
This is a repository copy of Towards round-Trip engineering of code fragments embedded
in models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/211860/

Version: Accepted Version

Proceedings Paper:
Almutairi, Sultan, Zolotas, Athanasios and Kolovos, Dimitris orcid.org/0000-0002-1724-
6563 (2022) Towards round-Trip engineering of code fragments embedded in models. In:
Proceedings - ACM/IEEE 25th International Conference on Model Driven Engineering
Languages and Systems, MODELS 2022:Companion Proceedings. 25th ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems,
MODELS 2022, 23-28 Oct 2022 Proceedings - ACM/IEEE 25th International Conference
on Model Driven Engineering Languages and Systems, MODELS 2022: Companion
Proceedings . Association for Computing Machinery, Inc , CAN , pp. 529-538.

https://doi.org/10.1145/3550356.3561578

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Towards Round-Trip Engineering of
Code Fragments Embedded in Models

Sultan Almutairi
Department of Computer Science,

University of York
York, North Yorkshire, United

Kingdom
soha500@york.ac.uk

Athanasios Zolotas
School of Computer Science and

Mathematics, Liverpool John Moores
University

Liverpool, Merseyside, United
Kingdom

a.zolotas@ljmu.ac.uk

Dimitris Kolovos
Department of Computer Science,

University of York
York, North Yorkshire, United

Kingdom
dimitris.kolovos@york.ac.uk

ABSTRACT

While embedding code fragments in abstract software models (e.g.

Java code in UML models) is far from ideal, it remains a commonly-

employed approach for achieving full model-based code generation.

In this paper, we embrace this reality and present an approach

for extending model-to-text (M2T) transformation languages with

support for round-trip engineering of such code fragments. The

approach consists of a new construct in M2T templates named sync

regions, and a mechanism for synchronising hand-written code in

sync regions with the source model of the M2T transformation. We

have implemented the proposed approach on top of an existing

M2T language (Epsilon Generation Language) and we have carried

out experimental evaluation of the correctness and performance

of our implementations. The obtained results suggest that the syn-

chronisation algorithm scales linearly with the number of sync

regions.

KEYWORDS

Model-Driven Engineering, Model-to-Text Transformation, Round-

trip Engineering

ACM Reference Format:

Sultan Almutairi, Athanasios Zolotas, and Dimitris Kolovos. 2022. Towards

Round-Trip Engineering of Code Fragments Embedded inModels. InACM/IEEE

25th International Conference on Model Driven Engineering Languages and

Systems (MODELS ’22 Companion), October 23ś28, 2022, Montreal, QC, Canada.

ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3550356.3561578

1 INTRODUCTION

Model-to-text (M2T) transformation is routinely used in model-

based software engineering processes to generate implementation-

level artefacts such as executable code1, documentation and config-

uration scripts from abstract, typically domain-specific, models in

an automated and repeatable manner.

A common way to implement M2T transformations is using ded-

icated template-based languages such as Acceleo [2], Java Emitter

1In this paper we use the termsM2T transformation and code generation interchangeably

MODELS ’22 Companion, October 23ś28, 2022, Montreal, QC, Canada

© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in ACM/IEEE 25th
International Conference on Model Driven Engineering Languages and Systems (MODELS
’22 Companion), October 23ś28, 2022, Montreal, QC, Canada, https://doi.org/10.1145/
3550356.3561578.

Templates [1], Xpand [9], Velocity [6] and StringTemplate [13]. Sim-

ilarly to server-side scripting languages such as PHP and ASP.NET,

M2T languages provide first-class support for combining static con-

tent with text computed from the elements of one or more input

models, and can offer improved readability compared to imperative

M2T transformation programs implemented using string concate-

nation [14].

