Tropical forests are approaching critical temperature thresholds
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Abstract –The critical temperature beyond which photosynthetic machinery in tropical trees begins to fail averages ~46.7°C (Tcrit) 1.  However, it remains unclear whether leaf temperatures experienced by tropical vegetation approach this threshold or soon will under climate change. We found that pantropical canopy temperatures independently triangulated from individual leaf thermocouples, pyrgeometers, and remote sensing (ECOSTRESS) have midday-peak temperatures of ~34°C during dry periods, with a long high-temperature tail that can exceed 40°C.  Leaf thermocouple data from multiple sites across the tropics suggest that even within pixels of moderate temperatures, upper-canopy leaves exceed Tcrit 0.01% of the time. Further, upper-canopy leaf warming experiments (+2, 3, and 4°C in Brazil, Puerto Rico and Australia) increased leaf temperatures non-linearly with peak leaf temperatures exceeding Tcrit 1.3% of the time (11% >43.5°C, 0.3% >49.9°C).  Using an empirical model incorporating these dynamics (validated with warming experiment data), we found [predict ?] that tropical forests can withstand up to a 3.9 ± 0.5 °C increase in air temperatures before a potential tipping point [I would find 'threshold' better terminology] in metabolic function, but remaining uncertainty in the plasticity and range of Tcrit in tropical trees and the impact of leaf death on tree death could drastically change this prediction.  The 4.0°C estimate is within the “worst case scenario” (RCP-8.5) of climate change predictions2 for tropical forests and therefore it is still within our power to decide (e.g., by not taking the RCP 6.0 or 8.5 route) the fate of these critical realms of carbon, and water cycles, and biodiversity 3,4.





Introduction
More than 150 years ago, Sachs (1864) first reported that leaves from different plant species could withstand temperatures up to 50 °C, but would die at temperatures even slightly higher 5. In the era of climate change, this finding is still relevant. How close are forests to a high temperature threshold such as the one proposed by Sachs? Nowhere is such a question more pressing than in tropical forests, which serve as critical stores and sinks of carbon, play host to most of the world’s biodiversity, and may be more sensitive to increasing temperatures than other ecoregions 3,4.  Because tropical forest mean temperatures are high, and their diel and seasonal variations are relative small,  even a small change in temperature will more greatly impact tropical plant species than a large temperature change in other global regions 6.  
[bookmark: _Hlk79045313]More recently, techniques to determine the ability for leaves to withstand high temperatures have advanced to focus on Tcrit, [or] the temperature at which irreversible damage to the photosynthetic machinery occurs.  Over the past few years, Tcrit data have become increasingly available for tropical forests, specifically measured as the temperature at which the ratio of variable fluorescence yield to maximum fluorescence yield (Fv/Fm), reflecting photosystem II functioning, starts to decline 1,7 [maybe be more precise here ? T5? also should it be said that many studies use T50 ? thus using T5 is rather on the 'non-conservative' side?].  The decline in Fv/Fm is often followed by development of necrosis and leaf death8. Heat tolerance, measured by Tcrit, varies minimally among tropical species, mainly due to differences in growing environment and leaf traits.  For instance, among 147 tropical tree species, the average Tcrit was found to be 46.7 °C (5th–95th percentile: 43.5–49.7 °C) 1.  Across the planet, heat tolerance generally increases with higher mean growing temperatures.  For example, as average temperatures increase by ~20 °C from the Arctic to the Tropics, heat tolerance was 9 °C greater in tropical plants than arctic plants 9. Similarly, as temperatures decrease by 17 °C along a tropical elevation gradient, heat tolerance decreases by ~2 °C 7.  Heat tolerance also increases with increasing leaf mass area (LMA), suggesting that heat tolerance may be linked to construction costs of the leaves and their mean leaf lifetime 1.
With a much-improved understanding of Tcrit across the Tropics, it is now important to know how close tropical leaves are to experiencing and surpassing these critical temperatures.  In the past, tropical forest leaf and canopy temperatures were difficult and time consuming to measure, but new technologies like drones and thermal cameras are making the process much easier 10.  More recently, the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) sensor on the International Space Station (ISS) can provide unique high temporal and spatial resolution measurements of land surface temperatures at the global scale 11.  ECOSTRESS is an improvement over previous thermal satellite land surface temperature (LST) sensors because it has 5 spectral bands, a 70 m spatial resolution, and multiple diel overpass times, as well as improved algorithms.  
Finally, understanding canopy temperature is more relevant than ever because tropical forests are experiencing rapid climate change [also differently from other climate zones trees there trees cannot move in from hotter places to replace tropical forests]. Average temperatures have risen by 0.5 °C per decade in some tropical regions, and temperature extremes are becoming more pronounced, with the El Niño of 2015 being 1.5 °C warmer than the El Niño of 199712,13.  Here we use data from the new ECOSTRESS sensor to estimate peak pantropical forest canopy temperatures.  We begin by ground truthing the satellite data with tower-based pyrgeometer data.  We then use these data to determine what causes variation in peak temperatures at the canopy scale and show similar trends driving peak temperatures across all of the Tropics.  Critically, we show that for a given canopy temperature, individual leaf temperatures display a “long tail” of values in the distribution, where the temperatures of a few individual leaves far exceed that of the overall canopy, and that this skewed distribution persists under leaf warming experiments of 2, 3 and 4 °C.  Finally, we develop a simple empirical model to explore the implications of observed leaf temperatures on the fate of tropical forests under future climate change. 



