.45 am 
8.45 am 

10.45 am 
12.45 pn  
2.45 pn 
4.45 pn 
6.45 pn 
8.45 pn 

In each case the last train back fran Leicester wuld be at 9.15 pn. 

In the MAMPLE MOW, if your choice wMlld k to travel by bus then 
you a d  tick the box associated with bus as shown. 

In- (X1t-of- Fare BequencY oloice 
vehicle vehicle 
t in2 time 

Train 20 mins 15 mins 65 pence 1 train every 2 hours [ 1 

Eus 20 mins 5 mins 45 pence A s -  [d 



N3W please consider the 1 6 . d i f f e ~ e n t  sihations presented below and i n  
each indicate which rreans of travel you would use. IT D3E5 NOT M W l Y 3  : 

IJ? TBE 035I5ANDTlMFSW?HAVEOFEEXEDYWAREVEEU! DDTERDiT FRCX4 
T H Q S E Y w ~ N O R M A L G Y E . A c E .  

In- Out-of- Fare J?J=FencY Choice 
vehicle vehicle 
tim2 tire 

Rain 15 mins  10 mins 55 p c e  1 t r a i n  every 30 mins [ I 

Wls 15mins 1omins 55pence ASNOW [ I 

Train 15mins 5mins 4 5 ~ ~ l ~  1 t r a i n e v e r y h o u r  [ 1 

5 15 m i n s  10 mins 65 m ASNOW [ 1 

Rain 20mins 20 mins 65 pence 1 t r a i n  everyhour [ 1 

Wls 2Omins 1Omins 5 0 p n c e  ASNOW [ 1 

lYa.in 20 mins 20 mins 70 pence 1 t r a i n  every 2 hours [ -1 

5 20mins 1Omins 4 0 p n e  As Kc&' [ 1 

Train 15 mins 20 mins 55 p c e  1 t r a i n  every hour [ 1 

Blis 20 mins 10 mins 55 pence AsN3W [ 1 

-. 
'main 15 mins 20 mins 45 perxz 1 t r a i n  every 2.hours [ I 

Wls 20 mins 10 mins 65 pence A s W  I 1 

- - 
Train 20 mins  5 mins 65 p c e  1 t r a i n  every 30 mins [ 1 

Wls 25 mins 10 mins 50 pence ASNOW [ 1 

Train 20 mins 10 mins 70 pence 1 t r a i n  every hour [ 1 

Bus - 25 mins 10 mins 40 pence ASNOW [ 1 

Please turn over 



In- Out+£- Fare keguencY Choice 
vehicle vehicle 
t h z  tim 

Train 15mins 5mins 55 pence 1 t r a i n  eves 2 hours [ 1 

Bus 25mins 10mins 55 Exlce ASNOW [ 1 .  

Tmin 15 mins 10 mins 45 pence 1 t r a i n  w e r y  hour [ 1 

Bus 25 mins 10 mins 65 pence ASNOW [ 1 

Rain 15 m i n s  20 mins 65 pace 1 t r a i n  every hour [ 1 

Bus 25mins 10mins 5o.pence ASNOW [ 1 

Train 15 mins 20 mins 70pence 1 t r a i n  every 30 mins [ 1 

Train -15 mins 20 mins 55 pence 1 t r a i n  every hour [ 1 

Bus.  30mins 10mins 5 5 p e n ~  AS& I. 1 

Train 15 mins 20 mins 45 pence 1 t r a i n  w e r y  30 mins [ I 

B u s  30 mins 10 mins 65 pace ASNOW [ 1 

-- -- 
Wain 20 mins 10 mins 65 pence 1 t r a i n  every 2 h o w ~  I 

Bus 35 mins 10 mins 50 pence ASNOW I 1 

Train 20 mins 5 mins 70 pence 1 t r a i n  every hour [ 1 

Bus 35 mins 10 mins 40 pence ASNOW [ 1 

If you have any axments to make about this questionnaire, p lease 
w r i t e  them i n  the space provided belax. 