Often, modelling languages do not provide sufficient expressive

power to capture all the information required to achieve full code

generation. In such cases, developers are called to choose among

one of the following options:

• Complement the generated code with hand-written code

that adds the missing information, using protected regions,

inheritance or delegation;

• Extend the abstract and concrete syntax of the modelling lan-

guage with concepts required to capture themissing informa-

tion within the model, ideally at an implementation-agnostic

level of abstraction;

• Minimally extend the modelling language to allow modellers

to embed code fragments written in the target implemen-

tation language within their models (e.g. embed C++ code

within UML models [18]).

While the latter approach of embedding uninterpreted strings, as

Stephen Mellor calls them in [10], in models is detrimental in terms

ofmodel analysability and portability, it remains a popular approach

among practitioners [18] due to its low upfront implementation

cost, the desire to maintain the model as the single source of truth,

familiarity with the target implementation language, and aversion

to complicating the syntax of the modelling language. Even the

widely-used Stateflow modelling environment uses embedded C

and MATLAB strings to implement control logic in state charts2.

When this road is chosen, the next dilemma that developers

come to face is in which environment to write the code embedded

in their models. Writing the code within the modelling environment

deprives them of essential features such as code completion and

error reporting. On the flip side, writing the code within an IDE

incurs an additional overhead of having to copy and paste it back to

the modelling tool, and also involves a risk that they forget to do so

and code fragments are accidentally overwritten next time the M2T

transformation is executed. As a result, the latter, which involves a

manual synchronisation process, can lead to inconsistencies and

mistakes as it is admittedly a tedious and error-prone task.

2https://www.mathworks.com/help/stateflow/ref/chart.html

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Almutairi, et al.

In this paper, we present an approach that enables developers

to use target-language-aware IDEs to write such fragments by

automating the synchronisation process between generated-then-

manually-extended source code files, and the models from which

they were generated. The proposed approach is agnostic of both

the modelling language and the target implementation language. A

proof-of-concept prototype has been developed on top of an existing

template-based M2T language, the Epsilon Generation Language

(EGL) [15]. More specifically, our proposed approach takes as input

the models used in the M2T transformation and the files generated

from the M2T templates, and propagates the hand-written code

added to the latter back to the model, automating the process of

round-trip synchronisation.

The remainder of the paper is organised as follows. In Section 2,

we provide an example of M2T transformation to concretely illus-

trate the problem targeted by this research. In Section 3, we present

the proposed approach and its implementation, explaining how

changes made to generated files are synchronised with the source

models of the M2T transformation. Section 4 reports on the applica-

bility and limitations of the approach. In Section 5 we evaluate the

correctness and performance/scalability of the proposed approach.

In Section 6 we present related work, and Section 7 concludes and

outlines plans for future work.

2 MOTIVATING EXAMPLE

To concretely demonstrate the problemwe are targeting in this work

and to motivate the proposed approach, we present an example

involving a minimal M2T transformation, where round-trip syn-

chronisation between the source model and the generated source

code is desirable.

For this example, we use aminimal component-connector domain-

specific language (DSL), the abstract syntax of which is illustrated

in Figure 1. In our DSL a system consists of components and con-

nectors. Each component has many input ports (inPorts) and one

output port (outPort). Each port has a name and a type, and ports

can communicate through connectors. Each connector has exactly

one source port and one target port.

Figure 1: Metamodel of the Component-Connector DSL

1 rule System2Class

2 transform s : System {

3 template : "../common/system2class.egl"

4 target : "src-gen-sync-regions/syncregions/" + s.name

+ ".java"

5 }

6
7 rule Component2Class

8 transform c : Component {

9 template : "sync-regions-component2class.egl"

10 target : "src-gen-sync-regions/syncregions/" + c.name

+ ".java"

11 }

Listing 1: EGL rules for generating Java code from

component-connector models

Figure 2 shows a model that conforms to our DSL and which

captures a small part of the operation of a water heating boiler.

The system (model) has two components: TemperatureController

and BoilerActuator. Also, it has three input ports (namely, temper-

ature, targetTemperature, and boilerStatus). The TemperatureCon-

troller component receives input from two ports (temperature and

targetTemperature). It computes the difference between the two

and the result is propagated to the BoilerActuator component along

with the current status of the boiler. The BoilerActuator component

decides whether to turn the boiler on or off.

