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A Task-Oriented Grasping Framework Guided by

Visual Semantics for Mobile Manipulators
Guangzheng Zhang, Shuting Wang, Yuanlong Xie, Senior Member, IEEE,

Sheng Quan Xie, Fellow, IEEE, Yiming Hu, and Tifan Xiong

Abstract—The densely cluttered operational environment and
the absence of object information hinder mobile manipulators
from achieving specific grasping tasks. To address this issue,
this paper proposes a task-oriented grasping framework guided
by visual semantics for mobile manipulators. With multiple
attention mechanisms, we first present a modified DeepLabV3+
model by replacing the backbone networks with Mobilenetv2 and
incorporating a novel attention feature fusion module to build a
preprocessing module, thus producing semantic images efficiently
and accurately. A semantic-guided viewpoint adjustment strategy
is designed in which the semantic images are used to calculate the
optimal viewpoint that enables the eye-in-hand installed camera
to self-adjust until it encompasses all the objects within the task-
related area. Based on the improved DeepLabV3+ model and
the generative residual convolutional neural network, a task-
oriented grasp detection structure is developed to generate a more
precise grasp representation for the specific object in densely
cluttered scenarios. The effectiveness of the proposed framework
is validated through the dataset comparison tests and multiple
sets of practical grasping experiments. The results demonstrate
that our proposed method achieves competitive results versus the
state-of-art methods, which attains an accuracy of 98.3% on the
Cornell grasping dataset and achieves a grasping success rate of
91% in densely cluttered scenes.

Index Terms—Task-oriented robotic grasping, visual seman-
tics, absence of object information, deep learning, mobile manip-
ulator.

I. INTRODUCTION

MOBILE manipulators are extensively employed in man-

ufacturing and service fields owing to their flexibility

and controllability [1], [2], [3]. Object Grasping is a preva-

lent and fundamental task for mobile manipulators and is

considered a challenging technology in the field of mobile

manipulation [4], [5], [6]. In practical applications, mobile

manipulators generally have specific task attributes, such as

the grasping of specific objects, requiring them to determine

which object to grasp and how to grasp. This kind of grasping

is usually called task-oriented grasping, which necessitates
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the mobile manipulators to possess both object recognition

and object grasping capabilities simultaneously [7], [8], [9].

Moreover, the operating environment for mobile manipulators

is typically complex and changeable. Challenges arise due to

factors such as densely cluttered objects and the absence of

object information, leading to failures in object grasping [10],

[11]. Up to now, achieving task-oriented grasping for mobile

manipulators under such conditions remains a challenge.

To achieve task-oriented grasping for mobile manipulators,

it is crucial to investigate the grasp detection methods. With

the advancements in machine vision and deep learning, robotic

grasp detection technologies have shifted from basic physical

geometric grasping to deep neural network-based grasping

pose prediction [12], [13]. Recent studies in robotic grasp

detection have focused on improving the structure of neural

networks to attain superior performance. For example, Morri-

son et al. [14] proposed a generative grasping convolutional

neural network (GGCNN) that can generate grasp represen-

tations based on the depth image of the object. Kumra et al.

[15] used a similar idea and introduced a residual structure

to propose a generative residual convolutional neural network

(GRCNN), which improves the detection accuracy while en-

suring detection speed. Although these methods provide some

new ideas for robotic grasping, there remain at least three main

challenges in task-oriented grasping within densely cluttered

scenarios.

1) Accurate and efficient perception for objects in densely

cluttered scenarios: Accurate object recognition in the

scene is the initial step for task-oriented grasping. Tradi-

tional grasp detection methods [14], [15], [16], [17] lack

the ability to recognize specific objects, rendering them

insufficient for task-oriented grasping. Recently, object

detection methods have been extensively utilized for

object recognition in grasping tasks [5], [18]. However,

these methods often lead to detection box stacking

in densely cluttered scenarios, which greatly affects

the subsequent grasp detection and causes a decline

in its performance. Semantic segmentation methods

have recently been employed for object segmentation

in grasping tasks due to their pixel-level classification

capabilities [19]. Although these methods achieve high

accuracy and partially address the limitations of object

detection methods in densely cluttered scenarios, the

presence of a large scale of network parameters poses

efficiency issues, thereby limiting their real-time applica-

bility. Thus, how to balance the accuracy and efficiency

of semantic segmentation methods to achieve high-
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performance perception still needs to be investigated.

2) Effective solution for the absence of object information

in visual field: Object occlusion and camera viewpoint

limitations are common causes of the absence of object

information during the robotic grasping process [8],

[20]. Extensive research has been conducted in recent

years to address the absence issue of object information

caused by occlusion[21], [22]. These studies focused on

model training, viewpoint variations, and active search.

However, the dependence on prior models limits the

application of the model training method. The viewpoint

variations method utilizes the motion of the mobile

platform to change the camera viewpoint to acquire

complete information about objects. Nevertheless, the

motion of the mobile platform can also be affected

by unpredictable factors, which introduces additional

complexity. The active search method employs the mo-

tion of the robotic manipulators to change the sce-

narios to acquire complete information about objects.

But such search method often lacks information guid-

ance, resulting in time-consuming [23]. Moreover, for

the absence of object information caused by camera

viewpoint limitations, the active perception methods are

predominantly employed by most studies to solve this

issue [24], [25]. These methods are based on scene

information and utilize the motion of mobile robots to

change the camera viewpoint, typically employed for the

perception and reconstruction of large-scale scenes. For

grasping tasks of mobile manipulators, environmental

disturbances cause some objects within the task-related

area to be positioned outside the camera’s field of view,

resulting in the absence of object information. However,

previous studies [26], [27] did not consider this factor,

which hinders the mobile manipulators from accurately

recognizing the target object during grasping tasks. This

greatly reduces the grasping success rate of mobile

manipulators in complex environments, thus limiting

their application in such scenarios.