[bookmark: _Hlk121303069]Ground validation using pyrgeometer data- We first ground-truth ECOSTRESS and find similar peak temperatures between a 3-year, 30-minute averaged canopy temperature pyrgeometer dataset for a lowland tropical rainforest site near the Tapajos River (KM 83) in Brazil and a broad region (SI Fig 1a red box) of the Amazon Basin (Fig 1a; r2 = 0.75, N=16, P < 0.0001, with ECOSTRESS having a slight cool bias (Fig S3) at upper temperatures matching previous findings14).  The pyrgeometer data at that site indicate that midday sunny canopy temperatures in the dry season (July to Dec) averaged 33.5 °C compared to 31.0 °C in the wet season (Jan to June) (Fig 1a).  Sampling frequency (Fig S2), latent heat flux (Fig S4), air temperature (Fig S5), and soil moisture (Fig S6) all impacted canopy temperatures. The tower-mounted pyrgeometer inherently averages spatially (over an 8,000 m2 footprint) and thus amalgamates individual peak leaf temperatures.  Therefore, we used leaf thermocouples on three canopy tree species at the same site to assess individual leaf temperatures. The mean temperatures for 11 individual sun-exposed leaves over 54 sunny 20-minute periods also averaged ~33.2 °C (similar to that measured by the pyrgeometer) but with a “long tail” of high temperatures (> 40 °C) in the distribution (Fig 1b).  
We then aggregated similar upper-canopy leaf thermocouple datasets from Brazil15, Puerto Rico16, Panama17 and Australia and all had “long tail distributions” (Fig 1c and S7-8) with upper limits ~44 °C (43-48) (but see Fig S9 for a cooler Atlantic forest example18).  When we zoom in on the long tail of each dataset (insets in Fig S7 and S8), the curve shows statistical regularity, which allows us to estimate Tcrit as a percent of all canopy top leaves.  For instance, when all data are aggregated across sites, we estimate that 0.01% (0.03% >43.5°C) of all leaves will surpass Tcrit at least once a season (Fig 1c).  Although infrequent, the occurrence of extreme temperatures may have a catastrophic effect on a leave’s physiology and may be thought of as a low probability, high impact event.  
We then aggregated data from three in situ upper-canopy warming experiments where leaves were heated by 2, 3, and 4 °C (in Brazil15, Puerto Rico16, and Australia respectively).  Warmed leaf peak temperatures ranged between 51-54 °C (Fig S7), an increase of ~8 °C above ambient highs (mean ~45 °C-; Fig S7).  The percentage of warmed leaves exceeding Tcrit at least once a year increased to 1.3% of all warmed leaves (11% >43.5°C, 0.3% >49.9°C) (Fig 1c), because of a non-linear relationship between leaf and air temperatures in the warming experiments (Fig 1d).  During the Brazilian warming experiment, individual leaves exceeded Tcrit and T50 with noticeable signs of leaf necrosis, some for a duration of >10 mins (Fig S10), and following this, net transpiration in warmed branches decreased significantly (P<0.0001) by an average of 27% (Fig 3a).  In the warming experiments, leaves exceeded Tcrit for extended periods (>10 minutes) 0.2% of the time over the course of a season (Fig S10), events that can cause leaf browning and necrosis.
Remote sensing data – We analyze ECOSTRESS LST data along with comparisons to VIIRS and MODIS, as well as SMAP soil moisture. At the landscape scale (Fig S1 red box), peak ECOSTRESS LST (~36 °C) using all data was correlated with periods of low SMAP-measured soil moisture (~0.3 m3 m-3) (Fig 2a and b).  A linear extrapolation of our pyrgeometer data to a soil moisture of 0.3 m3 m-3 would predict a similar canopy temperature (~36 °C) (Fig S6).  For the warmest datapoint (Fig 2c and d), we then expanded the area (Fig S1 blue box) and applied the highest quality data flags (~6% of the data used – see methods and SI for an extensive discussion of this), which reduced the median value to 34 °C. These average temperatures do not reflect the extremes, as 0.5% of the data is >38 °C and 0.1% is > 40 °C (Fig 2d and Table 1).  We show the long tail distribution of temperatures (with a log10 scale) for Amazonia in Fig 2d.  Using less restrictive or no quality flags generally resulted in higher tails > 40 °C (Table S2). We compare ECOSTRESS to other LST satellites (VIIRS, MODIS) (Figs S12-14 and Table S1) and show similar results, but with greater fidelity and ability to capture long tails with ECOSTRESS.  LST for Central Africa (Fig 2e and Fig S11) and SE Asia (Fig 2f and Fig S12) during similar peak dry periods had similar peak temperatures (with data flags; Table 2).  We then estimated the highest temperatures during dry periods if temperature increased by 2 °C (to simulate climate change) and found that the percent of time above threshold temperatures would increase by an order of magnitude in all three regions. For example, the percent time Amazon canopies spend at temperatures ≥ 38.0 °C would increase from 0.5 to 5% and the percent time ≥ 40.0 °C would increase from 0.1 to 1% (Table 1).     
[bookmark: _Hlk130553121]Model results - An empirical model to explore the temperature thresholds of tropical trees was parameterized using the temperature distributions of warmed and non-warmed leaves (Fig 1c) from the combined tropical datasets (N=5). Assuming leaf death at Tcrit, and evaporative cooling as a linear function of the number of leaves, we show that enhanced warming could tip the forest towards the death of all leaves and possible tree mortality (Fig 3b and Table 2).  The modelled impact of warming on reduced transpirational cooling approximately matched the measured values; a 26 (± 28) % (N=30 simulations) reduction of modelled evaporative cooling with ~2 °C warming, versus a measured 27% average reduction after ~2 °C warming during the Brazilian warming experiment (Fig 3a).  The decline in transpiration occurred after leaf temperatures exceeding both Tcrit for >10 mins (Fig 3a inset) and T50.  Mean initial modelled canopy temperature was 33.7 ± 0.4 °C, matching the measured canopy average (33.5 °C) during peak temperature periods (sunny, midday). When run using the most likely parameters, including a Tcrit of 46.7 °C1, the model showed that most forests could withstand up to 3.9 ± 0.5 °C warming before the death of all leaves and potential tree death (n =30 simulation runs; Fig 3b and Table 2), but a series of sensitivity studies give a temperature distribution between 2-8 °C (Table 2).  Due to the stochastic nature of droughts in our model, total leaf loss ranged over a wide timespan.  For instance, if temperatures increase by 0.03 °C per year, we estimate that the mean time to leaf death would be 132 years, but leaf death could occur as early as 102 years and as late as 163 years (Fig 3b and Table 2).  


