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With rapid advancements in automated driving technologies, there is a growing emphasis on enhancing physical
and digital infrastructure to ensure safe and efficient integration of Automated Vehicles (AVs) into road net-
works. This study conducts the first exploratory analysis of the impact of heterogeneity in road infrastructure
readiness on the usefulness of AVs for urban commuting, with a focus on Leeds, UK. Employing a hypothetical
scenario where current car commuters have access to AVs for their daily trips, this research explores possibility of
replacing commuting trips by AVs, given the existing levels of infrastructure readiness. Through the evaluation of
various road network configurations and AV capabilities, the study evaluated the usefulness of AVs for such
journeys. The findings reveal that infrastructure readiness levels significantly impact AV performance and use-
fulness, potentially necessitating infrastructure upgrades to facilitate future AV deployment. The analysis in-
dicates that relatively less challenging paths for AVs tend to be longer than those typically used by human-driven
vehicles, with an increase of approximately 5 miles (8 km) in travel distance for some origin-destination pairs.
Despite only 20 % of road links being classified as extremely challenging within the network, their dispersed
distribution resulted in significant connectivity barriers, rendering a considerable number of trips infeasible for
AV navigation. The research findings can provide valuable insights to help understand the integration of AVs into
road networks and assist decision-makers and transport planners in developing informed and forward-looking
policies, regulations and guidelines.

1. Introduction

Automated Vehicles (AVs) are expected to bring transformational
changes in transport and society by transferring some or all of driving
responsibilities from human drivers to computer based systems. This
paradigm shift is promising an array of potential benefits, including
enhanced road safety and efficiency, improved accessibility and pro-
ductivity for individuals, and a reduction in energy consumption
(Fagnant and Kockelman, 2015; Harb et al., 2021; Milakis et al., 2017;
Wadud et al., 2016). However, the realisation of these benefits crucially
hinges on the safety assurance of the Automated Driving System (ADS),
which manages the dynamic driving tasks at Level 3 automation and
above (SAE International, 2021). As underlined by Madadi et al. (2021),
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many studies have examined the impacts of AVs under the scenario
where the entire vehicle fleet is fully automated (Level 5), with an un-
limited Operational Design Domain (ODD).! As such the primary ben-
efits are derived from the ability of Level 5 AVs to navigate the entire
road network under all conditions without human intervention. None-
theless, achieving a high market penetration rate of fully automated
vehicles is expected to be a gradual process, potentially spanning several
decades (Bishop, 2024; Litman, 2023; Saeed et al., 2021).

The successful integration of AVs into road systems necessitates
comprehensive preparation across multiple fields, including transport
infrastructure, policy and legislation, technological innovation and
consumer acceptance (Rashidi et al., 2020; Tengilimoglu et al., 2023a).
Among these, the role of infrastructure in facilitating automated

E-mail addresses: ts18ot@leeds.ac.uk (O. Tengilimoglu), O.M.J.Carsten@its.leeds.ac.uk (O. Carsten), Z.Wadud@leeds.ac.uk (Z. Wadud).
! Broadly, the ODD is characterised as the specific operational conditions under which a particular driving automation system is designed to function. This en-
compasses factors like environmental constraints, geographical boundaries, time-of-day limitations, and specific traffic or road attributes (SAE International, 2021).

https://doi.org/10.1016/j.jtrangeo.2024.104042

Received 22 March 2024; Received in revised form 10 October 2024; Accepted 23 October 2024

Available online 30 October 2024

0966-6923/Crown Copyright © 2024 Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


mailto:ts18ot@leeds.ac.uk
mailto:O.M.J.Carsten@its.leeds.ac.uk
mailto:Z.Wadud@leeds.ac.uk
www.sciencedirect.com/science/journal/09666923
https://www.elsevier.com/locate/jtrangeo
https://doi.org/10.1016/j.jtrangeo.2024.104042
https://doi.org/10.1016/j.jtrangeo.2024.104042
https://doi.org/10.1016/j.jtrangeo.2024.104042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtrangeo.2024.104042&domain=pdf
http://creativecommons.org/licenses/by/4.0/

O. Tengilimoglu et al.

driving2 has been underestimated in the last decade (Farah et al., 2018;
Tafidis et al., 2021). The main effort in the domain has largely been
vehicle-centric, with safety and reliability concerns predominantly
assessed from the perspective of the vehicle itself. Nonetheless, there is
an emerging consensus among stakeholders on the critical role of
infrastructure, especially digital infrastructure, in paving the way for the
deployment of highly automated (Level 4) vehicles, i.e. vehicles that do
not require fallback to a human driver (Tengilimoglu et al., 2023b).
Similarly, empirical studies examining current AV trials (Klauer et al.,
2023; Ramanagopal et al., 2018) and analyses of AV-involved accidents
or disengagement reports from AV manufacturers (Ye et al., 2021) un-
derscore that AVs require road infrastructure that is conducive to their
operational needs.

On the other hand, the operation of AVs to date has largely been
confined to testing and piloting initiatives within specific geographical
areas, characterised by well-defined road types and relatively less
complex driving environments under a certation weather conditions
(Erdelean et al., 2019). This strategic limitation has been instrumental in
fostering repeated experiences crucial for learning and continuous
improvement, essential for unlocking automation benefits. However, it
has concurrently constrained the geographical spread of automated
services offered by developers (International Transport Forum, 2023a).
As AVs become more prevalent across a broader section of the road
network, identifying the types of infrastructure that could enhance their
safety-critical functions becomes important (International Transport
Forum, 2023a). Addressing these questions will likely be vital for
acquiring essential insights into AVs' safe and efficient integration into
the roadway ecosystem, including connected and intelligent systems.

In response, road authorities and safety organisations globally are
exploring the potential infrastructure upgrades or adjustments that will
likely accelerate the deployment of AV operations effectively
(Gopalakrishna et al., 2021; Huggins et al., 2017; PIARC, 2021; Santec
and ARA, 2020). Additionally, many studies have provided extensive
lists of possible infrastructure modifications to support the safe inte-
gration of AVs, drawing on comprehensive literature reviews (Farah
et al., 2018; Liu et al., 2019; Tengilimoglu et al., 2023c) and expert
opinions (Lu et al., 2019; Tengilimoglu et al., 2023b; Wang et al., 2022).
Implementing these infrastructure adjustments, however, presents
complex challenges that demand substantial resources and financial
investment. Therefore, many studies have attempted to use optimisation
or cost-benefit analysis to determine the most cost-effective network-
wide plan for the deployment of AVs. Such research has led to the
proposition of various policies and infrastructural strategies tailored to
AV-compatible road systems (Madadi et al., 2021; Manivasakan et al.,
2021), including the establishment of dedicated AV lanes (Razmi Rad
et al., 2020), designated AV zones (Conceicao et al., 2017), and AV-
ready subnetworks that facilitate mixed traffic or hybrid configura-
tions (Madadi et al., 2019, 2021).

However, to minimise the cost of infrastructure investment, evalu-
ating the readiness level of current road sections is also critical in order
to formulate a more economical plan. This consideration is particularly

2 In this study, the term “automated driving” is used to describe the tech-
nology that integrates automation of the driving task, vehicle connectivity, and
data management. Additionally, the terms “automated driving” and “automated
vehicles” are used interchangeably.

3 In this study, the automated driving system (ADS) is responsible for con-
trolling L4 AV and performs the entire dynamic driving task (DDT) while the
system is engaged. The ADS continuously monitors all relevant ODD attributes;
if any attribute falls outside its specified range, the ADS can no longer auton-
omously operate the vehicle. In such scenarios, the vehicle occupant must take
control, or the ADS will execute a minimal risk manoeuvre, such as a safe stop.
If the occupant takes control, the journey may continue, but the vehicle will no
longer be under ADS operation. We specifically refer to scenarios where the
occupant remains a passenger, and the ADS is solely responsible for completing
the trip.
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relevant given the financial constraints faced by infrastructure owners
and operators in maintaining their roads to a certain quality standard
(Tengilimoglu et al., 2023a). To this end, recent research efforts have
focused on developing and applying assessment frameworks to evaluate
the readiness of both physical and digital road infrastructure for sup-
porting the safe operation of AVs (Cucor et al., 2022; Soteropoulos et al.,
2020; Tengilimoglu et al., 2024). These studies have uncovered signif-
icant diversity within the road network, ranging from highly structured
environments with robust infrastructure support to those less structured,
with limited or no support. Yet, to date, no study empirically assessed
the impact of infrastructure readiness levels on the usefulness and per-
formance of AVs.