3) Accurate grasp detection for the specific object in

densely cluttered scenarios: Grasp detection is crucial

for task-oriented grasping. Recent studies [19], [28] have

investigated the integration of semantic segmentation

and grasp detection, proposing multistage networks that

enable grasp detection in cluttered scenes. However,

these methods are task-agnostic, which cannot achieve

task-oriented grasp detection. To address this problem,

previous studies [29], [30] utilized object detection and

semantic segmentation methods to generate detection

boxes and masks. By separating the object from the

background, these methods achieve task-oriented grasp

detection. Although these studies have provided some

ideas and methods for task-oriented grasp detection, they

only have primarily focused on the grasp detection of a

single object or the object in simple and discrete scenes.

The performance limitations of the perception and grasp

detection modules make it difficult to apply these meth-

ods to task-oriented grasping in densely cluttered scenes.

In this paper, a task-oriented grasping framework guided by

visual semantics is proposed for mobile manipulators. Com-

pared with existing methods, this paper makes the following

main contributions.

1) We propose a task-oriented grasping framework guided

by visual semantics for mobile manipulators, which

can achieve task-oriented grasping in densely cluttered

scenarios with the absence of object information. Dif-

ferent from the existing methods [26], [27] that simply

integrate object and grasp detection, the proposed frame-

work leverages visual semantic feedback to guide the

adjustment of camera viewpoint and grasp detection to

handle more complex grasping scenarios. Experimental

results show that this framework enhances the task-

oriented grasping success rate of mobile manipulators

in complex scenarios.

2) The DeepLabV3+ model is improved by introducing

a lightweight network MobileNetv2 and multiple at-

tention mechanisms. Meanwhile, an attention feature

fusion module (AFFM) is also proposed to replace the

original feature fusion method. Compared to the baseline

model, the improved DeepLabV3+ model demonstrates

enhanced efficiency and accuracy, achieving real-time

semantic segmentation of densely cluttered scenarios.

3) A semantic-guided viewpoint adjustment strategy is de-

veloped to address the absence issue of object infor-

mation in the visual field. Unlike previous strategies

that lack information guidance, the proposed strategy

improves efficiency by utilizing the average pixel values

of object classes in the semantic image to guide the

adjustment of the camera viewpoint.

4) A grasp detection structure based on the improved

DeepLabV3+ model and GRCNN is proposed, which

can achieve task-oriented grasp detection in densely

cluttered scenarios. Compared to the previous work [26],

[27], [29], [30] that solely focused on task-oriented grasp

detection in discrete scenes, the proposed task-oriented

grasp detection structure exhibits superior performance

in densely cluttered scenarios by incorporating the im-

proved DeepLabV3+ model.

The remainder of this paper is organized as follows. Section

II provides an overview of the preliminaries and presents

the problem statement. Section III details the proposed task-

oriented grasping framework guided by visual semantics.

Section IV provides experimental validation and performance

evaluation of the proposed framework. Finally, Section V

concludes the paper with a summary of the findings.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. DeepLabV3+

The accurate perception of objects in the scene is the pre-

requisite for achieving task-oriented grasping. DeepLabV3+

is a highly accurate semantic segmentation model commonly

applied in the optical and remote sensing domains [31].

Deeplabv3+ is composed of two main components: an encoder

and a decoder. The encoder extracts features from input images

using the Xception backbone network and the Atrous Spatial

Pyramid Pooling (ASPP). The Xception network generates
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two outputs: a low-level feature and a high-level feature. The

former is fused in the decoder, while the latter is utilized in

the ASPP for extracting multi-scale features. The ASPP in-

corporates various components, including a 1 × 1 convolution

layer, three dilated convolution layers with expansion rates of

6, 12, and 18 respectively, and a global average pooling (GAP)

operation. The outputs of these parts are concatenated to obtain

features that encompass multi-scale information [32]. After a

1 × 1 convolution layer, the features are passed to the decoder

for further feature fusion.

The decoder integrates the low-level feature with the high-

level feature. The low-level feature contributes semantic infor-

mation and undergoes dimension adjustment through a 1 × 1

convolution layer before fusion. The high-level feature, which

provides detailed information, is upsampled using 4 × bilinear

interpolation to adjust the feature map size before fusion with

the low-level feature. The fused features are further processed

through a 3 × 3 convolution layer and upsampled using 4 ×

bilinear interpolation to generate segmentation results with the

same size as the original image [33].

B. GRCNN

After the target object is segmented, a high-performance

grasp detection network is required to generate a grasp repre-

sentation for it. The generative residual convolutional neural

network (GRCNN) [15] is a lightweight and accurate grasp

detection network. GRCNN generates pixel-wise grasp rep-

resentations of objects, consisting of three convolution layers,

three transposed convolution layers, and five residual layers. In

GRCNN, the features of the input image are initially extracted

by the three convolution layers, reducing the image size from

224 × 224 to 56 × 56. Subsequently, the features traverse

through the five residual layers to prevent gradient vanishing

and dimensionality errors. Since the residual layer does not

alter the feature size, the convolution transpose operation is

employed to up-sample the image, which ensures that the

dimensions of the output image are in line with those of the

input image. Finally, the highest-quality grasp representation

is obtained, which includes the center of grasp, grasp angle,

required end width for grasping, and grasp quality score.

C. Grasp Representation

The objective of the grasp detection task in robotic manip-

ulators is to infer the optimal grasp pose for objects. The 5-D

grasp representation proposed in [34] is commonly adopted to

describe a grasp pose, which can be expressed as

G = {x, y, w, h, θ} (1)

where (x, y), w, h, and θ denote the center coordinate, width,

height, and rotation angle of the grasp rectangle, respectively.