Discussion
[bookmark: _Hlk121303250][bookmark: _Hlk130989971]Several lines of remotely sensed, tower-based, and in situ evidence (ECOSTRESS, VIIRS, pyrgeometer, leaf thermocouples) suggest that hot periods in tropical forests with low soil moisture lead to canopy temperatures that average ~34 °C, with some pixels exceeding 40 °C 19,20.  Even within a given LST pixel, there is a long tail distribution with individual leaf temperatures exceeding 40 °C.  Currently, 0.01% of upper canopy leaves from in situ measurements exceed Tcrit at least once a season (N=5 sites); warming experiments (N=3) suggest 1.4% will exceed Tcrit under future warming conditions (Figs S7-9).  We posit that capturing the higher tail temperatures may be important for future climate change predictions in tropical forests because as individual leaves exceed Tcrit, they die, thus reducing the net evaporative cooling potential for the canopy, as suggested in Fig 1d and 3a).  This is supported by branch warming experiments where noticeable signs of leaf damage and a reduction of transpiration by 27% followed periods where leaf temperatures exceeded Tcrit for extended periods (Fig 3a).  Certain tropical regions, such as the Southeast Amazon, may already be experiencing critical thresholds21.  Many recent large-scale drought studies have shown that the largest, most sun-exposed trees die disproportionately 22,23.  Moreover, there has been a recent increase in continental mortality rates across the Amazon basin (although not in the Congo basin and Table 1 shows the Congo basin experiences lower peak temperatures than the Amazon) 4 and carbon uptake across the basin has been reduced 24. We propose that high leaf temperatures may play a role (along with carbon starvation and hydraulic limitation34) in those recent mortality events.  
We make several assumptions in our model related to the broader tipping point results.  The first key assumption is that within a given LST pixel, there is a long tail of high individual tropical leaf temperatures following Fig 1b.  This is supported by several leaf thermocouple datasets (N=5, Fig 1, (Figs S7-9)), all of which show a long-tail, as well as first principles (SI text).  Critically, warming experiments show non-linear trends (Fig 1c and d) where temperature increases of 2, 3, and 4 °C increase maximum leaf temperatures by larger amounts (+8.1 °C, +6.1 °C, 8.0 °C, respectively; Fig S7).  Many other studies have documented individual leaf temperatures approaching 46.7 °C 8,17–19.   
The second assumption is that water-stressed pantropical median canopy temperatures can average ~34 °C with a spatial tail exceeding 40 °C (Fig 2). In other words, RS data suggest entire canopies and forests getting very warm and (our first assumption) that within these pixels, there is a long-tail distribution of individual leaf temperatures.  ECOSTRESS and VIIRS LST data are both >1 °C warmer (34.7 and 33.9 °C) than older LST sensors like MODIS (32.7 °C) (ECOSTRESS has ~0.75 °C cold bias compared to VIIRS 14).   We assume ECOSTRESS and VIIRS will be more accurate than MODIS because there are more thermal bands, vegetation can be identified with emissivity (for ECOSTRESS and VIIRS, but not MODIS), and an improved algorithm 25 can accurately estimate temperatures within 1 K for many surfaces 26.  We further found that adding 2 °C (to replicate climate change) to the measured ECOSTRESS satellite data would increase the occurrence of high tail temperatures by about an order of magnitude (e.g., from 0.1 to 1% > 40 °C) (Table 1).  Therefore, the change in percentage of time when temperatures exceeded >40 °C in response to a simple addition of 2 °C was not a simple linear change.  
The third assumption is that leaves at temperatures > Tcrit will die, and thus stop contributing to future transpiration (although transpiration often stops at temperatures lower than Tcrit), and that the sum of evaporative cooling is a linear function of the total number of transpiring leaves.  Our Tcrit value is based on Slot et al. (2021), who found the mean (Tcrit) was 46.7 °C (5th–95th percentile: 43.5–49.7 °C) and the temperature when Fv/Fm had decreased by 50% (T50) was 49.9 °C (47.8–52.5 °C)1.  Tcrit variation is important because ~50% of the species from Slot et al. (2021) had a Tcrit <46.7 °C with negative consequences at lower temperatures for those species.  Incorporating this variation in our model demonstrated those consequences can exacerbate conditions for other species as they die and their evaporative cooling is reduced, leading to less future warming (~0.1 °C) needed to achieve leaf death when such variation is included (Table 2).  Branch warming experiments in Brazil showed large (27%) decreases in transpiration when leaves reached either T50 or Tcrit for an extended period (>10 minutes) (Fig 3).  It was not possible to determine which (T50, extended Tcrit, or a different variable) was more critical for the decrease in transpiration in our dataset (but another recent study found leaf death when leaf temperatures exceeded Tcrit for between 10 and 40 minutes27).  If a longer time is necessary to exceed Tcrit prior to leaf death, Tcrit will be exceeded less often and our model suggests that the forest canopies could resist an additional 0.7 °C increase in air temperatures prior to leaf death (Table 2). Prior work had suggested that irreversible damage will often occur at 45–60 °C 28.  
[bookmark: _Hlk130475060][bookmark: _Hlk121315431]Tcrit was the largest source of uncertainty in the model and changed the tipping point temperatures by between 2-8 °C (Table 2).  Tcrit has been adopted because it is relatively easy to measure and can be standardized across ecosystems.  However, the impact of Tcrit on plant hydraulics still needs more research29.  Other uncertainties include the importance of Tcrit vs T50 on enzyme denaturation and how long exposure to high temperatures is needed for enzyme denaturation to occur1. We also assumed that Tcrit does not acclimate to warming—acclimation has been observed in temperate species30, but the few studies that examined acclimation in tropical species, found no, or very limited evidence for upregulation of Tcrit 8, 31 (although warm selected tropical trees in Biosphere 2 did show acclimation of Tcrit32).  In a sensitivity study we allowed acclimation by enabling leaves to increase Tcrit by 0.5 °C or 1°C, which increased forest resistance to warming by similar amounts (by 0.5 °C and 1°C).