This research aims to fill this gap by focusing on the variations in the
readiness of road sections in the network. To the best of the authors'
knowledge, this study represents the first exploratory research evalu-
ating the potential impact of heterogeneity in road infrastructure read-
iness on the use of AVs within a city network.” Understanding how
variations in road quality and features affect potential AV use can enable
the development of targeted strategies to upgrade and optimise the road
network for future travel demand in the city. As such this investigation is
crucial for identifying key areas requiring infrastructure improvements
and for planning future developments to facilitate the widespread
adoption of AV technology. Thus, the aim of this study goes beyond
simply enriching the understanding of infrastructure readiness; it seeks
to provide empirical insights for policymakers and road agencies as they
prepare for the broader adoption of highly automated vehicles.

The organisation of the remainder of this paper is as follows: Section 2
provides a brief overview of the assessment framework utilised for eval-
uating the readiness level of roads for automated driving. In Section 3, the
practical application of this framework is explored, with an emphasis
placed on the selected case study area. Additionally, this section presents
the findings from the evaluation of the network based on various network
configurations and AV capability scenarios. Section 4 investigates the
impact of heterogeneity in road infrastructure readiness levels on AV
usage for commuting trips within the study area. The findings are dis-
cussed by means of comparison with trips made by human-driven vehi-
cles. The final Section 5 summarises the conclusions drawn from this
research and offers recommendations for future studies in this field.

2. Framework utilised to evaluate the readiness of roads for AV
operation

Currently, there is no established official standard or benchmark for
authorities to assess the readiness or compatibility of roads for AVs, pri-
marily due to limited knowledge in the field. Despite this, there is a
growing body of research aimed at developing a framework applicable
across various contexts for evaluating the suitability of road networks for
Level 4 AV operation. Initial studies in this area have taken a broad
approach, often focusing on national (KPMG International, 2020) or city-
wide indices (Jiang et al., 2022; Khan et al., 2019), which typically
compare the rankings of various parameters to ascertain their readiness
for AVs. Another prominent research approach involves using the defi-
nition of vehicles' Operational Design Domains (ODDs) as a baseline for
identifying road sections suitable for automated driving. This approach is
grounded in the understanding that various infrastructure and environ-
mental conditions significantly influence an AV's ability to interpret its
environment, thus affecting its operational capabilities (Mehlhorn et al.,
2023). Within this context, several studies have developed classification
schemes to categorise the capabilities of road infrastructure in supporting
AVs and informing them about the functionalities provided by different
road facilities (Carreras et al., 2018; Garcia et al., 2021; Poe, 2020).

* The term of usefulness can be described from various perspectives, such as
reducing driving stress during vehicle use. However, in this study, commuting
trip completion rates serve as the metric for assessing usefulness.
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However, there is a noticeable research gap in specifically addressing
urban roads within cities, attributed to the existing uncertainties in the
field of automation. A limited number of studies so far have collected
detailed data with special equipment from certain road sections, such as
highways in a road network (Carter et al., 2019; FTIA, 2021; Kon-
stantinopoulou et al., 2020; Somers, 2019) or public transit route (Cucor
et al., 2022) to assess the level of readiness of roads. As an alternative to
these limitations, some research has proposed frameworks relying on
publicly available data to assess the complexity of road conditions and
the surrounding environment for automated driving (Soteropoulos
et al., 2020). Similarly, Tengilimoglu et al. (2024) have introduced an
assessment framework, scoring segments of physical and digital infra-
structure based on their characteristics to facilitate the deployment of
AVs. This framework acknowledges the uncertainties in automated
driving technologies and considers various scenarios of AV capability
and supporting digital technologies in road networks. In this way, it
helps explore different perspectives of technological advancement and
their impact on the suitability of the current road network for AV use.
Therefore, the Road Readiness Index (RRI) proposed by Tengilimoglu
et al. (2024) was utilised for the current study. This section provides a
concise overview of this framework.

The RRI framework integrates various components identified from
relevant literature and stakeholder expertise in road vehicle automation
(see Table 1). The weighting of these components (Wci) was derived
from a 5-point Likert scale survey with 160 experts from various sectors
in the automation domain. However, it should be noted that the current
RRI rating is based on the aggregate views of several experts, whose
experience is derived from current knowledge acquired through pilots of
AVs, simulation or modelling studies and sometimes anecdotal media
coverage. The framework also includes subcomponents, selected based
on their relevance and the feasibility of data collection, with most
assigned equal weight (Wci,j). Measurement variables within these
subcomponents are defined in binary or categorical forms, according to
data availability. Due to the uncertain impact of individual parameters
on AV performance, grading systems for these variables were estab-
lished, considering UK specifications for road design, operation, and
maintenance. Each measurement variable was then assigned a score (Sc;,
j), ranging from O to 1, indicating the challenging level of a particular
road segment for AVs.” In this step, two different Level 4 automated
driving capabilities within the same use-case model were considered for
evaluating the measurement variables of the subcomponents.® These
are:

e Low Capability of L4 Automated Vehicle (LC): Refers to a basic
automated vehicle with limited perception capacities, slower
computational processing, and lower intelligence. It relies heavily on
its surroundings for driving tasks and might need human interven-
tion in challenging situations such as adverse weather or unexpected
road closures.

e High Capability of L4 Automated Vehicle (HC): This vehicle fea-
tures advanced software, extensive sensor coverage, quick decision-
making capabilities, and relatively higher intelligence - results of
accumulating machine learning experiences from real-life driving

5 The measurement variables in the subcomponents are scored according to
the level of difficulty for automated driving: 1 = Least challenging, 0.75 =
Slightly challenging, 0.50 = Moderately challenging, 0.25 = Highly chal-
lenging, and 0 = Extremely challenging.

S The AV industry is rapidly advancing with a focus on developing diverse
automated driving technologies for different service models, each with unique
capabilities (Shladover, 2022). This development is characterised by a spectrum
of operational features influenced by the varying hardware, software, and
sensors in AVs, which create distinct operational domains. Notably, even within
the same service model, discrepancies in technology levels and computing re-
sources lead to diverse driving capabilities (Wevolver, 2020).
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and simulation of various traffic situations. It is less dependent on the
environment and demands minimal human intervention, thanks to
its use of Al neural networks and high computing power.

Table 1 presents an overview of the RRI structure and supplementary
Table S1 provides further details on performance grading for mea-
surement variables (see SM-1). For an in-depth understanding of each
component, subcomponent, and measurement variable in the assess-
ment framework, readers are referred to Tengilimoglu et al. (2024).

The Road Readiness Index (RRI) is calculated for a road link in the
network as follows:

14 n
RRIpm = » > [Wei x (Weij x Scijm) | )
i=1 j=1

where [ represents the road link in the network, m is the type of L4
automated driving capability level, i is component number in the index, j
is the subcomponent number in the corresponding component, n is the
total number of subcomponents in the corresponding component, Wc;
and Wc;; are the corresponding weight of components and sub-
components, and Sc;jn, is a score of measurement variables in a certain
subcomponent. The weights attributed to the components and indicators
are subject to the following constraints:

14
ZWcizl,iWcid:l (2)
-1 j=1

RRI values range from O to 1, where a low score indicates that road
infrastructure quality and the surrounding environment are unlikely to
be suitable for automated vehicles to safely operate. On the other hand,
a high score indicating that the infrastructure quality and condition of a
road section is very likely to be suitable for automated driving. However,
if the result of any component score in the analysis of a road link is zero

(i.e. E};l Wc; x Scjm = 0), it is assumed that the RRI;, for that link is

also zero. This assumption is made because the zero result suggests that
the road situation is extremely challenging for AVs. This implies that the
road link poses such difficulties and risks that the other framework
components alone are not sufficient to ensure safe and reliable opera-
tions for AV. Therefore, a zero RRI is assigned to signify the severity of
road conditions, indicating the likely need for additional measures or
improvements before AVs can navigate that road link effectively.