However, for multiple grasp rectangles, this representation

method cannot determine the quality of each one. Therefore,

an improved 5-D grasp representation proposed in [14] is

chosen in this paper, which represents a grasp as follows

Gi = {x, y, θi, w,Q} (2)

where θi denotes the rotation angle of grasp rectangle, θi ∈
[−π/2, π/2] [35], w denotes the grasp width, Q ∈ [0, 1]
denotes the grasp quality score, which reflects the success

rate of the grasp. This grasp representation predicts the quality

score of each grasp rectangle, the best grasping candidate can

be expressed as G∗ = max
Q

Gi.

Using the generated grasp representation, the grasp pose is

obtained by transforming the 5-D grasp pose from the image

coordinate system to the coordinate system of the robotic

manipulator end. This transformation allows the robotic ma-

nipulator to accurately execute the grasping task.

Motivation: Efficient and accurate perception of objects in

the scene is a crucial prerequisite for achieving successful

task-oriented grasping with mobile manipulators. While the

DeepLabV3+ model offers high segmentation accuracy, its

efficiency is not sufficient for real-time semantic segmentation

[36]. Therefore, it is necessary to balance the efficiency and ac-

curacy of DeepLabV3+. Furthermore, an efficient and accurate

grasp detection network is also required. Although GRCNN

demonstrates faster detection speed and higher accuracy, it is

susceptible to environmental interference and lacks the ability

to generate grasp representations for specific objects [37].

Hence, a grasp detection structure based on DeepLabV3+ and

GRCNN is considered, which can address the performance in-

stability of GRCNN caused by environmental interference and

generate grasp representations for specific objects. Meanwhile,

it is also crucial to consider scene factors in grasping tasks.

The absence of object information caused by camera viewpoint

limitations often occurs during the grasping process of mobile

manipulators, which can lead to grasp failure. Therefore,

designing an adjustment strategy to tackle this situation is

essential. The main motivation of our work includes three

aspects:

1) Improve the DeepLabV3+ model to balance its’ effi-

ciency and accuracy.

2) Propose an information-guided viewpoint adjustment

strategy to address the problem of the absence of object

information.

3) Develop a task-oriented grasping detection structure

based on the DeepLabV3+ and CRCNN to generate

accurate grasp representation for specific objects in

densely cluttered scenes.

III. PROPOSED TASK-ORIENTED GRASPING FRAMEWORK

GUIDED BY VISUAL SEMANTICS

To address the issues of grasping failure caused by the

densely cluttered grasp scenarios and the absence of object

information, this paper proposes a novel task-oriented grasping

framework guided by visual semantics. Unlike most exist-

ing frameworks, the proposed framework aims to improve

grasping performance by incorporating visual semantics. It

comprises three components: real-time semantic segmentation

of scenes, semantic-guided adjustment of camera viewpoint,

and task-oriented grasp detection, as shown in Fig. 1. In

the framework, the visual semantic information is utilized to

guide both the adjustment of camera viewpoint and robotic
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Fig. 1. Task-oriented grasping framework guided by visual semantics.

grasp detection. To elaborate, the first component involves col-

lecting real-time scene images and generating corresponding

semantic images through semantic segmentation. The second

component focuses on adjusting the camera’s viewpoint to

the optimal viewpoint based on the obtained semantic image.

Lastly, the third component utilizes the images captured from

the optimal viewpoint to generate a grasp representation of the

specified object in a densely cluttered scenario. The following

subsections provide detailed descriptions of each component.

A. Real-time Semantic Segmentation by Improved

DeepLabV3+ Model

To meet the requirement of real-time semantic segmen-

tation of objects in the scene, we propose an improved

DeepLabV3+ model. Firstly, the lightweight network Mo-

bileNetv2 is utilized as a substitute for the original backbone of

the DeepLabV3+ to minimize accuracy loss while significantly

improving the detection efficiency. Then, the convolutional

block attention module (CBAM) is introduced to reduce the

loss of image detail information during feature propagation.

Furthermore, an attention feature fusion module (AFFM) is

proposed to replace the original concatenation method, thereby

obtaining superior feature representations. The structure of

the improved DeepLabV3+ model is illustrated in Fig. 2.

This model first extracts the features from the input image

using MobileNetv2, resulting in two distinct features: low-

level features and high-level features. The high-level features

then pass through the CBAM and ASSP modules to generate

multi-scale fusion features. These features are subjected to 1×1

convolution and 4× bilinear interpolation upsampling before

being input into the AFFM for feature fusion. Simultaneously,

the low-level features pass through CBAM and a 1×1 convo-

lution, which are also input into the AFFM for feature fusion.

The output of the AFFM is a fused feature that reflects both

the semantic and detailed information of the image. This fused

feature then undergoes a 3x3 convolution and 4× bilinear

interpolation upsampling to generate a semantic image of

the same size as the input image. The modifications to the

DeepLabV3+ model are described in the subsequent steps.

In the encoder of the DeepLabV3+ model, the low-level fea-

ture generated by the backbone network is directly transmitted

Fig. 2. Structure of improved DeepLabV3+ model.

to the decoder for feature fusion. Simultaneously, the high-

level feature generated by the backbone network is directly

fed to the ASPP for further processing. To improve the feature

extraction efficiency of the model, we replace the original

backbone network with MobileNetv2. It has fewer parameters,

which can reduce the computational complexity of the model

and improve inference speed without sacrificing performance.