From models like the one shown in Figure 2, we wish to generate

executable Java code. We achieve this through a template-based

M2T transformation, implemented using EGL, and shown in List-

ings 1-3. Although we use EGL in this example, the transformation

could be implemented using any other template-based M2T lan-

guage. The program in Listing 1 consists of two rules. The first rule,

in lines 1-5 is used to generate a Java class for every model element

of type System. Line 1 gives the rule a name, line 2 contains the

name of the type, instances of which the rule should transform,

line 3 declares the template that will be used for the transformation,

and line 4 specifies where the generated file will be stored. The

second rule, in lines 7-11 is used to generate one Java class for each

component in the system.

The template invoked by the System2Class rule is shown in List-

ing 2. Line 1 prints the class name. Lines 2-8 generate an execute()

method that has one parameter for each input port of the system

and returns a value, the type of which is the same as the type of

the output port of the system. The list of the input parameters for

each component is calculated using a utility operation getInputPa-

rameters() defined in lines 12-24. The second template is for the

Component2Class rule and is shown in Listing 3. Line 1 prints the

class name and lines 2-4 generate an execute() method for the com-

ponent with appropriate input parameters and return type, and an

empty body. When we execute the transformation on the model

of Figure 2, it produces the files shown in Listings 4 and 5 for the

system, and the BoilerActuator component, respectively3.

3A very similar class is generated for the TemperatureController component, which we
omit to reduce unnecessary repetition.

Towards Round-Trip Engineering of Code Fragments Embedded in Models MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

temperature

temperature temperatureDifference

targetTemperature

TemperatureController

targetTemperature

boilerStatus

temperatureDifference action

boilerStatus

BoilerActuator

action

Figure 2: BoilerController model that conforms to the metamodel in Figure 1

1 public class [%=s.name%] {

2 public [%=s.outPort.type%] execute([%=s.inPorts.

collect(p|p.type + " " + p.name).concat(", ")%])

{

3 [%for (child in s.components){%]

4 [%=child.name%] [%=child.name.ftlc()%] = new [%=child.

name%]();

5 [%=child.outPort.type%] [%=child.name.ftlc()%]Result =

[%=child.name.ftlc()%].execute([%=child.

getInputParameters().concat(", ")%]);

6 [%}%]

7
8 return [%=s.outPort.incoming.source.eContainer().name.

ftlc() + "Result"%];

9 }

10 }

11 [%

12 operation Component getInputParameters(){ {

13 var parameters : Sequence;

14 for (p in self.inPorts) {

15 if (p.incoming.source.eContainer().isTypeOf(Model))

{

16 parameters.add(p.incoming.source.name);

17 }

18 else {

19 parameters.add(p.incoming.source.eContainer().

name.ftlc() + "Result");

20 }

21 }

22 return parameters;

23 }

24 %]

Listing 2: EGL template that generates a Java class realising

the communication between components of the system

While the model contains sufficient information4 to generate

the content of the execute() method of the BoilerController as per

Listing 4, it has no means of expressing the behaviour of each

individual component. Hence, the generated execute() method of

the BoilerActuator class in Listing 5 is empty.

4With many assumptions e.g. regarding ordering and freedom from cycles which are
necessary to keep this example minimal.

1 public class [%=c.name%] {

2 public [%=c.outPort.type%] execute([%=c.inPorts.

collect(p|p.type + " " + p.name).concat(", ")%]) {

3
4 }

5 }

Listing 3: EGL template for generating a Java class for each

individual component

1 public class BoilerController {

2 public int execute(int temperature, int

targetTemperature, boolean boilerStatus) {

3 TemperatureController temperatureController = new

TemperatureController();

4 int temperatureControllerResult =

temperatureController.execute(temperature,

targetTemperature);

5 BoilerActuator boilerActuator = new BoilerActuator();

6 int boilerActuatorResult = boilerActuator.execute(

temperatureControllerResult, boilerStatus);

7
8 return boilerActuatorResult;

9 }

10 }

Listing 4: Generated class for BoilerController component

1 public class BoilerActuator {

2 public int execute(int temperatureDifference, boolean

boilerStatus) {

3
4 }

5 }

Listing 5: Generated class for BoilerActuator component

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Almutairi, et al.