[bookmark: _Hlk130477518]An additional assumption was that if all leaves die at Tcrit, the tree will die. However, tropical trees may use non-structural carbohydrate (NSC) 33,34 reserves to reflush leaves in later years, but this is highly uncertain. Given these uncertainties, we made the simple assumption that leaf level Tcrit is a general signal of enzyme dissolution (supported by 35), which will have a range of other impacts including reducing evaporative cooling and possibly leading to tree death. It is clear that further studies are needed. However, in a sensitivity study, we tried to account for high NSCs by allowing trees to reflush an LAI of 2 (e.g. increase total LAI to 7) which slightly increased resilience by 0.2 °C (SI text).  We also assume that all sunlit leaves have an equal chance of dying, but leaf orientation likely impacts both leaf temperatures and Tcrit and only further studies may address this.   If the assumptions above are robust, then our model suggests that tropical forests may be approaching a high temperature threshold.  
How close are future predictions of temperature increases in tropical forests to our predictions of leaf death?   An ensemble of CMIP5 models (with similar results from CMIP636), the “worst case scenario” (RCP 8.5), predicts temperature increases of 3.3 ± 0.6 °C by  2081–2100 for tropical regions with land regions heating by ~5 °C by 2181 in RCP 6.0 and by 2081 in RCP 8.5 2.  This level of climate change is within the range of our most likely scenario of 4.0 ± 0.70 °C of temperature increases that lead to a tipping point.  However, it is out of the range of the “best case scenario” (RCP 2.6) of 0.9 ± 0.3 °C, or 1.4 ± 0.5 °C for the land surface.  Tree death could come earlier through a combination of mechanisms and their interactions (e.g., carbon starvation, hydraulic limitation, fire, etc.).  Further, even at lower temperatures, partial canopy death can negatively affect CO2 uptake feedbacks, which could accelerate climate change effects.  Our sensitivity study (Table 2) shows temperature ranges leading to leaf death between ~ 2.0 and 8.1 °C (the lowest and highest scenarios plus error).  Scenario uncertainty due to the change in drought prevalence played a relatively small role, shifting our best estimate by ~0.4 °C.  Most of this uncertainty is methodological (Tcrit value and high temperature duration), which could be reduced with further studies and method standardization of Tcrit measurements.  
[bookmark: _Hlk130801385][bookmark: _Hlk130987831]Conclusion –Our work suggests that a tipping point in metabolic function in tropical forests could occur with 3.9 ± 0.5 °C of additional warming, which is more than expected for tropical forests under RCP 2.6, but less than under RCP 6.0 or 8.5.  We use Tcrit to simplify an enormously complex process and we want to emphasize that even our great uncertainty (2-8 °C) estimates may ignore critical feedbacks such as sensitivity of reproduction to high temperatures, hydraulic failure due to embolisms, and more generally, other unexplored positive feedback loops.  Recent literature suggests a resilience of tropical forests to how warming impacts carbon uptake 32 (but see Gatti et al. 2021) and long-term drought 37.  However, Tcrit acts as an absolute upper limit and it seems that, if our assumptions in the model are correct, crossing such a threshold is within the range of our most pessimistic future climate change scenarios (RCP 6.0 or 8.5). In addition, deforestation and fragmentation can amplify local temperature changes38. The combination of climate change and local deforestation may already be placing the hottest tropical forest regions close to, or even beyond, a critical thermal thresholds39. Therefore, our results suggest the combination of ambitious climate change mitigation goals and reduced deforestation can ensure that these important realms of carbon, water, and biodiversity3,4 stay below thermally critical thresholds.				
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Methods
Field Data - We estimate canopy temperature at the km 83 eddy covariance tower in the Tapajos region of Brazil 1–3 using a pyrgeometer (Kipp and Zonen, Delft, Netherlands) mounted at 64 m to measure upwelling longwave radiation (L↑ in W m-2) with an estimated radiative-flux footprint of 8,000 m2 4.  Data were collected every 2 seconds and averaged over 30-minute intervals between August 2001 and March 2004. We estimated canopy temperature with the following equation:
Eq 1 – Canopy temperature (°C) = (L↑/(E*5.67e-8))^0.25-273.15
We chose an emissivity value (E) of 0.98 for the tower data, as this was the most common value used in the ECOSTRESS data (SDS_Emis1-5 (ECO2LSTE.001) and the broader literature for tropical forests 5.  We compared canopy temperature derived from the pyrgeometer to eddy covariance derived latent heat fluxes (flux footprint ~1 km2), air temperature at 40 m, which is the approximate canopy height (model 076B, Met One, Oregon, USA; and model 107, Campbell Scientiﬁc, Logan, Utah, USA) and soil moisture at depths of 40 cm (model CS615, Campbell Scientiﬁc, Logan, Utah, USA).  Further details on instrumentation and eddy covariance processing can be found in 1,3.  This site was selectively logged, which had a minor overall impact on the forest 6, but did not affect any trees near the tower.
Leaf thermocouple data - We measured canopy leaf temperature at a 30 m canopy walk-up tower between July to December of 2004 and July to December of 2005 at the same site. We initially placed 50 thermocouples on canopy-exposed leaves of Sextonia rubra, Micropholis sp., Lecythis lurida) (originally published in Doughty and Goulden 2008). Fine wire thermocouples (copper constantan 0.005 Omega, Stamford, CT) were attached to the underside of leaves by threading the wire through the leaf and inserting the end of the thermocouple into the abaxial surface. The thermocouples were wired into a multiplexer attached to a data logger (models AM25T and 23X, Campbell Scientific, Logan, UT, USA) and the data were recorded at 1 Hz.  Additional upper-canopy leaf thermocouple data from Brazil7, Puerto Rico8, Panama9, Atlantic forest Brazil10 and Australia 11, were generally collected in a similar manner.  