THANK YOU EDR COMPLFPIffi T H I S  ~ 1 ~ .  WHEN YOU HAVE F1NISHI;D 
PLEASE EDID, PLACE I N  TIE l3SEUlPE PROVIDE2 AND lU3URN BY !ZfEEWST. NO 
srpMp IS mm. 
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SECTION FOUR 

CHOOSING THE APPROPRIATE MODEL 

4.1 INTRODUCTION 

In this section we shall compare the different model forecasting approaches that have 

been developed. This will be done at three lwels. Firstly, we shall compare some of 

the outputs of the different modelling approaches. Secondly, we shall assess the 

accuracy of the different forecasting approaches in terms of assessing demand. 

Thirdly, we shall assess the accuracy of the different forecasting approaches in terms 

of providing financial and social evaluation of new rail stations and services. 

Following this analysis, we shall suggest the most appropriate demand forecasting 

procedures for different forms of investment. This work will draw on a recent article 

in the Journal of Transport Economics and Policy 1501 and two chapters to be 

published in forthcoming books [5 1, 521. 

4.2 ASSESSING SPECIFIC MODEL OUTPUTS 

Two specific outputs of our demand forecasting approaches can provide useful 

plausibility checks. These are: 

(i) The value of time. This is the ratio of the rate of change of utility (or 

generalised cost) with respect to time to the rate of change of utility with 

respect to cost. Algebraically this may be written as: 



VOT = (a U I ~  T )  
(av lac)  

(1) 

For the typical, linear, additive utility function U = a + bT + cC, VOT is simply 

the ratio of the time parameter value to the cost parameter value b/c, although 

for non linear functions the mathematics becomes more complex. 

(ii] Rail's elasticity of demand with respect to price. This is the ratio of the 

proportionate change in demand to the proportionate change in price: 

(21 

Assuming infinitely small changes in P (and hence Q) and rearranging we 

obtain the point elasticity formula: 

For a simple model: 

This is a constant elasticity model. For the semi log model: 

Q = a exp (bP) or 
log, Q= log, a + bP 

Ep= bP 



For the MNL model: 

Where 

Pr = probability of choosing rail 

P = rail price 

fi = rail price parameter value. 

This needs to be calculated for each individual and a weighted average (based 

on Prl calculated. 

For the HL the estimation of Ep is more complicated, but the formula is given 

in some texts [531. [541. 

Table 15 compares the results of the different modelling approaches in seven studies 

carried out by ITS with respect to these two outputs. It should be evident that we are 

not comparing like with like but, nonetheless, some interesting results emerge. We 

have not been able to estimate values of time from the aggregate models, because 

correlation between time and cost leads to implausible and statistically insignificant 

results. When developing generalised cost measures to be used in these aggregate 

models we need to 'import' values from other studies. The five disaggregate studies 

show a uniformly low value of time (mean 2.2 pence per minute), although there is 

some indication of higher values for work trips. These values of rail time are for the 

choice between bus and train. For the choice between car and train, the values are 

slightly higher (by about 35Oh for the three SP studies). 



The results in terms of rail's demand elasticity with respect to price are much less 

consistent. The lowest (absolute) results are achieved by the two disaggregate RP 

studies undertaken in West Yorkshire, with a mean fare elasticity of -0.3. Howwer, 

in the f ist study, undertaken in 1981, only work trips were examined and there is 

considerable evidence that these trips are less elastic than non work trips [55]. The 

second study was undertaken at a time of low rail fares, particularly in the off-peak 

and there is evidence that demand is less elastic at low fares than high fares 1221. In 

both cases. generated travel was not considered which will deflate the absolute level 

of the elasticities. 

Greater Manchester: 

West Yorkshire: 
3 corridors, 1981 

West Yorkshire: 
2 corridors, 1990 Disaggregate: RP 

Leicestershire Disaggregate: SP 

Nottinghamshire Disaggregate: SP 

Disaggregate: SP 



By contrast, very high rail price elasticities were achieved by the two SP studies 

carried out in the East Midlands, with a mean of -1.75. Howwer, these were arc 

elasticities based on a 10% increase in rail fares in a situation where rail was already 

presumed to be 10% more expensive than bus. Because of the scale factor problem, 

point elasticities were likely to be biased but, unfortunately. in such a way that, if 

rectified, they would produce wen higher absolute values. Furthermore, like the RP 

models, generated trips were not considered. Howwer. unlike the RP models, all 

respondents to the SP survey currently travelled by an alternative mode to rail and it 

seems that the efTects of habit and inertia were not properly represented. In 

particular, it was beliwed that our surveys under-represented non traders ie people 

who would not switch modes at any (reasonable) price. In part, this may be because 

in the SP experiments we present such variation in times and costs that people feel 

duty bound to trade but in practice such wide variations are unlikely to occur and 

they will be non traders. We attempted to rectify this in our SP sunrey at Clitheroe. 