2.1 Implementing Component Behaviour

To add the missing behaviour, one could extend the generated code

with hand-written code using inheritance or delegation, or even

directly edit the generated files using protected regions (discussed

in Section 6). This approach would leave some information about

the system out (i.e. the behaviour of individual components) of the

model, which would no longer be the system’s single source of truth.

Keeping the model as the single source of truth of the system can

be desirable, for example:

• to enable full code generation as part of a headless continu-

ous integration (CI) process,

• to avoid storing generated code in the version control repos-

itory,

• to simplify change review and authorisation (it is easier for

team members to review changes if they are centralized in

the model and are not dispersed across the model and code

files)

In addition, although using inheritancemight be a potential solution

to the problem, it is not the case that all languages are supporting

such a concept (i.e., HTML does not offer such a mechanism). Thus,

this approach limits the target languages that a M2T transformation

engine can support.

An alternative approach would be to extend our component-

connector language so that models conforming to it can specify the

behaviour of individual components. As discussed in the previous

section there are two ways to achieve this. The first one is to ex-

tend the language with appropriate syntax constructs for capturing

complex behaviour (e.g. add IfStatement, ArithmeticExpression, Vari-

ableDelcaration concepts to its metamodel), effectively turning it

into a programming language. The second ś which, as discussed in

the previous section, practitioners commonly opt for ś is to extend

the Component type, with a behaviour string attribute, as shown

in Figure 3, that can be used to specify the behaviour of compo-

nents directly in Java and which will be emitted as-is by the M2T

transformation in the body of the component’s execute() function.

Figure 3: Extended version of the metamodel of Figure 1 with

a new behaviour attribute

Assuming that a developer opts for the latter, they are now

faced with the dilemma of which environment to use to write these

embedded Java code fragments that implement the behaviour of

individual components. One option is to write this code within the

modelling tool, effectively forfeiting code completion, and error

reporting. The other option is to generate code from a version of

the model where the behaviour attributes of the components are

empty, then define the behaviour of each component in a Java-aware

IDE, and once the behaviour has been satisfactorily implemented

and tested using all the tools offered by the IDE, copy the hand-

written code back into the behaviour attributes of the respective

components. In this case, the template of Listing 3, would need to be

extended with an additional EGL statement in line 3, which would

emit the value of the new behaviour attribute to the generated code

as-is.

Beyond compromising model analysability and portability (since

the model is now bound to a specific target language) ś which

can be acceptable compromises in many cases ś every time the

developer makes changes to the execute() function of a component

within their Java IDE, they need to remember to copy and paste the

updated code back into the behaviour attribute of the respective

component in the model. This is a tedious and error prone task that

we set out to automate in this work.

3 EXTENDING M2T TEMPLATES WITH SYNC
REGIONS

To automate synchronisation between generated-then-edited files

and their source models in scenarios such as the one discussed in

the previous section, we propose extending M2T templates with

sync regions. A sync region is a region in a generated file which is

appropriately fenced using identifiable start/end comments, and

encloses content that needs to be kept in sync with a specific slot

(pair of model element and attribute) in the model. The key differ-

ence between a sync region and a protected region is that modified

text within a protected region is preserved by retaining it in the

generated file upon re-generation, while modified text within a

sync region is preserved by automatically copying it into the model.

In this section we discuss how we have extended EGL with

support for sync regions, however, the same principles can be used

to extend any other template-based M2T language in a similar

manner. Our prototypical extension works with EMF-based models

[16] persisted in the XMI format, where each element has a unique

persistent ID, and is limited to M2T transformations that consume

a single model as input.