Satellite data - ECOSTRESS data (ECO2LSTE.001) – The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission is a thermal infrared (TIR) multispectral scanner with five spectral bands at 8.28, 8.63, 9.07, 10.6, and 12.05 µm.  The sensor has a native spatial resolution of 38 m x 68 m, resampled to 70 m x 70 m, and a swath width of 402 km (53). Data are collected from an average altitude of 400 ± 25 km on the International Space Station (ISS).  ECOSTRESS is an improvement over other thermal sensors because no other sensors provide TIR data with sufficient spatial, temporal, and spectral resolution to reliably estimate LST at the local-to-global scale for a diurnal cycle 12. To ensure the highest quality data, we used ECOSTRESS quality flag 3520, which identifies the best quality pixels (no cloud detected), a minimum-maximum difference (MMD) indicative of vegetation or water (Kealy and Hook 1993), and nominal atmospheric opacity.  We accessed ECOSTRESS LST data through the AppEEARS website (https://lpdaac.usgs.gov/tools/appeears/) for the following products and periods: SDS_LST (ECO2LSTE.001) from a long longitudinal swath of the Amazon for 25 December 2018 to 20 July 2020 (SI Fig 1a red box) and then a larger area of the western Amazon for 18 September to 29 September 2019 (SI Fig 1a green box), Central Africa for 1 August to 30 August 2019 (SI Fig 1b), and SE Asia for 15 January to 30 February 2020 (SI Fig. 1c).  The dates were chosen as all ECOSTRESS data available at the start of the study for the smaller regions and for warm periods with low soil moisture for the larger areas.  We calculated “peak median,” which is defined as the average of the highest three medians of each granule (i.e., for the Amazon SI Fig. 1a, there were 934 granules) for each hour period.
[bookmark: _Hlk121322210]Comparison of LST data – We compared ECOSTRESS LST to VIIRS LST (VNP21A1D.001) and MODIS LST (MYD11A1.006). A more detailed comparison and description of these sensors can be found in Hulley et al 202113.  Details for the sensors and quality flags used are given in Table S1.  Broadly, G1 for ECOSTRESS and VIIRS is classified as vegetation (using emissivity) and of medium quality.  G2 is classified as vegetation, but of the highest quality.  MODIS landcover classifies this region as almost entirely broadleaf evergreen vegetation, but using MMD (emissivity) only 18% (VIIRS) and 12% (ECOSTRESS) of the data are classified as vegetation, rather than as soils and rocks (Table S2).  Therefore, we use the vegetation classification (from MMD) as a very conservative estimate of complete forest canopy cover and not farms, urban, or degraded forest where rocks or soils are more likely to appear to satellites. 
SMAP data – To estimate pantropical soil moisture, we use the Soil Moisture Active Passive (SMAP) sensor and the product Geophysical_Data_sm_rootzone (SPL4SMGP.005).  SMAP measurements provide remote sensing of soil moisture in the top 5 cm of the soil 14 and the L4 products combine SMAP observations and complementary information from a variety of sources.  We accessed SMAP data from the AppEEARS website for the following products and periods: Amazon for 25 December 2018 to 20 July 2020 (SI Fig 1a), Central Africa for 25 December 2019 to 20 July 2020 (SI Fig 1b), and Borneo for 25 December 2018 to 20 July 2020 (SI Fig 1c).
Warming experiments – For model validation, we used the results of three upper-canopy leaf and branch warming experiments of 2°C (Brazil), 3°C (Puerto Rico), and 4°C (Australia).  The first experiment (Brazil), were 4 individual leaf resistant heaters on each of 6 different upper-canopy species at the Floresta National (FLONA) do Tapajos as part of the Large-Scale Biosphere–Atmosphere Ecology Program (LBA-ECO) in Santarem, Brazil14. On the same six species, black plastic passively heated branches by an average ~2°C.  Initially, heat balance sap flow sensors and the passive heaters were added to 40 branches, but we had confidence in the data from 9 heated and 4 control in the final analysis.  The second experiment (Puerto Rico) had two species (Ocotea sintenisii (Mez) Alain and Guarea guidonia (L.) Sleumer where leaves were heated by 3 °C at the Tropical Responses to Altered Climate Experiment (TRACE) canopy tower site at Sabana Field Research Station, Luquillo, Puerto Rico8.  The final experiment (Australia), which increased leaf temperatures by 4 °C, was conducted at Daintree Rainforest Observatory (DRO) in Cape Tribulation, Far North Queensland, Australia. Leaf heaters were installed using a pair of 30-gauge copper-constantan thermocouples, one reference leaf and one heated with a target temperature differential of 4 °C.  There were two pairs in the upper canopy of each tree crown installed in 2-3 individuals across four species with the thermocouples installed on the underside of the leaves. Two absolute 36-gauge copper-constantan thermocouples were installed in each species to measure the leaf temperatures of the reference leaves. Thermocouple wires connected into an AM25T multiplexer from Campbell Scientific connected to a CR1000 Campbell datalogger.  More details about the experiment and sensors can be found in 11.