with some apparent success, as a price elasticity of around -0.7 was produced when 

non traders were taken into account, compared to -1.3 when non traders were 

excluded. These results were more in line with those achiwed in Greater Manchester 

and West Yorkshire by aggregate constant elasticity models, with the mean of our 

three most plausible elasticity results being -0.73 [compared to a mean of -0.90 for 

all seven results). 



4.3 ASSESSING MODEL ACCURACY IN FORECASTING DEMAND 

The accuracy of four different RP forecasting methods (both aggregate and 

disaggregate) were tested for six new stations in West Yorkshire. 

(i) The West Yorkshire TRM, as given by Table 4. This is given by column A. 

(ii) The ASM as given by model 1, Table 6. This is given by column B. 

(iii) The HL/MNL model (Table 7). aggregated by SE. This method produces 

forecast for work trips only. Non work trips are estimated by model 3. Table 

6. This is given by column C. 

(iv) The HL model (Table 8). aggregated by EIL. Non work trips are again estimated 

by model 3, Table 6. This is given by column D. 

Table 16 shows that the TRM produces a forecast that is, on average, within 42% of 

initial usage, with a RMSE of 71 trips. It is, however, only a very simplistic approach 

and is only presented here as a counter point to the more sophisticated approaches 

that have been developed. Of the three remaining approaches the most accurate, at 

least initially, is the HL/MNL model, which gives predictions. on average, around 34% 

of initial usage. It was estimated that the aggregate non work model contributed 75Oh 

of this forecasting error. By contrast, the HL model gives predictions within 54% of 

initial usage, with a RMSE of around 97 trips. This approach is only slightly more 

accurate than the ASM which gave predictions some 63Oh above initial usage, with a 

RMSE of around 108 trips. 



Second year usage 

Second year usage 
Third year usage 

where F = Forecast new station daily usage (ons plus o&) 
A = Actual new station daily usage 
n = Number of observations 

With the exception of the TRM (which was based on first year usage), the models 

examined in Table 16 are forms of equilibrium models. Fkom count data. it is 

apparent that new station usage has been growing in absolute tenns. However, this 

is against a background of increasing rail usage in West Yorkshire, as between 1982 

and 1986 demand at 38 existing local stations increased by 48%. In Table 16, second 

and third year usage figures at six new stations are expressed in relation to the overall 

increase in demand for rail services as a whole. It can be seen that, with the 
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exception of one station. over the frst three years demand has grown at a faster rate 

than that of the network as a whole. Initially, this trend was exhpolated over five 

years, with the result that demand in year 5 was estimated to be 75% greater than 

that in year 1. However, later work suggests that real growth at new stations only 

occurs in the first three years, with usage in year 3 being 35% higher than that in 

year 1 [IS]. Table 16 shows that if these dynamics are taken into account the 

accuracy of the three equilibrium models, at least as measured by the AD, is broadly 

comparable in year 2, but by year 3 the ASM appears to be the most accurate. with 

the forecast being, on average. within 26% of actual usage. The comparable figures 

for the MNL/HL and the HL models are 37% and 32% respectively. The ASM's better 

performance over time is possibly due to its ability to incorporate generated trips. 

particularly for work journeys. 

In the study of the new rail service between Leicester and Burton-on-Trent it was 

possible to compare aggregate RP techniques with disaggregate SI/SP approaches. 

However, it is not possible to compare the accuracy of these different services as the 

rail service has not yet opened. The approaches compared were: 

(i) The ASM, again based on model 1. Table 6, but adjusted in the light of findings 

at South Wigston where it was found the ASM underpredicted demand by 58%. 

(ii) The TRM for South Wigston. as given by Table 4. 

(iii) The results of the SI survey, assuming that non respondents are non users. 