3.1 Specifying Sync Regions

We have extended EGL with two additional methods to specify sync

regions:

• startSync(String startComment, String id, String attribute):

Emits a single-line comment in the target file, starting with

the startComment character sequence (e.g., // for Java), which

denotes the start of a sync region, and contains the id of

the model element and the name of its attribute that the

content of the sync region needs to be kept in sync with

(e.g., behaviour, for the example presented in Section 2). A

variant of the method with an extra endComment parameter

Towards Round-Trip Engineering of Code Fragments Embedded in Models MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

1 public class [%=c.name%] {

2 public [%=c.outPort.type%] execute([%=c.inPorts.

collect(p|p.type + " " + p.name).concat(", ")%]) {

3 [%=out.startSync("//", c.id, "behaviour")%]

4 [%=c.behaviour%]

5 [%=out.endSync()%]

6 }

7 }

Listing 6: Extended version of the template of Listing 3 with

a sync region

1 public class BoilerActuator {

2 public int execute(int temperatureDifference, boolean

boilerStatus) {

3 //sync _bfpnFUbFEeqXnfGWlV2_8A, behaviour

4
5 //endSync

6 }

7 }

Listing 7: The result of executing the template of Listing 6

against the BoilerActuator component

is also available to accommodate languages that require both

a prefix and a suffix for their comments (e.g., ł<!ś comment ś

>" for HTML).

• endSync(): Emits a single-line comment that marks the end

of the active sync region.

The use of the methods above is demonstrated in Listing 6, which

is an extended version of our original Listing 3 template that gen-

erates Java classes from individual components. In the extended

version of the template, three new lines have been added (lines 3-5)

and the output of executing it against the BoilerActuator component

is shown in Listing 7. Line 3 of the template produces the comment

in line 3 of the generated file, which denotes the start of a sync re-

gion. The generated comment starts with the // character sequence

as instructed by the first argument of the startSync method. It con-

tinues with the sync keyword which allows the synchronisation

engine (which is described in Section ??) to distinguish sync region

comments from general comments in the generated file, followed

by the element identification token (i.e., the ID of the component) 5.

Finally, the name of the attribute against which the content of the

sync region should be synchronised (e.g., behaviour) is given. Line

4 prints the content of the behaviour attribute of the component

(empty in the initial version of our model), and Line 5 produces the

//endSync comment in the generated file, that denotes the end of

the sync region.

5For example, the (_bfpnFUbFEeqXnfGWlV2_8A ID is an auto-generated XMI ID pro-
duced by the EclipseModelling Framework, that was used to implement the component-
connector DSL and the sample instance model.

1 public class BoilerActuator {

2 public int execute(int temperatureDifference, boolean

boilerStatus) {

3 //sync _bfpnGUbFEeqXnfGWlV2_8A, behaviour

4 if (temperatureDifference > 0 && boilerStatus ==

true) {

5 return 1; // turn boiler off

6 }

7 else if (temperatureDifference < 0 && boilerStatus

== false) {

8 return 2; // turn boiler on

9 }

10 else return 0; // do nothing

11 //endSync

12 }

13 }

Listing 8: Extended BoilerActuator class with hand-written

behaviour

3.2 Synchronising Sync Regions with Model
Elements

A developer can now specify the behaviour of the BoilerActuator

component within the produced sync region of the generated Boil-

erActuator Java class, as shown in lines 4-10 of Listing 8, benefiting

from modern IDE features such as code completion and syntax

highlighting.6

Once they have made the desirable changes to the behaviour of

generated components, the next step is to trigger a synchronisation

mechanism (the second part of our proposed approach), which will

identify and copy the hand-crafted behaviour into the behaviour

attributes of the respective components in the source model. A core

requirement of the proposed approach is that between generation

and synchronisation, the source model is not edited in any way. We

describe the synchronisation algorithm below.

3.3 Synchronisation Algorithm

The synchronisation alorithm consists of three steps which help

in locating sync regions, validating their consistency and finally

updating the model. These three steps are described below.