However, it is important to note that several dynamic factors, such as
weather conditions, traffic, accidents, and the time of day, significantly
influence the safe operation of AVs. Since these factors can change
within seconds, incorporating them into the evaluation of road segments
across the network is challenging. Therefore, the utilised RRI primarily
focuses on relatively static factors and road environment attributes.
Nonetheless, some dynamic factors and operational attributes of the
road infrastructure can be indirectly captured in various subcomponents
of the framework.

3. Application of the road readiness index to road network
3.1. Study area and road network

This research examines the integration of Level 4 Automated Vehi-
cles (L4 AVs) within the road network of Leeds, a city in the United
Kingdom. Leeds is the second largest Metropolitan district in England
with a population of 812.00 and has witnessed considerable economic
growth in the last decades (ONS, 2021). The city is divided into 33 wards
or alternatively 107 census Middle Layer Super Output Areas (MSOAs)
with an average population of just over 8000 each (ONS, 2021). The
selection of Leeds for the application of RRI is grounded in several fac-
tors. Leeds exemplifies a variety of urban forms that mirror the historical
development patterns common to many UK cities, as discussed in a
government document focusing on urban form and infrastructure
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Table 1
Overview of the components, subcomponents, and corresponding scores of the Road Readiness Index, adopted from Tengilimoglu et al. (2024).
Ci We; Framework components Ci,j We;, Subcomponents LC (Sci) HC (Sci,)
J
Cl 0.0733 Road Geometric Challenges C1,1 0.25 Horizontal curvature (0, 0.5,1) (0.25, 0.75, 1)
C1,2 0.25 Longitudinal gradient (0.25, 0.75, 1) (0.5,1,1)
C1,3 0.25 Road width consistency (0, 0.5, 1) (0.25, 0.75, 1)
Cl,4 0.25 Digital mapping of road geometry 0,1) ©, 1)
Cc2 0.0653 Road Surface C2,1 0.5 Road surface type (0, 0.5,1) (0.25, 0.75, 1)
C2,2 0.5 Road surface condition (0, 0.5, 1) (0,0.75, 1)
C3 0.0731  Road Markings C3,1 0.25 Digital mapping of road markings 0, 1) ©, 1)
C3,2 0.25 Marking configuration (0, 0.25, 0.50, 0.75, (0, 0.50, 0.75,1, 1)
1
C3,3 0.5 Marking condition (0, 0.50, 1) (0,0.75, 1)
Cc4 0.0681 Road Boundaries C4,1 0.5 Median type (0, 0.25, 0.50, 0.75, (0.25, 0.50, 0.75, 1,
1) 1)
C4,2 0.25 Road edge condition (0, 0.50, 1) (0.25, 0.75, 1)
C4,3 0.25 On-street vehicle parking (0, 0.50, 1) (0.25, 0.75, 1)
Cc5 0.0718  Traffic Signs Visibility C5,1 0.5 Digital mapping of traffic signs 0, 1) ©, 1)
C5,2 0.5 Traffic signs conditions (0, 0.25, 0.50, 1) (0, 0.50, 0.75, 1)
C6 0.0718  Special Road Section C6,1 1.0 Special road sections (0, 0.25, 0.50, 0.75, (0, 0.50, 0.75, 1, 1)
1)
Cc7 0.0651 Road Lightning c7,1 1.0 Lighting condition (0, 0.25, 0.50, 1) (0.25, 0.50, 0.75, 1)
c8 0.0707 Speed Limit 8,1 1.0 Speed limit of road section (0, 0.25, 0.50, 1) (0, 0.25, 0.50, 1)
Cc9 0.0750  Number and Diversity of Road Users C9,1 0.50 Road access (0, 0.25, 0.50, 1) (0.25, 0.50, 0.75, 1)
C9,2 0.25 Counterflow o, 1) (0.25,1)
C9,3 0.25 No. of lanes (0,25 0.50, 1) (0.25, 0.75, 1)
C10 0.0646 Roadside Complexity C10,1 0.25 Presence of trees (0, 0.50, 1) (0.25, 0.75, 1)
C10,2 0.25 Street furniture density (0, 0.50, 1) (0.25, 0.75, 1)
C10,3 0.25 Proximity of buildings (0, 0.50, 1) (0.25, 0.75, 1)
C10,4 0.25 Digital mapping of surrounding road ©,1) o, 1)
environment
C11 0.0761 Facilities for Vulnerable Road Users C11,1 0.25 Pedestrians crossing type (0, 0.25, 0.50, 0.75, (0.25, 0.50, 0.75, 1,
1) 1)
C11,2 0.25 Pedestrian sidewalk (0, 0.50, 0.75, 1) (0.25,0.75,1,1)
C11,3 0.25 Cycling infrastructure (0, 0.50, 1) (0.25, 0.75, 1)
Cl1,4 0.25 Public transit access point design (0, 0.25, 0.50, 0.75, (0.25, 0.50, 0.75, 1,
1) 1)
C12 0.0770 Precautions for Roadworks and C12,1 1.0 Precautions for roadworks and incidents (0, 0.25, 0.50, 0.75, (0.25, 0.50, 0.75, 1,
Incidents 1) 1)
C13 0.0779 Localisation Challenges C13,1 0.5 Localisation challenges (0, 0.25, 0.50, 0.75, (0, 0.50, 0.75,1, 1)
1)
C13,2 0.5 Digital mapping of road environment o, 1) o, 1)
Cl4 0.0702 Communication Facilities C14,1 1.0 Cellular network coverage (0, 0.25, 0.50, 0.75, (0, 0.50, 0.75,1, 1)

1

(Williams, 2014). The city's diverse road network, featuring both radial
and grid patterns, along with its suburban growth, highlights the typical
infrastructure challenges and opportunities present in many urban areas
within the UK. Therefore, Leeds, with its substantial population, intri-
cate urban structure, and surrounding suburbs, presents a representative
view of both the potential benefits and complexities inherent in the
deployment of AVs.

Leeds' road network, comprising approximately 4200 km (2610
miles) includes a variety of roads at different hierarchical levels.” The

7 Ordnance Survey classifies the UK's road hierarchy according to their
function. These are: 1) Motorway, which is a multi-carriageway public road
connecting important cities. 2) A Road, which is a major road intended to
provide large-scale transport links within or between areas. 3) B Road, which is
a road intended to connect different areas, and to feed traffic between A roads
and smaller roads on the network. 4) Minor Road, which is a public road that
provides interconnectivity to higher classified roads or leads to a point of in-
terest. 5) Local Road, which is a public road that provides access to land and/or
houses, usually named with addresses. Generally, not intended for through
traffic. 6) Local Access Road, which is a road intended for the start or end of a
journey, not intended for through traffic but will be openly accessible. 7)
Restricted Local Access Road, which is a road intended for the start or end of a
journey, not intended for through traffic and will have a restriction on who can
use it. 8) Secondary Access Road, which is a road that provides alternate/sec-
ondary access to property or land not intended for through traffic.

road is depicted by over 50,000 road links by Ordnance Survey, Great
Britain's national mapping agency. For the purposes of this study, the
analysis is concentrated solely on major roads, deliberately excluding
local and access roads. This focus is informed by Tengilimoglu et al.
(2024), which found that local and access roads generally have lower
Road Readiness Index (RRI) values, indicating higher challenges for the
operation of automated vehicles. Therefore, local and access roads were
excluded from the network. After this omitting, the remaining sections
of the network amount to about 1300 km (808 miles), represented by
over 13,000 links.