Model – We created a model of individual leaves on a tree (100 by 100 grid where each leaf is a pixel) to estimate the upper limit of tropical canopy temperatures with projected changes in climate.  At the start of the simulation, we randomly applied the measured distribution (ambient Fig 1c) of canopy leaf temperatures >31.2 °C (chosen to give a mean canopy temperature of 33.2 ± 0.4 °C, matching the canopy average Fig 1b) to the entire grid.  Each year we increased the mean air temperatures by 0.03°C to simulate a warming planet. As air temperatures reached +2, 3 and 4°C, we applied the leaf temperature distributions (but subtracted out the air temperature increases) from the different warming experiments (+2°C (Brazil), +3°C (Puerto Rico), and +4°C (Australia), respectively (Fig S7)).  We ran the model at a daily time step with leaves flushing once a year (all dead leaves reset to living each year).  
In addition, to take into account the effect of climate inter-annual variation - specifically drought, these mean canopy temperatures were further increased or decreased by deviations from mean maximum air temperatures at 40 m pulled each day from the Tapajos eddy covariance tower1–3 and soil moisture at 40 cm depth  (m3 m-3) which controlled canopy temperatures following equation 2 (Fig S6).  
Eq 2 – Canopy temperature (°C)  = 46.5-33.6*soil moisture (m3 m-3)  