(iv) The results of the SI survey, amended in the light of the SP experiment. This 

was done by using the SP models in Table 1 1 with reported time and cost data 

to predict individuals' mode choice. This was then compared with what 

individuals said they would do in the SI survey. 
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of that given by the SI survey. If this pattern is repeated for all 18 intermediate 

stations on the line rather than just the 6 sites that were included in the SP survey. 

then usage is estimated as being more than double that forecast by the ASM. 

In Table 18. in order to assess the accuracy of our disaggregate approaches, we have 

converted the four main studies of new services we have undertaken into trip rates, 

based on the catchment area 0 to 2 kilometres (and beyond in some instances). The 

bottom of the right hand column shows that we forecast a mean rate of 24 daily rail 

trips per thousand population, with a standard deviation of over 6. This is similar to 

the mean trip rate estimated for four schemes that have already gone ahead, where 

the mean trip rate is 20 per thousand population and the standard deviation is again 

6 plus (although there may be still scope for growth over time for some of these 

schemes). Given the extent of systematic biases. we were concerned that our SI/SP 

approach may be still over-estimating demand but the evidence in Table 18 indicates 

that this may not necessarily be the case. Indeed. our highest forecast trip rates are 

provided by the RP predictions for Brighouse-Elland. 



New stations/ 
services 

already owened 

West Yorkshire - 
9 new stations 

Walsall - 
Hednesford 

Edinburgh - 
Bathgate 

19.4 

Aberdare I 18.8 1 Brighouse/Elland 

NotUngham - 
Worksop 

29.9 

Mean I 20.1 I Mean 

Clitheroe 

Standard Deviation I 6.3 1 Standard Deviation 

New stations/ 
services yet 
to be o~ened 

Source: 1561 

In considering comprehensive new services. additional trips of 1.000 per day appears 

to be an important threshold. On average, Table 18 suggests that a catchment area 

population of up to 50,000 would be required to sustain such a lwel of usage. This 

gives a crude indication of the size of community (or communities) that might be able 

to sustain a new service. 

We are unable to estimate precisely the relative accuracy of the different forecasting 

approaches, the evidence presented in Tables 4, 15 and 18 give some broad 

indications. Based on twice the standard deviation of the sample mean, Table 19 

shows the rounded confidence limits (approximately at the 95% level) that might be 

attached to each of the methods we have developed. 



Table 19 I Confidence Limits for Each of the Forecasting Methods Developed 11 
TRM 
Trip End 
ASM 
MNL/HL with SE 
HL with EIL 
SI/SP 

Initial usage 

+35% - 

'Equilibrium' year usage 

+50°h - 
+30°h - 
+20% * - 
+30% * - 
+25% * - 
+30% - 

* Third year usage 

In Figure Two, we represent these results graphically. Excluding the results from the 

TRM (which are affected by a degree of circularity in that the model was calibrated on 

a sub-set of the stations it was applied to), there does appear to be a trade-off between 

accuracy and cost, at least for forecasting first year demand. Cost here is based, very 

crudely, on the amount of research time we spent in developing each type of model. 

The more expensive modelling approaches do seem to give the most accurate 

forecasts, although it is difficult to put an exact cost to each modelling approach. It 

should be noted that the MNL/HL and HL approaches are not completely 

disaggregate, a direct demand model was used to forecast non-work trips. The 

MNL/HL approach was more accurate when just forecasting work trips. Comparable 

confidence intervals in this instance were around + 15%. 

In the case of third year [= equilibrium level) usage there appears to be a U-shaped 

relationship between accuracy and cost. Initially, as cost increases, so does accuracy, 

culminating in the ASM giving an accuracy of around + 20%. However, as cost 

increases further. accuracy decreases slightly to be only between + 30%. This may be 

because the MNL/HL and HL approaches can not take into account 'generated' work 

journeys (in fact, more likely to be relocations of home and/or workplace). 