Step 1: Sync Region Identification. The synchronisation algorithm

receives three inputs:

• the root directory under which files generated by the M2T

exist;

• character sequences that denote the start of a comment (e.g.

//);

• the EMF model to be synchronised with any manual updates

made to sync regions of the generated files.

The algorithm recursively scans all files under the root directory

and identifies sync regions that start and end with appropriate

comments. For each sync region, the algorithm checks that:

6We have used numbers instead of named constants in lines 5, 8 ans 11 to keep the
example concise.

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Almutairi, et al.

1 <h1>BoilerActuator</h1>

2 ...

3 <pre class ="code">

4 <!−−sync _bfpnGUbFEeqXnfGWlV2_8A, behaviour−−>

5 if (temperatureDifference > 0 && boilerStatus == true)

{

6 return 1; // turn boiler off

7 }

8 else if (temperatureDifference < 0 && boilerStatus ==

false) {

9 return 2; // turn boiler on

10 }

11 else return 0; // do nothing

12 <!−−endsync−−>

13 </pre>

Listing 9: Generated BoilerActuator HTML documentation

file with component behaviour

• the element ID and attribute of the region are specified and

correspond to valid elements and mutable attributes in the

model;

• the text within the sync region can be converted to a value

compatible with the type of the respective attribute.

If any of the regions are found to not meet the criteria above,

the algorithm exits with an appropriate error message and without

updating the EMF model.

Step 2: Sync Region Consistency Checking. In principle, the same

attribute of the same model element can appear in multiple sync

regions across the generated code-base. This can be the use due

to either a user error or because the contents of the same model

attribute is used in more than one places in the generated text. Thus,

before we update the model, we need to ensure the consistency of

sync regions that refer to the same element and attribute. If they

are found to:

• have the same value, they are marked as consistent.

• have two distinct values and one of them is the same as the

value of the attribute in the source model, then the other (dif-

ferent) value is marked as the łnewž value for the attribute.

• two distinct values, none of which corresponds to the value

of the attribute in themodel, or more than two distinct values,

they are marked as inconsistent.

To demonstrate a concrete case where such an inconsistency

may be encountered, consider that we extend the Java-generating

M2T transformation discussed above, to also generate a HTML file

for each component of the system, which presents the component

in a graphical form (e.g. using a Mermaid JS diagram that visualizes

the component, its input and output ports and other components

connected directly to it) and a section that contains a copy of the

Java behaviour of the component, also within a sync region. A

fragment of the generated BoilerActuator.html file would look like

Listing 9.

If a developer now modifies the content of the two sync regions

for the behaviour of BoilerActuator in Listings 8 (e.g. to improve the

structure of the code) and 9 (e.g. to fix a typo in a comment) to two

different values, none of which matches the value of the behaviour

attribute in the model, the synchronisation algorithm is not able to

decide whether to update the behaviour of the BoilerActuator in

the model to the new content found in the Java file or in the HTML

file.

Upon the detection of an inconsistency, the synchronisation

algorithm exits with an appropriate error message that includes

information on the file that the error was found in and the conflict-

ing values in the file and model. Thus, no updates are made to the

model. It is expected that the user will remedy these inconsistencies

manually for the synchronisation algorithm to run to completion

again.

Step 3: Model Updating. At this point, sync regions have been

verified to be well-formed (step 1) and free of conflicts (step 2). As

such, the algorithm can proceed with updating the attributes of

the model elements to which sync regions refer. For each elemen-

t/attribute involved, the content of the respective sync region is

coerced to the type of the attribute and the coerced value is assigned

to the attribute. Once all elements/attributes have been updated,

the model is saved to disk.

4 APPLICABILITY AND LIMITATIONS

We now discuss the applicability of the proposed approach and its

main limitations.

Model Element Identities. As discussed in Section ??, the proposed

approach requires model elements to have unique, persistent, and

immutable identities, as these are used to trace sync regions back

to model elements of interest. In our experience, the majority of

modelling tool support such identities (e.g. XMI-IDs in EMF, GUIDs

in PTC Integrity Modeller). However, we are also aware of tools,

such as Matlab Simulink, where exposed model element IDs are

path-based and can change when elements are moved/renamed in

a model, and where ś as a consequence ś the proposed technique

is not applicable.