Moreover, CBAM is integrated into the propagation process

of these two features to minimize the loss of intricate features

and enhance the segmentation accuracy. CBAM comprises

a channel attention module (CAM) and a spatial attention

module (SAM) [38], as illustrated in Fig. 3. In CBAM, the

initial feature F is first input into the CAM. Within the CAM,

the global maximum pooling and global average pooling

operations are applied to feature F, resulting in two outputs.

These outputs are then fed into a shared multi-layer percep-

tron, which produces intermediate outputs. The intermediate

outputs are element-wise summed and activated using the

sigmoid function, resulting in the channel attention feature

Mc(F). The weighted output F1 is obtained by element-

wise multiplication of Mc(F) with F. Subsequently, F1 is

input into the SAM. Within the SAM, the global maximum

pooling and global average pooling operation are applied to

the feature F1 respectively, generating two matrices with the

same dimension. These matrices are then concatenated along

the channel dimension, followed by convolution and sigmoid

activation functions, resulting in the spatial attention feature

Ms(F1). Finally, the refined feature map Frefined is obtained
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Fig. 3. Structure of CBAM.

Fig. 4. Structure of AFFM.

by element-wise multiplication of Ms(F1) with F1. This entire

process can be represented as

F1 = Mc(F)⊗ F

Frefine = Ms(F1)⊗ F1
(3)

where F denotes the initial feature map, ⊗ denotes element-

wise multiplication, F1 is a process variable that represents the

input of SAM. Mc(F) and Ms(F1) are the output of CAM

and SAM, respectively, which can be expressed as

Mc(F) = σ(MLP (AvgPool(F)) +MLP (MaxPool(F)))
(4)

Ms(F1) = σ(f7×7([F1

s
avg;F1

s
max])). (5)

It is evident that CBAM enables the model to learn the

relationships between channels and the attention weights as-

signed to different regions, thus obtaining better feature rep-

resentations and enhancing the performance of semantic seg-

mentation. Additionally, the lightweight structure of CBAM

does not significantly compromise the efficiency of semantic

segmentation.

In the decoder of the DeepLabV3+ model, the features

are fused in a direct concatenation method. However, since

different channels contain distinct feature information that

contributes differently to image segmentation, it is crucial to

highlight the channels with greater contribution. To achieve

this goal, a channel-level attention feature fusion module

named AFFM is proposed, as illustrated in Fig. 4.

In AFFM, the input features Flow ∈ R
H×W×B and

Fmuti ∈ R
H×W×C are firstly concatenated to obtain feature

Fcon ∈ R
H×W×(B+C) . Then, the GAP operation is applied

to Fcon to obtain the feature FGAP ∈ R
1×1×(B+C), which is

composed of the mean value of feature map in each channel.

Afterwards, FGAP passed through the weight modules, where

each module is composed of a 1×1 convolution and a sigmoid

function. These modules serve for channel-level compression

and decompression, resulting in the generation of channel-

level attention features. The channel-level attention features

are multiplied element-wise with Flow and Fmuti respectively

to realize the weighted distribution of different channel fea-

tures. The obtained features are added element by element with

Flow and Fmuti respectively to obtain the low-level feature

with channel attention Fca low and multi-scale feature with

channel attention Fca muti, which are expressed as

Fca low = ω2 (ω1 (FGAP (Flow ⊙ Fmuti)))⊗Flow⊕Flow (6)

Fca muti = ω3 (ω1 (FGAP (Flow ⊙ Fmuti)))⊗ Fmuti ⊕ Fmuti

(7)

where Flow denotes the input low-level feature, Fmuti denotes

the input multi-scale feature, ⊙ denotes concatenation, ⊗ de-

notes element-by-element multiplication, ⊕ denotes element-

by-element addition.

Finally, the fusion feature with channel attention can be

obtained by concatenating Fca low and Fca muti, i.e.,

Ffusion = Fca low ⊙ Fca muti. (8)

Compared to the original direct concatenation fusion, AFFM

embeds channel-level attention during the feature fusion pro-

cess, avoiding the loss of important information during the

fusion process, thereby improving the semantic segmentation

performance of the model.

The introduction of these modules in the DeepLabV3+

model enhances its efficiency without losing significant seg-

mentation accuracy. Based on this model, real-time semantic

information about the scene can be acquired, ensuring the

successful execution of subsequent viewpoint adjustments.

B. Semantic-Guided Viewpoint Adjustment Strategy

Based on the semantic information of the scene, a semantic-

guided viewpoint adjustment strategy is proposed. This strat-

egy enables the eye-in-hand installed camera to self-adjust

to the optimal viewpoint that completely covers the area of

the grasping task. The strategy is based on the following

assumptions:

Assumption1: It is assumed that the longest distance be-

tween objects in the scene is within the camera’s field of view,

and the camera is installed on the robotic manipulator using

an eye-in-hand method.

Assumption2: The camera has completely captured some

objects, but the others are not fully captured.

Furthermore, the optimal viewpoint mentioned earlier refers

to the specific camera viewpoint that captures an image

encompassing all target objects. In the optimal viewpoint,

the center of the image aligns with the optimal pixel point.

The optimal pixel point is defined as the pixel point with the

smallest sum of distances from the pixel points belonging to

the object classes. Mathematically, it can be expressed as
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Fig. 5. Flowchart of the semantic-guided viewpoint adjustment strategy.