For example, in a non-drought year, on a day where max air temperatures were 0.1 °C higher than average and soil moisture was 0.01 m3 m-3 lower than average (which would add 0.3 °C to canopy temperatures (Eq 2)), we would add 0.4 °C to the grid canopy temperature that day. Every year, there was a 10% random probability of either a minor (80% probability) drought which reduced soil moisture by 0.1 m3 m-3 and increased air temperatures by 0.5 °C or severe drought (20% probability), which reduced soil moisture by 0.2 m3 m-3 and increased air temperatures by 1 °C. This is similar to the Amazon-wide temperature increases during the last El Niño 15.  
[bookmark: _Hlk101786249]If an individual leaf temperature increases to above 46.7 °C (Tcrit) the leaf died, following Slot et al. (2021).  Prior research has suggested that irreversible damage could begin at 45 °C 16 and T50 for tropical species is 49.9 °C 17, and we use these values in a sensitivity study.  We further explore the impact of duration of Tcrit on mortality in a sensitivity study (ranging between needing a single exposure to four exposures to Tcrit to die).  Over the season, if a leaf died, then it did not contribute towards canopy evapotranspiration.  We ran simulations as a 3D canopy with an LAI of 5 where if the top leaf died, then it was replaced by a shade-adapted leaf with a Tcrit 1 °C lower 18.  If each of the 5 LAIs died, then all leaves in that grid cell were dead and canopy evaporative cooling decreased by that percentage. Several lines of evidence suggest that under normal hydraulic conditions, when radiation load increases from ~350 to 1100 W m-2 (e.g. between shady and sunny conditions) average canopy temperature increases by ~3 °C and therefore, evaporative cooling for a full 1100 W m-2 is ~4.4°C4,19 (we vary this in a sensitivity study between 3.7 and 5.1°C).  For example, if, over a year, 1000 leaves (10% of all leaves) surpass Tcrit and die, evaporative cooling for all leaves in the grid will be reduced by 10% (1000/(100 by 100 grid)) or 0.44 °C and 0.44 °C will be added to mean canopy temperature.  Therefore, mean canopy temperature could heat up by a maximum of 4.4°C either due to a reduction of soil moisture or from an increase in dead leaves.  We ran each simulation until the point where all leaves were dead and repeated this 30 times.  We assumed loss of tree function following the death of all leaves, but we discuss this further in the discussion.  We then ran sensitivity studies for several of the key variables (bold indicates the standard model parameter) including: drought (0.05, 0.1, to 0.2 m3 m-3 decrease in soil moisture), change in Tcrit (Tcrit: 45, 46.7, 49.9 °C), Tcrit range (100 by 100 grid =random distribution of 46.7±2, 100 by 100 grid =46.7±0) ,  Max evaporative cooling (3.7, 4.4°C), (Tcrit duration (exceed Tcrit once, exceed Tcrit more than 3 times) and soil moisture exponent (-33.6 -38.2; i.e. change the slope from Fig S6 by ± 1 sd).
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Fig 1 – In situ and warming experiment leaf temperatures compared to canopy temperatures - (A) Diurnal temperature patterns for the dry season (DS) for a region (SI Fig 1a) of the Amazon basin using ECOSTRESS data (green).  Average canopy (solid line) and 40 m air temperatures (circles) from the km 83 eddy covariance tower for the dry season (red) and the wet season (blue) for sunny periods (when solarin/solarin,max >90% for the hour). (B) A histogram of individual canopy top leaf thermocouples from 11 individual leaves from the same site as “A” over 54 sunny periods lasting 20 minutes (measurements taken every 2 min) and the average of these data (33.2 °C).  Tcrit is the temperature when the photosynthetic machinery breaks down and is shown as a red line. (C) We aggregated all leaf thermocouple data from SI Figure 7 for ambient (blue) and warmed leaves (red) and show the percentage of leaves at +2 (Brazil), +3 (Puerto Rico), and +4 °C (Australia) warming that were >Tcrit.  (D) Air temperature versus leaf temperature for a warming experiment for individual leaves (red dots), average leaf temperatures (blue circles), and one-to-one line (blue dotted). 
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Figure 2 –Remotely sensed canopy temperature across the tropics - Seasonal patterns of (A) soil moisture using SMAP and (B) canopy temperatures using ECOSTRESS for the Amazon basin (SI Fig S1a red).  For the hot dry period shown by the arrows, we show a larger spatial distribution (SI Fig S1a green) (C) and log10 histogram focusing on the long tail of the data (D) using only the highest quality data flag.  We show trends for periods of low soil moisture for (E) Southeast Asian region (SI Fig S12) and (F) Central Africa (SI Fig S11).  G shows a world map with focal areas boxed in red.
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Figure 3 – Modelled impact of future warming on tropical forests - (top) Warmed branch sap flow (N=9 branches) minus non-warmed (N=4 branches) sap flow (blue line)  ± propagated error (blue dotted line) for sunny (irradiance >1200 mmol m-2 s-1) midday periods (10:30–14:00 h local time) on six tree species using passive black plastic heaters in a heating experiment conducted at Floresta National do Tapajos, Brazil.  Maximum daily temperatures for individual leaves (red stippled line) from a co-occurring leaf warming experiment during the same time period.  Horizontal red lines indicate Tcrit (dashed) and T50 (dotted).  The subset figure shows the duration of warm periods for day 276 and 279 (marked as vertical red and blue lines).  Around this period (between 276 and 279) transpiration decreases in warmed branches relative to the non-warmed branches. (bottom) Dead leaves as a ratio of total leaves over time with climate change for 30 simulations (one color per simulation). (Inset) Diagram of our model showing impact of Tcrit on change in average canopy temperature as temperatures increase over time, where LH is latent heat.   