Metamodel and Model Pollution. Sync regions need to be backed

by respective attributes in the metamodel. As such, the more sync

regions are introduced, the more the metamodel, and the models

that conform to it, will be polluted with implementation-level in-

formation. With reference to our running example, as long as all

the behaviour of a component can fit within the body of the exe-

cute() method, extending the metamodel with a behaviour attribute

feels like a reasonable compromise. However, if changes need to be

made to other parts of the component class too (e.g. new import

statements, fields, utility methods), then the metamodel and the

M2T transformation need to be extended with respective attributes

and sync regions for each such part, which can feel increasingly un-

comfortable. In our view, this is an inherent issue of this approach

(i.e. not limited to this particular example) and needs to be taken

into consideration before its adoption. For M2T transformations

that require the generated code to be augmented in several places,

other integration techniques such as inheritance/delegation may

be more appropriate.

Towards Round-Trip Engineering of Code Fragments Embedded in Models MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Metamodel Evolution. The generated comments that mark the

start and end of sync regions use the name of the attribute with

which the content in the region must be synced. If the metamodel

evolves and the attribute is renamed, retyped in a breaking way

(e.g. from String to Integer), or disappears altogether, the reference

implementation will report an error and it will be up to the devel-

oper of the M2T transformation to rectify any inconsistent sync

regions in previously generated files.

Embedded Code Consistency. Since code fragments embedded

in sync regions are copied verbatim between sync regions and

the model, changes made to the model can invalidate the embed-

ded code fragments, making them uncompilable, or even worse,

inadvertently changing their semantics. For example, if the temper-

atureDifference port of the BoilerActuator component of Figure 2 is

renamed to tempDiff in the model, when the code is re-generated,

the body of the execute method will produce compilation errors as

it will still refer to the temperature difference variable with its old

name.

Direct Changes to the Embedded Code Fragments. It is important

to highlight that in the proposed approach the code fragments must

not be directly modified by users in the model as in this case the

synchronisation algorithm will treat the content of sync regions

as the łnewž values and will overwrite any directly modified code

fragments in the model the next time it is executed.

Deleted Sync Regions. While the synchronisation algorithm can

cope with inconsistently updated and malformed sync region mark-

ers, it cannot cope with sync regions being deleted altogether from

generated files. Ideally suchmissing sync regions should be reported

to the user but this cannot be achieved without keeping additional

metadata outside the generated files, which is undesirable.

5 EVALUATION

This section outlines the results of our evaluation7 of the correct-

ness, generalisability, performance and scalability of our prototype

implementation of the proposed approach and reflects on its appli-

cability and known limitations.

5.1 Correctness

We have argued about the completeness of the proposed approach

analytically in the previous sections by describing how it copes in

different scenarios (e.g. malformed or inconsistent sync regions)

and by listing its known limitations. To build confidence on the

correctness of our prototype too (i.e. the fidelity with which it

implements the presented approach), we have developed several

unit tests using the JUnit library to ensure that the synchronisation

algorithm behaves as expected under normal circumstances (well-

formed and conflict-free sync regions) and gracefully fails when

models or generated files are modified manually in inconsistent

ways.

Table 1 demonstrates the result of our tests. Each test scenario

presented in Table 1 was duplicated to test for all the types (e.g.,

String, integer, double, float, and Boolean). The proposed approach

7All unit tests, input models, generated files, raw and analysed results for all the
experiments presented in this section are available at https://github.com/soha500/
EglSyncNew/

was able to complete the synchronisation process successfully and

as expected when the sync regions were well-defined and when

there were no conflicts in the values included in the generated

files. In addition, the algorithm has successfully identified all the

inconsistencies that were introduced and reported the errors back

to the user, as expected.