Pbest(u, v) = min

n
∑

i=1

[

(u− ui)
2
+ (v − vi)

2
]

1

2

. (9)

The flowchart of the semantic-guided viewpoint adjustment

strategy is presented in Fig. 5. The improved DeepLabV3+ is

utilized to extract the semantic information of the scene. The

current semantic image serves as the input to the viewpoint

adjustment strategy. In this strategy, the first step is to check

if there are objects along the image boundaries. If objects are

found, the camera’s motion direction is determined based on

the average of the object pixels along the boundary. Then, a

new semantic image obtained from the adjusted viewpoint is

input to make the same determination. This process is repeated

until no objects are found along the boundaries. When the

objects are not found, the strategy continues by determining

if the current viewpoint falls within the range of the optimal

viewpoint. If the current viewpoint is within the optimal range,

the subsequent grasping is performed directly from the current

viewpoint. If the current viewpoint is not within the optimal

range, the camera’s motion direction is calculated based on the

average of the object class pixels in the image. By inputting

the semantic image obtained from the adjusted viewpoint, the

above process is looped until the camera reaches the optimal

viewpoint.

Under the above assumptions and definitions, the camera

movement strategy is derived. Firstly, the semantic image

obtained from the improved DeepLabV3+ is binarized, with

the RGB value of pixels belonging to the background class

set to 0, and the RGB value of pixels belonging to the object

classes set to 1. Next, boundary detection is performed. Denote

the image size as h×w. Firstly, the top, left, bottom, and right

boundaries of the semantic image are concatenated to obtain

a 2 × (h+ w) size one-dimensional vector P1, consisting

only of 0 and 1. Then, we create a 2 × (h+ w) size one-

dimensional vector where the value of each element within

the vector is equal to its index. This vector is element-wise

multiplied with P1 to obtain the vector Pposition. The elements

in Pposition reflect the position information of the object class

along the boundary. Finally, the position of the target point on

the boundary can be calculated by

pgoal =

2(h+w)
∑

i=0

pi/2 (10)

where pi ∈ [0, 2(h+ w)] is the element of Pposition, h and

w denote the height and width of the image, respectively, and

pgoal is position value of the target point on a boundary. By

adding and subtracting pgoal with h and w, the coordinates

of the target point on a certain boundary can be obtained.

Assuming that the target point is on the right boundary, the

coordinates of the target point can be expressed as (w, pgoal−
w). The center of the image is connected to the target point

to create a directed straight line. The direction of this line

determines the camera’s direction that needs to be adjusted at

this moment.

Remark 1: The process described above utilizes the pixel-

level information in semantic images to guide the camera’s

motion. Unlike previous methods, the proposed strategy em-

ploys two different methods to calculate the camera’s motion

direction in real time based on the distribution of pixels

belonging to the object classes in the semantic image, thereby

achieving efficient viewpoint adjustments.

By implementing the above movement strategy, the camera

can gradually capture all the objects within the scene. When

the camera’s field of view encompasses all objects within the

scene, it is directed towards the optimal viewpoint based on

the optimal pixel point indicated by (9). Since the camera

is eye-in-hand installed, hand-eye calibration is needed to

establish a coordinate transformation relationship between the

robotic manipulator end-effector and the camera. During the

calibration process of the eye-in-hand system, the following

transformation relationship can be established

T cal
base = T tool

baseT
cam
tool T

cal
cam (11)

where T tool
base denotes the transformation matrix from the

robotic manipulator end to the robotic manipulator base, which

is readable by a demonstrator of the robotic manipulator. T cam
tool

denotes the transformation matrix from the camera to the

robotic manipulator end, which is the requested transformation

relationship. T cal
cam denotes the transformation matrix from the

calibration plate to the camera, which is an external parameter

of the camera.

Since the relative positions of the calibration plate and

robotic manipulator base T cal
base remain fixed during the moving

process, the equation can be formulated as

T tool
base(1)T

cam
tool T

cal
cam(1) = T tool

base(2)T
cam
tool T

cal
cam(2). (12)

Performing matrix multiplication, we get

T tool−1
base(2)T

tool
base(1)T

cam
tool = T cam

tool T
cal
cam(2)T

cal−1
cam(1). (13)

By marking T tool−1
base(2)T

tool
base(1) as A, T cal

cam(2)T
cal−1
cam(1) as B, and

T tool
cam as X, it can be seen that solving T tool

cam is equal to solve

[39]

AX = XB. (14)
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By solving (13), the transformation matrix from the camera

to the robotic manipulator end can be obtained. The pose in

the coordinate system of the robotic manipulator end can be

described as





x
y
z



 = T cam
tool





xcam

ycam
zcam



 (15)

where T cam
tool denotes the transformation matrix from the cam-

era to the robotic manipulator end, and (xcam, ycam, zcam)
T

denotes the pose in the camera coordinate system.

By following the above process, the motion of the camera

can be translated into the corresponding motion of the robotic

manipulator end-effector. This enables the camera to reach the

optimal viewpoint, where the subsequent task-oriented grasp

detection can be effectively performed.

C. Grasp Detection Structure Based on the Improved

DeepLabV3+ and GRCNN

In Section II, it is mentioned that GRCNN can generate

pixel-wise grasp representations of objects and then select the

highest quality grasp representation as the final grasp repre-

sentation. However, GRCNN is a task-agnostic grasp detection

method, meaning it lacks the capability to generate grasp

representations for specific objects in real scenes, particularly

when the desired object is surrounded by other objects within

the camera’s field of view.

It is notable that our proposed improved DeepLabV3+

model accurately segments specific objects along their con-

tours in densely cluttered scenes, avoiding the problem of

detection box stacking in object detection algorithms. There-

fore, a task-oriented grasp detection structure is proposed by

combining improved DeepLabV3+ with GRCNN to generate

a grasp representation for the specific object in such scenes,

as depicted in Fig. 6. This structure utilizes the improved

DeepLabV3+ to precisely segment various object categories

and backgrounds within the images. The resulting mask of the

specific object is then utilized to eliminate irrelevant regions

and generate an image containing only the specific object. Fi-

nally, this image is input into GRCNN to generate the highest

quality grasping pose for the specific object. The integration of

improved DeepLabV3+ and GRCNN achieves precise target

segmentation while mitigating the performance degradation

issue of GRCNN caused by environmental interference. This

greatly improves the quality of grasp detection results, thereby

improving the grasp success rate.