However, implementing the index across such an extensive road
network presents challenges in terms of data collection and evaluation
since individually assessing each link requires intensive resources.
Therefore, the case study area was narrowed down to cover the north-
western part of the city (consisting of 44 MSOAs and representing
over 40 % of the population). The selected area is a mosaic of different
urban forms such as: the central business district, offices and shops,
residential areas, suburbs, and rural areas. Moreover, it covers key lo-
cations such as universities, hospitals, the city centre, and the main
transport hubs such as central train station and airport. The choice of
focusing on the northern area of Leeds is mainly based on its de-
mographic characteristics. This region is distinguished by relatively
higher income levels and lower scores on the Index of Multiple
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Deprivation (IMD)® compared to other areas in Leeds.” Such de-
mographic attributes suggest that residents in this area might be early
adopters of AV technology, primarily for commuter trips (Rahman and
Thill, 2023; Wadud and Mattioli, 2021). Additionally, this area serves as
an appropriate case study for early AV buyers, considering that the cost
of AVs is likely to be higher than that of vehicles in the current mass
automotive market (International Transport Forum, 2023b; Transport
Systems Catapult, 2017). Fig. 1 illustrates the selected 44 Middle Layer
Super Output Areas (MSOAs) (shown in yellow) in the northwest part of
the city boundary and selected major roads for analysis (depicted in red)
within the road network of Leeds.

The road network data for Leeds were obtained from the Ordnance
Survey MasterMap Highway for the year 2023. After data cleaning for
road segments that are restricted to traffic (e.g. bus gates), dead-end
roads, or do not have street views data, 5456 road links were obtained
for analysis in selected study area. The average length of road links is
calculated approximately as 74.3 m, resulting in a total road network
length of 405.2 km. The Motorway network spans 9.76 km, accounting
for 2.41 % of the total. The A Road Primary network extends over
118.29 km (29.19 %), while the A Road network measures 29.55 km
(7.29 %). The B Road network covers 16.45 km (4.06 %). The Minor
Road network is the largest, with a length of 227.85 km, constituting
56.24 % of the network. Lastly, the Local Road'® network encompasses
3.27 km, making up 0.81 %.

3.2. Data collection and score assignment for road sections

This section provides a concise overview of the method for assigning
scores to real-world road networks, following the conceptual framework
introduced in Section 2. As previously highlighted, evaluating the
various (sub)components of the Road Readiness Index (RRI) heavily
relies on extensive field survey data, encompassing both physical and
digital infrastructure information. The process of data collection,
demanding significant time, labour, and financial resources, complicates
the frequent updating of this information across the network. As a result,
current data that are relevant to the components of the RRI are often
limited in availability and accessibility. This scarcity poses challenges to
the objective assessment of the suitability of road sections for automated
vehicle operations.

Despite these challenges, street view imagery has been widely used
in both quantitative and qualitative research to analyse built environ-
ments and urban landscapes (Arellana et al., 2020). Adopting a similar
approach, this study primarily sourced data on road infrastructure
conditions through visual inspections using aerial or satellite imagery
and street view services such as Google Street View.'! The approach also
involved on-site observations for some locations that has limited infor-
mation. Additionally, secondary data from variety of sources (see sup-
plementary material SM-2) was utilised to accurately reflect the specific
requirements of (sub)components. This collected secondary data was

8 The Indices of Multiple Deprivation (IMD) are utilised in the UK as a
comprehensive tool for identifying areas that are subject to various forms of
deprivation. This index consists of data from diverse domains to formulate an
overall relative measure of deprivation experienced by individuals within a
specific area. More detailed information about the IMD, including its method-
ology and applications, can be found at the Consumer Data Research Centre
(CDRCQ). Source: https://data.cdrc.ac.uk/dataset/index-multiple-deprivation-i
md

9 https://www.plumplot.co.uk/Leeds-salary-and-unemployment.html

19 The inclusion of 56 local roads in the case study network ensures consis-
tency with the previously established travel demand model, which utilised here
for analysis.

1 The visual inspection is generally based on satellite images dated March 24,
2022 and April 26, 2023. However, the assessment of many road sections,
primarily major roads, is based on the latest Google Street View images from
the second half of 2023.
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categorised based on the scoring system and subsequently integrated
into the corresponding road links using QGIS, an open-access
Geographic Information System (GIS) platform. Following this, the vi-
sual inspection data was compiled into the measurement variables in the
scoring systems. Thus, each link in the road network was characterised
by scores, in detailed spatial dimensions.

Briefly, the authors utilised diverse sources (see Table S2) to collect
data representing each measurement variable within the sub-
components, this comprehensive evaluation of each road link spanned
four months. Additionally, this study examines two potential scenarios
within the network based on the anticipated advances in the informa-
tion, communication, and vehicle industries. These are:

e Network Scenario 1 represents the study area's existing road con-
ditions, which currently lack High Definition (HD) maps due to the
anticipated costs of digitalising the road network in the near future,
as well as Roadside Units (RSUs) for information exchange. In this
scenario, AVs must depend solely on onboard sensors to navigate
road sections without a prior detailed map, and use the existing
cellular networks for external connectivity. The detection of road-
works or construction sites around the roadway were considered as a
challenge for AVs.

e Network Scenario 2 introduces advanced surveying techniques to
produce detailed city maps, providing HD maps for all roads in the
study area through third-party services or authorities. However, due
to cost and implementation challenges, RSUs are absent in the road
network, even though established Vehicle-to-Infrastructure (V2I)
communication standards and initiatives are in place to guide the
deployment and interoperability of these systems. This is also due to
the absence of an agreement between the AV industry and road au-
thorities on any system for implementation. Consequently, AVs in
this scenario rely exclusively on the existing cellular network for
information exchange. Also, this scenario assumes the absence of
roadworks or incidents in the area.

The scoring of the components in the index was adjusted to align
with these scenarios. Table S2 in the supplementary materials (see SM-
1) provides a detailed view of the data sources and assesses the quality
and representativeness of the data for each component.

3.3. Results and interpretation of road assessment

The evaluation results for each measurement variable within the
components of Road Readiness Index (RRI), reflecting the near-time
conditions of the road network, are visually detailed in the figures
found in the supplementary materials (see SM-2). These results are in-
tegrated according to Eq. 1, contributing to the final calculation of RRI
values for road links. Fig. 2 displays the mapping of these integrated
assessment outcomes for selected roads within the study areas. This
mapping takes into account both low capability (LC) and high capability
(HC) automated vehicles and the two different scenarios for the road
network. In the figure, the index scores are divided into five distinct
groups, each representing a different level of difficulty for automated
driving. These levels range from extremely challenging to least chal-
lenging. This categorisation is essential as it highlights the varying de-
grees of suitability of different road sections for the facilitation of AVs.
Such an approach provides a comprehensive understanding of how well
different parts of the road network in Leeds can accommodate AVs,
considering the specific capabilities of the vehicles and the complexities
of the road environment. This categorisation serves as a critical tool in
identifying areas that might need improvement or are already well-
suited for the introduction of automated vehicle technology.

In Scenario 1, considered the base case scenario, a substantial
portion of road sections in the case study area are classified as extremely
challenging for the operation of both LC and HC AVs. Approximately 20
% of the selected road links for LC AVs and 18 % for HC AVs fall into this


https://data.cdrc.ac.uk/dataset/index-multiple-deprivation-imd
https://data.cdrc.ac.uk/dataset/index-multiple-deprivation-imd
https://www.plumplot.co.uk/Leeds-salary-and-unemployment.html
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Fig. 1. Location map indicating study areas of Leeds, UK and select road sections in the network. MasterMap Highway © Crown copyright and database rights “2023”

Ordnance Survey (AC0000851941).

category, indicated by the colour red in the visual outputs (see Fig. 2).
This situation is mainly attributed to factors such as poor-quality road
infrastructure and the complexity of the surrounding driving environ-
ment, which result in the index score being penalised. Notably, the
lowest RRI values are typically observed in rural areas in the northern
parts of the study area. Common issues in these regions include the
absence of road markings, detectable road edges, pedestrian sidewalks
and consistent road widths, as well as poor road surface conditions.
Additionally, factors such as high vegetation coverage surrounding the
roads, a lack of street lighting, and poor cellular coverage further
contribute to the challenges faced by AVs in these areas. Similarly, some
residential areas also exhibit low RRI values due to lacking road mark-
ings, having narrow streets with on-street vehicle parking, poor road
surface conditions, and traffic signs obstructed by trees bushes or
obstructed by graffiti.