Figure Three gives a more theoretical representation. As model complexity increases 

(and this may be expected to be closely paralleled by costs), specification error is likely 

to decrease as more explanatory variables are taken into account. Howwer. 

measurement error may be expected to increase as the models' data input 

requirements increase. Thus total error will at h t  decrease with complexity, but can 

then increase, resulting in a U-shaped cum. Given the very broad confidence levels 

at which we are working, we would be unable to identify a specific point at which the 

optimal lwel of accuracy was reached. What we might be able to detect is a broad 

range at which the accuracy of the different methods, in terms of forecasting 

patronage, is similar. In other words, we might expect our U-shaped curve to have 

a flat bottom. In normal circumstances, we would choose the least costly approach. 

Howwer, this assumes that we are only interested in forecasting demand but in the 

next sub-section we go on to show that this may not be the case. 



Figure Two: Gravhical Revresentation of the Accuracy/Cost Trade-Off 
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Neure Three: Theoretical Representation of the Accuracy/Cost Trade-Off 

Specification Error 

'Optimal' level Complexity 

of Accuracy 



4.4 ASSESSING MODEL ACCURACY IN EVALUATING DEMAND 

Throughout most of this workwe have implicitly assumed that the likely level of usage 

of a new station or service is the key determinant in deciding whether such new 

schemes should go ahead. That, in practice. this is not likely to be the case is 

illustrated by Table 20. 

This Table shows that the ranking of the first six new stations to be opened in West 

Yorkshire changes depending on the criterion on which they are assessed. The first 

column ranks stations in terms of daily ons and offs after the first year of opening. 

The second column ranks stations in terms of gross revenue. The differences may be 

considered similar to those of comparing passengers with passenger miles, given that 

the rail fare scale has a distance-related element. In the third comparison, a financial 



appraisal is undertaken in which it is assumed that the PTE only has direct 

responsibility for rail services (the current position). An NPV was calculated based on 

net rail revenue, capital and recurrent costs. There are only slight changes in 

rankings compared to the gross revenue figures. However, in the fourth comparison. 

it is assumed that the PTE has direct responsibility for both bus and rail services (the 

pre 1985 Transport Act) position. Rather than net rail rwenue, only net public 

transport revenue is considered. It can be seen that the rankings of the stations 

changes dramatically. Moreover. in general it appeared that the NFVs in the third 

column were greater than those in the fourth, suggesting that, somewhat perversely, 

deregulation may have further encouraged development of local rail services. Lastly, 

in the fifth column a social cost-benefit analysis was undertaken. In addition to net 

public transport revenue, benefits included user benefits, in terms of time and cost 

savings to new station users (although often offset by time penalties suffered by 

existing users), and non-user benefits, in terms of congestion relief and accident 

reductions. It can be seen that the rankings do not change too drastically from that 

of the financial appraisal of column 4. However, in general (but not always), the 

absolute value of the N W  tends to increase, strengthening the case for new stations. 

For example, for the six new stations as a whole, moving from a -cia1 appraisal 

to the rail and bus operator to a social cost-benefit analysis increased the NFV from 

828k (at 1986 prices) to 2179k. By contrast, a financial appraisal that only includes 

the rail operator gave an NW of S1597k [I 11. 

In terms of the models' performances with respect to these additional dimensions. the 

following comments can be made. The TRM can only give an estimate of total usage, 

but it can not tell you where people are travelling to and hence can not give estimates 

of gross revenue. The ASM does tell you what the main destinations are and hence 



can estimate gross revenue but it does not tell you where patronage is coming from 

Be whether it is abstracted or generated) and hence can not give estimates of net 

revenue or user benefit. Thus, for either financial appraisal or social cost-ben&t 

analysis, disaggregate approaches are required. Even then, if they are applied in 

aggregate, for example using the EIL, estimation of user benefit is more problematical, 

although still achievable. A major weakness of the disaggregate approaches, as 

developed, is that they focus solely on mode choice. In principle, there is no reason 

why disaggregate trip generation models can not be developed. In practice, this has 

proved difficult to achieve. However. in the study of a new rail service for Brighouse 

and Elland [331, we were able to develop an aggregate trip generation model which 

took the following form (t-statistics in brackets): 

%GEN = 6.882 + 0.071 AGCOST + 18.233 SAT R2 0.67 3 0.61 
(1.m) (1.612) (4.014) 

where % GEN = percentage of total new station usage that is generated 

AGCOST = reduction in mean generalised cost as a result of introducing the 

new rail service 

SAT = dummy variable for Saturdays. 