Remark 2: Differing from existing methods [26], [27],[29],

[30], the proposed improved DeepLabV3+-GRCNN grasp

detection structure effectively addresses the shortcomings of

GRCNN in specific scenarios by leveraging the strengths

of improved DeepLabV3+. This innovative structure enables

high-performance task-oriented grasp detection in densely

cluttered scenes.

IV. EXPERIMENTS RESULTS

A. Experimental Setup

To validate the proposed task-oriented grasping framework

guided by visual semantics, experiments were conducted using

Fig. 6. Improved DeepLabV3+-GRCNN grasp detection structure.

Fig. 7. Experimental platform.

a mobile manipulator developed in our laboratory, as depicted

in Fig. 7. The mobile chassis adopts a four-wheel independent

drive method and is equipped with a lidar for navigation to

achieve movement in the workspace. Furthermore, the mobile

platform is equipped with a Mitsubishi robotic manipulator

featuring a parallel gripper at the end for object grasping.

A Realsense D435i camera is also installed on the robotic

manipulator end to capture RGB-D data. In addition, the

proposed framework is implemented based on Pytorch with

CUDA 11.0. The hardware system comprises an AMD Ryzen

7 5700X CPU and a NVIDIA GeForce RTX 3060 GPU. On

this basis, the effectiveness of each module in our proposed

framework is verified.

B. Verification of Improved DeepLabV3+ model

The performance of the improved DeepLabV3+ model

is evaluated using three specific metrics: mean intersection

over union (MIoU), mean pixel accuracy (MPA), and frames

per second (FPS) [32]. Among them, MIoU and MPA are

primarily employed to evaluate the performance of the model

on the test set, while FPS indicates the speed at which the

model processes images. MioU and MPA can be expressed as

MIoU =
1

n+ 1

n
∑

i=0

pii
∑n

j=0 pij +
∑n

j=0 pji − pii
× 100 (16)
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TABLE I
PERFORMANCE COMPARISON BETWEEN THE PROPOSED MODEL AND THE

BASELINE MODEL

Dataset Model MIoU% MPA% FPS(f/s)

VOC2012
Improved DeepLabV3+

82.41 89.09 30.32
Ours 94.13 97.08 38.13

VOC2012
DeepLabV3+

81.14 89.12 12.90
Ours 93.55 96.43 19.10

MPA =
1

n+ 1

n
∑

i=0

pii
∑n

j=0 pij
× 100 (17)

where n is the number of categories, pij is the number of

pixels predicted to belong to category j but actually belong

to category i, pji represents the number of pixels predicted to

belong to category i but actually belong to category j, pii is

the number of pixels successfully predicted.

Furthermore, the hyperparameters of the improved

DeepLabV3+ model are set by referring to the parameter

settings of DeepLabV3+ and incorporating some empirical

values of network training hyperparameters. The training

process involves a total of 200 epochs, with the initial 50

epochs dedicated to frozen training and a batch size of 6.

This is followed by 150 epochs of unfrozen training, with a

batch size of 8. Regarding the optimizer and learning rate,

we have selected the stochastic gradient descent optimizer

and set the initial learning rate to 0.007. To further enhance

the training process, we have employed the Cosine learning

rate update technique.

Based on the above parameter settings, the performance

of the improved DeepLabV3+ model was then tested on two

datasets: the VOC2012 dataset and a custom dataset created

by our team. Our custom dataset includes various everyday

objects arranged in different combinations and perspectives,

covering scenarios with both dense and discrete objects. To

augment the dataset, we utilized data augmentation methods,

such as image rotation and noise addition, to increase the

number of samples. Moreover, the images are annotated using

the LabelMe annotation software and stored in the PASCAL

VOC data format. Table I presents the performance compari-

son between the proposed model and the baseline model. It is

evident that the introduction of MobileNetV2 as the backbone

greatly enhances the processing speed of the proposed model.

Moreover, the inclusion of CBAM and AFFM further ensures

that the segmentation accuracy of the model remains at or

slightly surpasses the baseline model. These improvements

make the proposed model meet the demands for real-time

semantic segmentation.

C. Verification of Semantic-Guided Viewpoint Adjustment

Strategy

The effectiveness of the semantic-guided viewpoint adjust-

ment strategy is initially verified through joint simulation con-

ducted on the Webots and PyCharm platforms. The simulation

results are presented in Fig. 8, where (a) to (c) illustrate the

changes in the objects within the camera’s field of view as it

adjusts from the initial viewpoint to the optimal viewpoint. In

Fig. 8. Adjustment process of camera viewpoint in simulation environment.

Fig. 9. Adjustment process of camera viewpoint in real environment.

Fig. 8 (a), the red arrow specifies the movement direction of

the camera when objects are present on the boundary. In Fig. 8

(b), the blue arrow indicates the movement direction when no

objects are present on the boundary. Fig. 8 (c) indicates that the

camera has successfully reached the optimal viewpoint. These

simulation results demonstrate the feasibility and effectiveness

of the semantic-guided viewpoint adjustment strategy on the

simulation platform.

Furthermore, the semantic-guided viewpoint adjustment

strategy is implemented on the mobile manipulator presented

in Fig. 7. The changes in the objects within the camera’s

field of view during the viewpoint adjustment process are

partially captured in Fig. 9. It is evident from that the improved

DeepLabv3+ maintains an average FPS of approximately 39

during the real machine adjustment process, providing real-

time semantic information of the scene. With this visual

semantic feedback, the proposed strategy can be successfully

implemented, thus allowing the camera to adjust from an initial

viewpoint where only a portion of the objects is captured to

the optimal viewpoint.