In urban areas, sections that are particularly challenging for AVs are
often found in links with traffic islands designated for pedestrian
crossings. These areas are characterised by a high density of street
furniture and a noticeable lack of road markings that are important as a
primary or secondary input for AV detection and lane localisation.
Similar challenges are observed at many single or two-lane roundabouts,
particularly due to their curvature forms, resulting in sections that are
extremely challenging for AVs. Additionally, road segments passing
through tunnels or longer underpasses tend to receive lower RRI scores,
primarily due to localisation and illumination challenges inherent in
automated driving. Moreover, road sections adjacent to roadworks or
construction sites are also marked with lower scores, as they present
complex and frequently changing layouts that pose navigation chal-
lenges for AVs.

On the other hand, as expected, the majority of road sections in the
selected area demonstrate relatively high RRI values, with about 76 %

for LC AVs and 81 % for HC AVs. These sections are classified as slightly
challenging for AVs. This is primarily because these selected major roads
form the main skeleton of the city's transport system, are maintained
frequently, and meet certain safety standards for road users. One notable
finding is that road links adjacent to the areas such as the central busi-
ness district, offices, and shops, despite their complex surrounding en-
vironments, have received relatively high RRI values. The main reason
for this is that these areas typically have a well-defined separation be-
tween Vulnerable Road Users (VRUs) and main traffic flows. Further-
more, they possess high-quality physical infrastructure, including lower
speed limits and specifically designed parking bays and public transit
access points. These features facilitate the detection of road edges by
AVs, making navigation less challenging. Nevertheless, there are
noticeable gaps, indicated by lower RRI values, among the road links
with higher RRI scores.

In Scenario 2, which assumes the availability of HD maps for the
entire road network and the absence of roadworks, there is a significant
expansion in the operational areas for both LC and HC AVs compared to
the base case scenario. The majority of road links in the network fall into
the slightly and least challenging categories of the RRI for LC AVs.
Notably, for HC AVs, this distribution has a predominance of links in the
least challenging category due to their having advanced automated
driving systems, encompassing sophisticated sensors and computational
capacity. This shift highlights the vital role of HD maps in facilitating
automated driving, as digital mapping of environment is linked to many
components within the index. HD maps are vital for road sections with
poor markings, traffic signs, challenging geometries or localisation, as
they provide crucial supplementary information for navigating difficult
driving conditions.

Scenario 2 utilises static map layers to complement onboard sensors,
aiding in precise localisation, enhancing perception beyond the
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immediate visual range, and facilitating more accurate path planning.
This integration of HD maps significantly boosts the operational effi-
ciency of AVs by addressing key information gaps. However, it is
important to note that the provision of HD maps alone does not fully
mitigate all the challenges in the road network. A considerable pro-
portion of road links still present significant obstacles for AVs, mainly
due to issues such as limited cellular coverage. This indicates that while
HD maps are a significant step forward, they are part of a broader
ecosystem of technologies and infrastructure improvements needed to
fully facilitate effective and safe AV operations.

Table 2 details the distribution of road links in the case study area by
road hierarchy and RRI category for both scenarios. Interestingly, the
table shows that motorways have a relatively higher proportion of low
RRI values compared to other road types, contrary to expectations. This
is predominantly due to sections of motorways in the case study area
that traverse long tunnels in the university region of the city centre,
posing significant challenges in terms of lighting and localisation for
AVs, particularly in the absence of HD maps.

4. Analysis of AV usefulness in a heterogeneous road network

The implementation of the RRI on selected major roads in the case
study area reveals a remarkable heterogeneity in terms of infrastructure
and road conditions. This diversity primarily stems from variations in
the quality and consistency of the infrastructure within the road envi-
ronment. Such heterogeneity highlights the potential need for im-
provements in specific road segments, where existing conditions are less
conducive to the safe operation of AVs. This situation also gives rise to

the hypothesis that without specific modifications or upgrades to the
infrastructure to meet automated driving requirements, seamless oper-
ation of AVs across the existing road network might be unlikely. As such
this section investigates the effect of heterogeneity in road readiness
levels within a network on the use of AVs.

4.1. Commuting trips within the study area

In examining the impact of existing road infrastructure on AV use-
fulness, the study focused on understanding the network's travel demand
characteristics, mainly represented by origin-destination (OD) data. This
data, capturing movement through geographic space from an origin to a
destination, is crucial for understanding travel patterns. This study uti-
lised open access data from the UK Census 2011, which contains
aggregate statistics on number of commuters between administrative
zones - Middle layer Super Output Areas (MSOA), by mode of travel
(ONS, 2011).'? The dataset provides 2011 estimates, classifying usual
residents aged 16 to 74 in England and Wales by their method of travel
to work.

Within the scope of this study, the focus is specifically on car or van
driving as the mode of travel to work. This approach is taken to

12 gince the study focused solely on major roads within the network, using a
Lower Layer Super Output Area (LSOA) level Origin-Destination (OD) matrix
for this analysis is not suitable. This is primarily because many LSOA bound-
aries do not encompass major road links. Consequently, the LSOA-level OD
matrix may not accurately reflect the traffic patterns and flows that are spe-
cifically relevant to the major roads being studied.
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Table 2
Distribution of road links by road hierarchy and RRI category for Scenarios 1,2.
Scenarios Road hierarchy* Road Readiness Index category Total
iv types Extremely Challenging Highly Challenging Moderately Challenging Slightly Challenging Least Challenging
[0-0.2] (0.2-0.4] (0.4-0.6] (0.6-0.8] (0.8-1]

S1-1C Motorway 73 0 0 77 2 152
A Road Primary 280 0 24 1088 0 1392
A Road 108 0 6 283 0 397
B Road 35 0 10 334 0 379
Minor Road 596 0 166 2318 0 3080
Local Road 8 0 9 39 0 56
Total # of links 1100 0 215 4139 2 5456
Percentage (%) 20.16 0.00 3.94 75.86 0.04 100.0

S2-1C Motorways 0 0 0 20 132 152
A Road Primary 115 0 0 326 951 1392
A Road 56 0 0 141 200 397
B Road 6 0 0 215 158 379
Minor Road 260 0 0 1622 1198 3080
Local Road 0 0 1 45 10 56
Total # of links 437 0 1 2369 2649 5456
Percentage (%) 8.01 0.00 0.02 43.42 48.55 100.0

S1-HC Motorway 73 0 0 74 5 152
A Road Primary 260 0 6 1124 2 1392
A Road 84 0 9 302 2 397
B Road 35 0 0 344 0 379
Minor Road 529 0 9 2536 6 3080
Local Road 8 0 0 48 0 56
Total # of links 989 0 24 4428 15 5456
Percentage (%) 18.13 0.00 0.44 81.16 0.27 100.0

S2 -HC Motorway 0 0 0 5 147 152
A Road Primary 96 0 0 85 1211 1392
A Road 34 0 0 34 329 397
B Road 6 0 0 18 355 379
Minor Road 149 0 0 339 2592 3080
Local Road 0 0 0 16 40 56
Total # of links 285 0 0 497 4674 5456
Percentage (%) 5.22 0.00 0.00 9.11 85.67 100.0

" For further details about the road hierarchy please refer to footnote 2.

concentrate on how AVs could potentially replace existing trips made by
human-driven vehicles. To maintain this focus, other modes of trans-
portation, such as public transit and active transport (walking or
cycling), are excluded from the analysis. Additionally, the study omits
intra-zonal trips, which are trips that both start and end within the same
zone (MSOA). These trips are typically shorter and may not significantly
contribute to understanding the potential for AV usefulness. Some inter-
zonal trips, particularly those that either start or end outside of the
defined study area, are also excluded. This exclusion helps to maintain
the relevance of the data by focusing on trips that are wholly contained
within the study area.