This model was calibrated for 14 observations for stations in South and West 

Yorkshire. This model indicates that on a weekday a minimum of 7% of rail traffic is 

generated, with this figure increasing to 25% on a Saturday. The percentage of 

generated travel is then estimated to increase by one percentage point for each 14 

pence increase in the difference between the generalised cost of travel by the previous 

mode and the generalised cost of travel by rail. 



4.5 CONCLUDING REMARKS 

Given Britain's rapidly changing demography, there will always be a case for some 

new rail stations and services (and, indeed, in some instances station closures and 

service withdrawals). A starting point should be a systematic review of new stations 

and service potential. An example is illustrated by Figure Four. The starting point 

is to take the existing passenger rail network in a specific area such as West 

Yorkshire. One might also wish to add freight only lines such as the Brighouse/ 

Elland, Spen Valley (South) and Featherstone lines (as well as the Roses Link line), 

and former track alignments in which right of way has been preserved such as Spen 

Valley (North), the Scholes and South Garforth spurs. In our initial work in the mid 

1980s these were not considered viable policy options: changing socio-politics may be 

as important as changing geo-demographics. Potential new station sites were 

identified by excluding those section of track: 

(1) Which are 1 mile (1.6krn) within an existing station on the same line. This is 

based on our finding that the majority of new local station demand comes from 

within 800 metres. 

(2) Which are affected by engineering constraints such as tunnels, deep 

embankments etc. 

(3) Which are affected by capacity constraints. In the mid-1980s sites to the 

immediate east of Leeds City Station were excluded. Today, sites to the west 

of City Station and on the East Coast Main line close to Leeds City Station 

might also be excluded (eg. Arrnley and Beeston). 

(4) Which serve non-built up areas. Initially, this was based on visual inspection 

of OS maps. Subsequently, based on Table 2, a minimum population of 800 



within 800 melres was stipulated. Two sites (East Ardsley and Luddendenfoot), 

failed this test. Geo-demographic information systems may be particularly 

useful in performing this task. 

(5) Exclude those sections of track not supported by Section 20 or likely to have 

support withdrawn. This was relaxed in two instances (west of Keighley and 

east of Knottingley). Subsequently, it has been relaxed in two further cases, 

the Huddersfield-Shaield line and south of Todmorden. 

In our initial work 28 sites were evaluated. although retrospectively this ought to have 

been 24. However, given changes in rail policy an additional 19 sites might have been 

considered. Of the 28 sites initially considered, our work recommended, on the basis 

of social cost-benefit, 10 sites to be developed. Subsequently, West Yorkshire PTE 

have opened 9 sites. However, only 3 of these were on our list of 10. 
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Once the number of new staijons to be investigated further has been identified, it is 

then necessary to decide what demand forecasting approach to apply. For the three 

levels of investment identified in section 1.4 we would suggest the following: 

(i) For one-off new stations, forecasting might be based on a trip rate model, 

preferably locally calibrated. If there is no suitable existing local station then 

either transfer a trip rate or direct demand model from elsewhere and/or 

undertake a Stated Intentions survey, but checking the possible bias by using 

either an existing RP or SP mode choice model. 

(ii) For packages of new stations, develop a direct demand model for existing local 

stations and apply to predict the usage of potential new stations. For the 'best' 

sites, develop an SP mode choice model and apply in conjunction with existing 

origin/destination information to determine the extent of mode switching. This 

is an approach we are currently developing for Lancashire County Council. 

Where a network of local rail stations does not exist, reliance would have to be 

put on SP or 'imported' RP approaches. 

(iii) For major new services, requiring Section 56 grant, disaggregate approaches 

are required. Where possible these should be based on RP models, although 

supplemented by SP data to improve data and statistical efficiency. In many 

cases where rail represents a new service to the area or incorporates radically 

new features, it will be necessary to rely solely on SP data. Ideally, the 

resultant model would be applied with disaggregate time and cost information 

(the 'sample enumeration' approach) but more usually use will be made of 

aggregate engineering or Stated Intentions data. It is important to ensure that 



the modelling approach adequately deals with generated trips. Where possible, 

some checks with RP data should be made even if this only involves 

comparisons at a very broad lwel [56]. 
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