D. Verification of Improved DeepLabV3+-GRCNN Structure

The performance of the improved DeepLabV3+-GRCNN

structure is initially evaluated on the Cornell grasping dataset.

We adopted a commonly used metric in related research [40]

to determine the correctness of the prediction results, i.e.,

a predicted grasp is deemed correct when it simultaneously

satisfies the following two conditions:

1) The difference between predicted grasp angle and the

ground truth is less than 30°.

2) The intersection over union (IoU) fraction between the

ground truth and predicted grasp rectangles should be

greater than 25%. The IoU can be calculated by

IoU =
gp ∩ gt
gp ∪ gt

(18)

where gp denotes the predicted grasp rectangle, gt denotes the

ground truth.
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Fig. 10. Grasp detection results of improved DeepLabV3+-GRCNN. (a) Grasp quality. (b) Grasp angle. (c) Grasp width. (d) Grasp representation.

Fig. 11. Grasp detection results of GRCNN. (a) Grasp quality. (b) Grasp angle. (c) Grasp width. (d) Grasp representation.

Meanwhile, two data segmentation methods are used :

1) Image-wise split (IW): randomly split the dataset to

verify the model’s ability to generalize to different poses

of objects.

2) Object-wise split (OW): randomly split the dataset by

object category to verify the model’s ability to generalize

to new objects.

The performance of improved DeepLabV3+-GRCNN struc-

ture on the Cornell grasping dataset is shown in Table II,

along with comparisons to other methods proposed in related

research. It is important to note that, for all comparison

methods, we have utilized the data reported in their original

papers. As shown in Table II, our proposed DeepLabV3+-

GRCNN structure achieves the highest accuracy of 98.3%

and 97.5%, surpassing other methods and demonstrating its

competitiveness with the state-of-the-art (SOTA) method[44].

While our performance on the grasping dataset is compa-

rable to the SOTA method, it is worth mentioning that its

transformer-based architecture presents significant challenges

in terms of training and deployment. In contrast, our CNN-

based method offers the advantage of being simpler to train

and deploy. Furthermore, compared to the baseline model GR-

CNN[15], the proposed structure exhibits a slight improvement

in performance, indicating the positive impact of separating

objects from the background on grasp detection.

To further verify the effectiveness of the improved

DeepLabV3+-GRCNN structure on task-oriented grasp detec-

tion, a multi-object scenario is selected for testing. In this

experiment, the robot system is provided with task information

in the form of textual input specifying the category of objects

to be grasped, specifically targeting a metal workpiece in this

case. Based on this information, the improved DeepLabV3+

retains pixels corresponding to the specified category in the

output results, generating an image that only contains the target

object. This image is then utilized as input for the GRCNN

to achieve task-oriented grasp detection. The detection results

TABLE II
PERFORMANCE EVALUATION ON THE CORNELL GRASPING DATASET

Method
Accuracy%

IW OW

Liu et al.[19] 95.2 -
Cheng et al. [16] 95.4 -
Dong et al. [29] 96.4 96.5

Xu et al. [41] 96.9 95.7
Kumra et al. [15] 97.7 96.6
Dong et al. [42] 98.1 -
Wang et al. [43] 97.9 96.7
Zhang et al. [44] 98.3 96.9

Ours 98.3 97.5

are compared with those obtained only using GRCNN, as

shown in Fig. 10 and Fig. 11, respectively. In these figures,

(a)-(d) represent the grasp quality, grasp angle, grasp width,

and the generated grasp representation, respectively. It is ev-

ident the proposed improved DeepLabV3+-GRCNN structure

accurately segments the target object and generates an effective

grasp representation for it. However, when relying solely on

GRCNN, the maximum value of grasping quality is found

on other interfering objects, hindering the generation of a

grasp representation for the specific object. Through this com-

parison, it can be observed that the improved DeepLabV3+-

GRCNN structure effectively mitigates the limitations of GR-

CNN in task-oriented grasp detection.

The effectiveness of the proposed improved DeepLabV3+-

GRCNN structure on task-oriented grasp detection is also

verified in a densely cluttered scenario depicted in Fig. 12

(a).In this scenario, the ruler is chosen as the target object

for grasp detection. Meanwhile, a comparison is made be-

tween the improved DeepLabV3+-GRCNN structure and the

SSD[45]-GRCNN structure. The results of the SSD and the

improved DeepLabV3+ are shown in Fig. 12 (b) and Fig. 12
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Fig. 12. (a) Densely cluttered scenario. (b) Detection results of SSD. (c)
Segmentation results of improved DeepLabV3+ model.

(c), respectively. It is apparent from Fig. 12 that the target

image extracted from the detection box generated by SSD

contains information from other objects, introducing interfer-

ence. In contrast, the target image generated by the improved

DeepLabV3+ remains free from such interference caused by

other objects. On this basis, both images are individually input

into GRCNN, and the corresponding grasp detection results are

shown in Fig. 13 and Fig. 14, respectively. One can see that

the SSD-GRCNN structure generates an incorrect grasp rep-

resentation for the target object due to interference from other

objects. Conversely, the proposed improved DeepLabV3+-

GRCNN structure generates an accurate grasp representation

for the target object. This demonstrates the effectiveness of the

proposed method for task-oriented grasp detection in densely

cluttered scenarios.

E. -World Scenarios Grasping

The performance of our proposed structure in real-world

scenarios is evaluated through physical grasp experiments.