The analysis resulted in a total of 27,187 trips across 1715 OD pairs
within 44 MSOAs —134 OD pairs did not include any car or van trips for
commuting. The number of these trips varied, ranging from 1 to 401. As
expected, the main destinations of these trips are the city centre areas,
where the main business district and transport hubs are situated. Fig. 3
illustrates the number of trips made by car drivers increases with dis-
tance from the city centre. Additionally, the distribution of Origin-
Destination (OD) pairs exhibits homogeneity and encompasses nearly
the entire network within the study area, making it an appropriate
framework for analysing AV usage within the system (see Fig. 4).

4.2. Converting spatial road network into a graph system for routing

After establishing the travel patterns within the study area, the
subsequent stage involved transforming the spatial road network into a
graph format for routing analysis. Street networks, a specific type of

spatial network, possess unique characteristics and can be abstractly
represented in various ways (Marshall et al., 2018). The prevalent
method, and the one adopted for this study, involves representing each
road as an edge within a graph, while intersections, typically found at
road junctions, serve as vertices. This approach might also include
vertices at points other than junctions, depending on the network's
complexity (Gilardi et al., 2020). For this conversion, the study utilised
the “igraph” package in R, a fast and open-source library for graph and
network analysis (Csardi and Nepusz, 2006). In conjunction with
“igraph”, the “sf” (simple features) package (Pebesma, 2018) was
employed for handling and manipulating spatial data.

The transformation of a three-dimensional road network, with
overpasses, underpasses, and varied intersection types, into a two-
dimensional graph system presents certain challenges (Gilardi et al.,
2020). To address these, related nodes at these intersections were
duplicated and assigned new identifiers, ensuring accurate link and
node representation, and reducing potential routing errors. In addition,
the graph system of the road network was constructed considering the
traffic direction provided in the OS MasterMap Highway. However, due
to its complexity, turn restriction rules at some junctions were not
incorporated into the routing analysis. Then, the closest nodes to each
MSOA centroid were identified to represent the origin and destination
points in routing. The analysis assumed an unlimited capacity for traffic
volume on road links, simplifying the approach by excluding the po-
tential for congestion. This assumption also implies that vehicles travel
at the speed limit of each road section. Furthermore, time spent at
junctions was not included in the analysis, as junctions were not a focus
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Fig. 4. Distribution of commuting trips made by car drivers,

of this study, and the primary emphasis was on distance-based com-
parisons. The objective is not to find a precise result, but rather to
demonstrate the potential impacts of heterogeneity in road infrastruc-
ture on AV usefulness.

Shortest path algorithms such as Dijkstra's or the A* search algorithm
are designed to find the path with the lowest cumulative cost (or weight)
between two nodes in a graph. In most cases, these algorithms are used
to find the shortest distance or the least time-consuming path, where
lower values are preferable. In the igraph package for R, the default
method used for finding the shortest path is Dijkstra's algorithm
(Dijkstra, 1959).'® Moreover, when calculating shortest paths, the
default behaviour the package is to consider the unweighted shortest

13 The algorithm works by iteratively selecting the node with the smallest
distance from a starting point, then exploring its neighbours, updating their
distances if a shorter path is found. This process is repeated until the shortest
path to the destination node is determined.

illustrated by desire lines between centroids of MSOAs.

path. This means that each edge in the graph is considered to have the
same weight (usually a weight of 1), so the shortest path is determined
based on the number of edges (i.e. road links). However, some links
might be very short (a few meters) while others could be much longer
(several miles). Therefore, the length of each edge was normalised by
dividing it by the maximum length found in the graph. This puts all
lengths on a scale from (0-1]. In this way, the algorithm balance be-
tween finding the fewest number of edges and the shortest total distance.

4.3. Results and interpretation of routing of commuting trips

The following subsections present the findings and interpretation of
shortest path analysis of OD pairs based on varying scenarios in network
and vehicle capability.

4.3.1. Base case scenario: Human-driven vehicle (HDV)
In this study, the base case scenario is defined by trips made by car
drivers, representing human-driven vehicles (HDVs) in the network. The
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routing results for each OD pair in the weighted and directed road
network are illustrated in Fig. 5. This figure presents a heatmap showing
the travel distance in miles for each shortest path of HDV trips. The
average trip length is found to be 4.4 miles, with the shortest trip being
0.6 miles and the longest reaching 14 miles.

Adopting a similar approach to the concept of “edge betweenness”,
which refers to the number of shortest paths that pass through each edge
(link) in a network (Lovelace et al., 2019), all 27,187 car trips for
commuting across 1715 OD pairs were allocated to corresponding road
links. Fig. 6 visually represents the total number of car trips passing each
road section within the network. This illustration is based on the shortest
path calculations for each of the OD pairs, providing a clear depiction of
the flow patterns on different road segments. It also provides an insight
into the most frequented routes in the network and helps in under-
standing the spatial distribution of HDV trips in the study area.

4.3.2. Network scenario 1 (base case): Automated vehicle (AV)

In the base case scenario, HDVs are assumed to travel all roads
without restrictions, except for traffic directions, as access-controlled
sections such as bus gates and bus-only roads were excluded from the
analysis. However, for AVs, their operation may be limited to roads
meeting certain readiness criteria. Roads with low RRI scores are likely
unsuitable or unsafe for AVs. Thus, by excluding edges (links) with an
RRI score of 0 in the graph system, the model focuses on road segments
more appropriate for AVs, creating a network that better aligns with
realistic operating conditions for these vehicles. Moreover, the weighted
road network is structured by combining normalised road lengths and
inverted RRI scores (i.e., 1-RRI, where a low RRI score implies a higher
cost) into a combined weight for each road segment. Normalising road
lengths ensures that the algorithm accounts for physical distance, while
inverted RRI scores introduce a weighting factor that represents each
road's suitability for AVs. This weighting scheme balances the impor-
tance of road length and readiness, ensuring that the shortest paths
calculated for AVs are not only the shortest in distance but also the least
challenging and most suitable according to their readiness scores. This

Journal of Transport Geography 121 (2024) 104042

approach facilitates a meaningful comparison between current HDV
road usage and potential AV usage, offering insights into possible
changes in traffic patterns and road utilisation with AV integration. The
adopted weighting strategy for road links is formulated as:

Weight of edges (road links) = a(l;/lne) + (1 —a)(1 — RRI;) 3)

Where: [; represents the length of road link i in the network, [y is the
maximum length of any link in the network, RRI; is the assessment value
of the index corresponding to road link i, « is the coefficient adopted for
weighting the importance of the parameters, which is taken as 0.5 in this
study.

The differences in routing results for each OD pair between HDVs
and AVs within an adapted weighted and directed network were pre-
sented using heatmaps. Fig. 7a compares the travel distances in miles for
the shortest path of each LC AV trip with its HDV counterpart. This vi-
sual representation effectively highlights the variations in travel pat-
terns and efficiency between HDVs and AVs, indicating how AV
capabilities could potentially alter road usage across the network.
Among the 1715 OD pairs evaluated, the network only allows for the
successful completion of 100 OD pairs by LC AVs. A significant majority
of trips were deemed infeasible due to the presence of roads that are
extremely challenging for AV navigation. Despite approximately 20 % of
road links receiving penalties (see Table 2), their dispersed distribution
resulted in significant barriers to connectivity between MSOAs. Out of a
total of 27,187 trips analysed, only 1799 corresponding to those 100 OD
pairs could potentially be replaced by LC AVs in this scenario. An in-
depth analysis of these trips revealed that the average trip length is
2.3 miles, with the shortest trip being 0.6 miles and the longest reaching
5.5 miles.