Table 1– The percent of time that canopy temperatures are estimated to exceed thresholds of ≥ 38.0, 40.0 and 45.0 °C for low soil moisture regions of the Amazon, Central Africa, and Borneo.  We then increase temperature by 2 °C to estimate the impact of climate change and show the same estimates for the three regions. Canopy temperatures are observed by ECOSTRESS and are limited to only the highest quality data.  

	 
	≥ 38.0 °C
	≥ 40.0 °C
	≥ 45.0 °C 

	 
	Current
	+2 °C 
	Current
	+2 °C 
	Current
	+2 °C 

	South America
	0.50%
	5%
	0.10%
	1%
	0.00%
	0.10%

	Central Africa
	0.60%
	2%
	0.06%
	0.60%
	0%
	0.01%

	SE Asia (Borneo)
	3%
	8%
	1%
	3%
	0.01%
	0.30%






[bookmark: _Hlk98928103]Table 2 –An individual-based model showing estimated amount of climate change under different scenarios before leaf death.  We first show results from the “most likely scenario”  with an LAI of 5, 10% drought probability, 46.7 °C Tcrit, Tcrit range=0, Tcrit duration=1, a soil moisture exponent of -33.6, and maximum evaporative cooling of 4.4 °C.  We then show the results of contrasting extreme scenarios as a means of a sensitivity analysis where we keep all other variables as in the “most likely scenario”, but vary the one mentioned. Temperature increase results represent means ± 1 SD, while time-scale results represent means and range in parentheses (n = 30 simulation runs). 
	Most likely scenario (Tcrit=46.7)
	Drought
	Tcrit
	Tcrit range
	Tcrit duration
	Soil moisture exponent
	Max evap cooling

	 
	LAI 5
	20%
	5%
	45 °C
	49.9 °C
	46.7 ±2 °C 
	>3 periods
	-38.2
	3.7 °C

	Total temperature increase (°C)
	3.9 ± 0.5
	3.6 ± 0.7 
	4.9 ± 1.1
	2.6 ± 0.6
	7.3 ± 0.8
	3.9 ± 0.7
	4.7 ± 0.8
	4.1 ± 0.7
	5.2 ± 0.5

	Time scale until leaf death (years)
	132 (102-163)
	120 (88-170)
	163 (108 - 238) 
	89 (69-133)
	244 (204-300)
	131 (100 - 185)
	159 (129-220)
	138 (91-183)
	173 (145-202)
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