In these experiments, the tested objects were from our cus-

tom dataset consisting of 15 categories of daily necessities,

covering both regular and irregular objects. The selection of

scenes was based on relevant research, focusing on densely

cluttered scenes with multiple objects. Furthermore, after each

grasping task, we examined object contact within the scene.If

no contact was detected between objects, we rearranged the

scene and introduced objects that the robot had not previously

grasped. This approach allowed us to thoroughly evaluate the

performance of the proposed method across various scenarios.

To make the results easier to compare and more general, we re-

ferred to the experimental settings in relevant research. We set

TABLE III
COMPARISON OF GRASPING METHODS

Method Success rate(%) Detection speed(s)

Kuleck et al. [27] 78.0 0.14
SSD-GRCNN 82.0 0.14

Dong et al. [30] 82.0 -
Li et al. [26] 86.0 0.11

Ours 91.0 0.13

the standard for successful grasping as stable grasping of the

target object without falling and set the total number of grasp-

ing times to 100. Record the detection time of each algorithm,

and take the average of these 100 times as the detection speed

of the method. The task information in the experiment was

transmitted in textual form from a host computer to the robot

system. Upon receiving the task information, the robot system

employed our proposed method. This method parsed the task

information and then generated a grasp representation with

the highest quality score for the target object. Subsequently,

a series of coordinate transformations are made to this grasp

representation to obtain the pose that the robotic manipulator

needs to reach. Finally, this pose information was provided to

the robotic manipulator controller to execute the grasping of

the target object.

Based on the above experimental configuration and meth-

ods, the experiments are successfully implemented, and the

partial capture results are shown in Fig. 15. It can be seen that

our proposed method can accurately grasp the target object in

densely cluttered scenes, and stably grasp it to a certain height,

which to some extent demonstrates the effectiveness of the

proposed method. Besides, the success rates of our proposed

method and other task-oriented grasp methods on real robot

grasping are presented in Table III. It can be observed that our

proposed method performs well in densely cluttered scenes.

Compared to the state-of-the-art method, our method exceeded

its success rate by 5%, reaching 91%, while falling behind

in detection speed by only 0.02 seconds, at 0.13 seconds.

The significant improvement in the success rate of grasping

is primarily due to the pixel segmentation feature of our

proposed method. This feature enables accurate segmentation

of the target object and ensures that the grasp detection

algorithm is not influenced by other environmental factors

during the grasping detection process, thereby maximizing its

performance. In terms of detection speed, although we have

optimized the detection speed of DeepLabV3+, we are still

at a disadvantage compared to lightweight object detection

algorithms such as YOLO, which is also one of the directions

we need to optimize in the future. These comparisons further

demonstrate the effectiveness and practicality of the method

proposed in this paper.

Finally, we conducted additional tests in the scenarios with

stacked objects to investigate the influence of object stacking

on our proposed method. The arrangement of some stacked

scenes are shown in Fig. 16. During the experiment, we found

that the semantic segmentation module can accurately segment

objects according to their contours in the scene with stacked

object. However, occlusion between objects lead to incomplete
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Fig. 13. Grasp detection results of SSD-GRCNN. (a) Grasp quality. (b) Grasp angle. (c) Grasp width. (d) Grasp representation.

Fig. 14. Grasp detection results of the improved DeepLabV3+-GRCNN. (a) Grasp quality. (b) Grasp angle. (c) Grasp width. (d) Grasp representation.

Fig. 15. Grasping effect in the densely cluttered scenario.

masks for certain object categories, potentially affecting the

subsequent grasp detection. For the grasp detection module, it

can successfully generate grasp representations for objects that

are partially occluded. However, when objects were heavily

occluded, the module generally struggled to generate suitable

grasp representations. We recorded the results of 100 grasp

attempts, achieving a success rate of 80%. This outcome

indicates that the proposed method demonstrates a certain

level of effectiveness in some stacked scenes. Additionally, we

also accomplished task-oriented grasping in severely stacked

scenes, where objects were stacked from top to bottom, by em-

ploying human strategies during the experiment. However, it is

important to note that the decision-making process regarding

the grasp order in such scenes is not within the scope of this

research. Therefore, we will not delve into further discussion

on this aspect in this paper.

V. CONCLUSION

In this paper, we proposed a task-oriented grasping frame-

work guided by visual semantics to achieve task-oriented

grasping in densely cluttered scenarios with the absence of

Fig. 16. Scenarios with stacked objects in the experiment.

object information. The DeepLabV3+ model was first mod-

ified by introducing the Mobilenetv2, CBAM, and AFFM.

These improvements significantly enhance the speed of the

DeepLabV3+ model while maintaining its original segmenta-

tion accuracy, enabling the model to acquire real-time seman-

tic information about the scene. On this basis, a semantic-

guided camera viewpoint adjustment strategy is proposed.

This strategy enables the camera to self-adjust to the optimal

viewpoint, effectively resolving the issue of the absence of

object information in the grasping task area. Finally, an

improved DeepLabV3+-GRCNN structure is proposed. In this

structure, the object image free from external interference

is provided for the grasp detection network by segmenting

objects along their contours, thus improving the success rate

of task-oriented grasp detection in densely cluttered scenarios.

The experimental results validate the effectiveness of our

proposed task-oriented grasping framework guided by visual

semantics. Compared to the method with the highest success

rate of 86% reported in relevant research, our proposed frame-

work achieved a grasp success rate of 91% in densely cluttered

scenarios, demonstrating certain advantages.

While our method has achieved significant results in the

aforementioned scenarios, we did not consider the objects

stacking in the process, which is also another primary cause of

information absence. Therefore, our future research direction

is to design an object manipulation relationship detection
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network that can provide the appropriate grasping order based

on the arrangement of objects in the scene, particularly in

stacking scenarios. By integrating this network into the frame-

work proposed in this paper, it is expected to achieve more

accurate and efficient task-oriented grasping in object stacking

scenarios.
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