High Capability (HC) AVs exhibit only slightly better performance,
with the network accommodating successful completion for 120 OD
pairs. Similar to LC AVs, the majority of potential trips were hindered by
the challenging nature of certain road sections. From the total of 27,187
trips analysed, only 2018 corresponding to those 120 OD pairs could
potentially be replaced by HC AVs in Scenario 1. For HC AVs, the
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a) Scenario 1 (base-case)

Heatmap of the difference in Travel Distance between LC AVs and HDVs for a single trip across MSOAs
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b) Scenario 2 (HD map availability)

Heatmap of the difference in Travel Distance between LC AVs and HDVs for a single trip across MSOAs
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average trip length is slightly longer at 2.5 miles, with the shortest and
longest trips being 0.6 miles and 5.8 miles, respectively. This is primarily
due to the ability of HC AVs to make trips over slightly longer distances
within the network for additional OD pairs compared to LC AVs.

When analysing AV trips within the network, it was observed that
relatively less challenging paths designated for both AVs tend to be
longer than those typically used by HDVs. As can be seen from the
Fig. 7a, there is an increase of approximately 2.5 miles in the travel
distance for certain OD pairs. The analysis revealed that trips made by
LC AVs are, on average, 28 % longer than those made by human-driven
vehicles. Similarly, trips made by HC AVs in the analysed 120 OD pairs
are on average 27.2 % longer than those of HDVs.

Lastly, the spatial distribution of feasible AV trips is illustrated in
Fig. 8a, offering valuable insights into how the integration of AVs might
transform the existing transportation landscape within the study area.
The figure reveals that most of these trips occur between MSOAs that are
geographically closer to each other. This implies a lower likelihood of
encountering extremely challenging road sections along shorter routes
compared to longer ones. Thus, without physical and digital infra-
structure modification or upgrades in the network, LC AVs will likely not
serve most of the travel needs within the urban environment.

4.3.3. Network scenario 2 (HD map availability): Automated vehicle (AV)

As previously mentioned, in Scenario 2 most road links in the
network are categorised into the slightly and least challenging cate-
gories of the Road Readiness Index (RRI) for AVs. As such, compared to
the previous scenario, the operation areas of AVs expand significantly,
enabling the completion of most trips. Fig. 7b displays a heatmap
comparing the differences in travel distances (in miles) for the shortest
paths of AV trips and HDVs. Out of 1715 OD pairs, the network allows LC
AVs to successfully complete 1423 OD pairs. This significant increase in
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feasible trips is attributed to the advantages of High Definition (HD)
maps for AV navigation and the assumption of the absence of road work
in the network. The analysis of 22,670 trips corresponding to the 1423
OD pairs revealed an average trip length of 4.8 miles, with the shortest
trip being 0.6 miles and the longest being 12.9 miles.

In contrast, High Capability (HC) AVs demonstrate slightly better
performance, with the network facilitating the successful completion of
1498 OD pairs. This represents an 87 % coverage of the existing road
network for vehicle-based commuting trips, marking an almost 80 %
increase compared to the previous scenario. In the analysis of 23,847
trips associated with the 1498 OD pairs for HC AVs, the average trip
length remains consistent at 4.8 miles (compared to trips completed by
LC AVs), with a range from 0.6 miles to 14.1 miles. However, when the
trips completed by both AV capabilities were analysed, it was observed
that HC AVs generally completed the trips in shorter distances. This is
attributed to their ability to navigate challenging network sections more
effectively due to their advanced capabilities.

As with scenario 1, it was observed that the least challenging paths
for both AV capabilities tend to be longer than those typically used by
HDVs. Specifically, Fig. 7b indicates that for certain OD pairs, there is an
increase of approximately 5 miles in travel distance for both AV capa-
bilities. The analysis revealed that trips made by LC AVs in 1423 OD
pairs are, on average, 24.9 % longer than those made by HDVs. Simi-
larly, trips made by HC AVs in the analysed 1498 OD pairs are on
average 22.6 % longer than those of HDVs. This implies that AVs will
likely to navigate alternative routes compared to HDVs, which could
result in additional distance being travelled within the city. Such de-
viations from the shorter HDV routes have potential implications for
energy consumption and environmental impact, underscoring the need
to consider the broader effects of integrating AVs into urban traffic
systems.

b) Scenario 2 (HD map availability)
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In this scenario, out of a total of 27,187 trips analysed, 22,670 could
potentially be accommodated by LC AVs, and 23,847 by HC AVs. Despite
the integration of HD maps, a notable number of trips remained infea-
sible due to challenges on approximately 8 % and 5 % of road sections
for LC and HC AVs, respectively, which were deemed extremely chal-
lenging for AV navigation. The spatial distribution of these feasible AV
trips, as illustrated in Fig. 8b, offers valuable insights into the potential
transformation of the transportation landscape within the study area
through AV integration. The figure shows that, with the presence of HD
maps and advancements in AV capabilities, the distribution of total
completed trips in the network becomes more similar to that of HDVs.

Overall, the findings showed that the dispersed distribution of
extremely challenging road segments within the analysed network led to
significant barriers for both AV capabilities to complete their journeys.
Therefore, broadly similar trends were observed in the spatial distri-
bution characteristics of completed journeys for both AV capabilities.
Moreover, it is observed that AVs tend to follow slightly different paths
compared to HDVs, resulting in variations in the total number of cars
passing through certain links in the network. This deviation underscores
the possible necessity of adapting road networks to better support AV
navigation and potentially enhance overall traffic flow. However, it
should not be overlooked that today's current ADS technologies may
already be capable of overcoming some challenges posed by road
infrastructure, but most AV manufacturers have yet to share or verify
such data. This required a holistic perspective in the assessment of the
road network for these technologies.

4.3.4. Sensitivity analysis

This section examines how the routing results for OD pairs fluctuate
based on the adopted a values in Eq. 3, reflecting the relative importance
of the normalised length of links versus Road Readiness Index (RRI)
values. Fig. 9 depicts the distribution of travel distances for OD pairs
within the network for HC AVs in Scenario 2, considering different
weighting coefficients. Each boxplot corresponds to a distinct a coeffi-
cient value, ranging from 0, highlighting the RRI, to 1, giving full pri-
ority to the length of the road link in determining the route. The figure
indicates that the mean travel distance does not significantly change
with different o values. Notably, while the average travel distances
remain relatively stable across different a values, the total system-wide
travel distance, which accounts for individual trips for each OD pair,
exhibits considerable variation, ranging from 6813 to 7527 miles.
Additionally, slight route changes are observed for some OD pairs.
Nonetheless, the weighting scheme employed effectively balances the
importance of road length and readiness levels without being overly
sensitive to the selected o values, demonstrating its practical applica-
bility for network analysis.

5. Conclusion and recommendations for further research

The current automated vehicles (AVs) have not yet reached a point
where their automated driving systems can operate without fail across
the entirety of regular road infrastructures (Bishop, 2024). This limita-
tion underscores the role of importance of both the infrastructure and
the surrounding environment in the initial phase of transitioning to-
wards fully autonomous vehicles. However, preliminary research in this
area has revealed considerable variation in the level of preparedness of
road infrastructure in city networks (Soteropoulos et al., 2020; Tengi-
limoglu et al., 2024). This variability suggests that certain roads or zones
may not be as conducive to continuous AV operations as others. As such,
the present study carried out the first exploratory analysis to understand
how heterogeneity in road infrastructure readiness may impact the
utility of AVs for urban commuting, specifically focusing on the city of
Leeds, UK.

A key conclusion is that automated vehicles will likely be required to
travel more distance than human-driven vehicles when taking over
control of the vehicle is not an option (i.e., utilised as a passenger mode
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Fig. 9. Boxplot of Travel Distances for OD Pairs with varied weighting co-
efficients in Scenario 2 for HC AVs.

only). Although the analysis was concentrated on road segments that
constitute the main arteries of the road network, there remains signifi-
cant variation in both their physical and digital infrastructure quality,
and hence, in their readiness levels. This diversity in infrastructure
quality will likely lead AVs to take different routes than human-driven
vehicles to reach their destinations, which will potentially result in
additional miles travelled within the city. The routing analysis of OD
pairs revealed that relatively less challenging paths for both AV capa-
bilities could be up to 5 miles (8 km) longer than those potentially uti-
lised by HDV for some OD pairs. Importantly, the analysis revealed that
AV trips are on average about 20-25 % longer than human-driven
vehicle trips in the analysed OD pairs. This observed increase in total
travel distance is consistent with the insights obtained from a study
conducted in the Amsterdam metropolitan region (Madadi et al., 2021),
suggesting potentially adverse implications for energy consumption and
environmental impact. Moreover, with the likelihood of increased
empty-vehicle travel and the relocation of parking spaces outside of the
city centre, AVs are expected to contribute to a rise in travel distance
(Milakis et al., 2018; Soteropoulos et al., 2019). Therefore, the broader
implications of integrating AVs into urban traffic systems warrant
thorough consideration.

The findings also highlighted that infrastructure, especially digital
infrastructure, plays a more crucial role than AV capability in expanding
operational areas and thus completing journey between OD pairs. When
solely reliant on on-board sensors, without the aid of digital mapping, a
substantial majority of commuting trips could not be facilitated by both
AV capabilities due to the absence of suitable routes between origins and
destinations. In this scenario, for instance, it was observed that only 7 %
of OD pairs within the study area could be serviced by high-capability
AVs as limited routes fully meet the requirements of AVs. This un-
derscores the likelihood that substantial enhancements to both physical
and digital infrastructure will be necessary to enable AVs to fulfil a
significant portion of urban travel demands. Notably, the integration of
digital mapping into the network—corresponding to a reduction in
around 13 % of the penalised road sections—increased the number of
accessible OD pairs to 87 %. This affirms the vital role of digital infra-
structure in enhancing AV compatibility and demonstrates a marked
improvement in AV network accessibility, facilitating connectivity for
nearly an additional 80 % of OD pairs. Nonetheless, there is still a
considerable amount of OD pairs that could not have connected. The
primary obstacle appears to be the provision of communication support
for AVs to exchange safety-critical information, which is notably chal-
lenging in rural areas and certain urban locations. This is crucial to
achieving a more uniform level of readiness across the entire road
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network and enhancing the safety of AV operations across various
environments.

In particular, catering to demand in rural areas poses a problem for
AVs. For example, establishing connections between urban centres and
rural areas or towns is not viable with the road sections analysed. In
scenarios where AV ownership is personal, drivers may need to take
control of the vehicle for these segments to make trips possible within
the study area. However, this requirement could diminish the full po-
tential benefits of AVs, particularly in terms of time value for users
(Wadud, 2017). It could also lead to driver annoyance with the ADS.
Similarly, in a shared AV model, such rural locations are likely to fall
outside the geofenced service areas during the initial stages. Rural
populations, which generally have a higher proportion of individuals
aged 65 and over, may include some who are unable to drive
(Department for Environment Food and Rural Affairs, 2024). Moreover,
rural areas tend to have poorer quality and less frequent public transport
services compared to urban areas, leaving residents with limited alter-
native transport options. A recent study indicated that, on average, rural
bus services in England and Wales have declined by 52 % since 2008
(Friends of the Earth, 2023). Consequently, these communities might
face increased challenges in accessing vital services, particularly
healthcare. This situation underscores the critical need to enhance
accessibility for rural populations, ensuring that they benefit equitably
from advancements in AV technology. However, while AVs promise the
convenience of door-to-door service, such service may be impractical in
many parts of the urban network as lower-tier roads, such as access or
local roads, often present significant challenges for automated driving
(Tengilimoglu et al., 2024). Therefore, the implementation of AV-
compatible drop-off and pick-up points on the main arteries of the
network will likely be crucial in alignment with emerging technology to
maximise the benefits of AVs (Bruck and Soteropoulos, 2022).

In addition, the findings underscore that, within the existing infra-
structure, high capability AVs, such as advanced equipped robo-taxis,
can efficiently meet short to medium distance commuting needs
within urban areas. This efficiency primarily stems from the challenge of
finding relatively fewer challenging routes for longer trips due to the
heterogeneity in the quality of infrastructure. Furthermore, differences
between the shortest and least challenging (i.e. most suitable) routes for
AV trips across the network can be utilised by authorities to identify the
critical road sections needing further investment to obtain optimal
routes and facilitate broader AV adoption. This enables policymakers,
city authorities, and third-party service providers, such as those offering
communication services or digital mapping, to assess the network with a
solid empirical basis. Therefore, the findings from this study may serve
as useful indicators for guiding investment strategies and near-term
planning, suggesting potential early operational routes to optimise
benefits across the transportation system. However, these near-term
actions should be implemented with “no regrets” and should benefit
both road network operations and human-operated vehicles (Amelink
et al., 2020). In this context, the activities and plans of vehicle auto-
mation industry towards improving ADS capabilities are also crucial for
reducing heterogeneity in road readiness. Therefore, achieving readi-
ness for automated driving in an safe and efficient manner will likely
require coordinated efforts in improving ADS capabilities, as well as in
upgrading infrastructure and its maintenance practice (Sauvaget et al.,
2023; Somers, 2019).

Finally, there is a clear need for further research in specific areas.
Firstly, limitations in the methodology of the source RRI (Tengilimoglu
et al., 2024) are also applicable for this study since it followed a similar
strategy. For example, incorporating environmental conditions and
traffic flow-related factors into the index by evaluating them in real time
could provide a more comprehensive and responsive assessment of road
suitability for AVs. Furthermore, leveraging real-time AV sensor data
could allow for dynamic modelling of parameters such as the number
and diversity of road users in the index. Secondly, to mitigate the un-
certainties in automated driving technologies, this study adopted a
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holistic approach to assessing the readiness levels of road sections by
considering two distinct capabilities and two network scenarios. How-
ever, as AV technology continues to advance, there will be a need to
continuously update and refine the assessment framework to keep pace
with cutting-edge technology and the evolving requirements of road
infrastructure, especially for the specific use case of Level 4 AVs. Thirdly,
this study primarily examines scenarios of uncongested traffic, without
any constraints on flow based on link capacity. Hence, incorporating RRI
into traffic models could provide more detailed and nuanced insights.
Furthermore, a significant barrier to AV adoption in urban road net-
works is the diversity of intersections and roundabouts, each with its
unique rules and complexities. Intersections are critical as they directly
influence trip routing. Just as some road sections pose challenges for AV
operation, certain intersections also present difficulties, necessitating
further analysis to include these interactions. Additionally, local access
roads are omitted from the scope of this study. Future studies should
consider including local roads to conduct a detailed analysis, especially
from the perspectives of accessibility and equity related to AVs.

Regarding travel outcomes, the OD data utilised in this study,
derived from the 2011 census, may not accurately represent the current
network state. While offering valuable insights, this data might not
capture changes in travel patterns or infrastructure developments since
the census. This temporal discrepancy should be considered when
assessing the study's findings and their relevance to contemporary and
future transportation planning and policy formulation. Additionally, the
analysis could be further enriched by integrating the effect of the built
environment on interest in the ownership and use of self-driving vehicles
(Nodjomian and Kockelman, 2019). Besides, exact numbers (e.g., in-
crease in driving distance) presented in this study may not be reliable, as
ADS capabilities change with technological enhancements, the increases
in travel distance and emissions will also change. Similarly, a different
readiness index may also change the numbers. However, the key is that
there is a strong possibility of a remarkable increase in driving miles due
to operational reasons. Despite these limitations, we believe this is the
first study that demonstrates the usefulness of RRI in highlighting the
need to incorporate infrastructure preparedness to fully understand the
actual benefits of AVs on the roads.
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