In the second part of the correctness test was focusing on the

syntax of the sync regions. The possible cases that could happen in

this aspect can be found in Table 2. Table 2 also demonstrates the

result of our tests. The results show that the proposed approach

can act when any of the possible cases happened and warn the

developers where the mistake is by reporting a clear message into

the console with information on where the error is found and the

conflicting values involved.

5.2 Performance and Scalability

To assess the performance and scalability of our prototype imple-

mentation, and to ensure that it is free from unnecessary bottle-

necks, we executed the M2T transformation discussed in Section 2

on models of various sizes, producing 5 sets of files ranging from

2,000 to 10,000 files (with a step of 2,000 files).

Each experiment was repeated 3 times, collecting the average

time and memory, for each of the following scenarios 8:

• Each generated file had one sync region.

• Each generated file had two sync regions.

• Each generated file had three sync regions.

• Each generated file had four sync regions.

• Each generated file had five sync regions.

In this experiment, the values included in the generated files

were always different from those stored in models, thus our approach

had to update the values in every element in the source model.

We have chosen to evaluate our solution with up to 10,000 files,

a number that significantly exceeds the number of files produced

by typical M2T transformations in our experience. The results are

summarised in Table 3 and in Figures 4-7.

Figure 4 presents the results of the average total time required

for the execution of the synchronisation for the 5 different sizes of

generated file sets and the 5 scenarios with the different number of

sync regions. Each line represents one file set, while the horizontal

axis is the number of sync region(s) for each file in the set. As one

can see, the execution time increases linearly as the number of sync

regions increase for all the different sets of files. However, it is not

clear if the execution time increases linearly or has a exponential

trend when the number of files increases while keeping the number

of sync regions the same (see Figure 6). This is an indication that

there might be a glitch in the implementation of the proposed

approachwhen dealingwith big number of files and needs to further

be investigated. However, having 10,000 generated files is rarely

the case even in extreme M2T transformation cases.

In terms of absolute values, in the scenario of having 2,000 files

with 1 sync region in each of them, our approach required about

40 seconds to complete the synchronisation (see Table 3 - top high-

lighted value). For the largest of the experiments (i.e., having 10,000

8The experiments were executed on a laptop computer with the following specifi-
cations: MacOS Mojave 106.14., Intel Core i7, 2-cores @ 3.5Ghz, 1x16 GB 2133MHz
LPDDR3 RAM

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Almutairi, et al.

Test ID # Sync Regions (SR) Description Expected Output Pass

T1 1 Model and SR have the same value Model value is not updated Pass

T2 1 Model and SR have different values Model is updated with the SR value Pass

T3 2 Model and both SRs have the same value Model value is not updated Pass

T4 2 Both SRs have the same value but different

from the Model

Model is updated with the SRs value Pass

T5 2 One SR has the same value with the Model

but the second SR has different value

Model is updated with the second’s SR

value

Pass

T6 2 SRs have different values and both are dif-

ferent with the value in the Model

Inconsistency Error Pass

T7 3 Model and all SRs have the same value Model value is not updated Pass

T8 3 All SRs have the same value but different

from the Model

Model is updated with the SRs value Pass

T9 3 One SR has the same value with the Model,

the other two have the same value but dif-

ferent from the Model

Model is updated with the values of the

two SRs that have the different valeus

Pass

T10 3 All SRs have different values Inconsistency Error Pass

Table 1: The results of testing the possible cases when using sync regions (inconsistent values).

Tests Syntax of sync region Expected Output Pass

i ID element is missing in one sync regions At least on sync region does not contain ID Pass

ii Attribute is missing in one sync regions At least on sync region does not contain attribute Pass

iii Beginning of at least one sync region is missing An error syntax Pass

iv End of at least one sync region is missing An error syntax Pass

v Respective element is missing The respictive element not found Pass

vi Respective attribute is missing The respective attribute is not found Pass

vii Different type Incompatible type Pass

Table 2: The results of testing the syntax of sync regions

(misformated or incompleted).

Files # Sync Regions Average (Total) Time (in s) Average Memory Used (in MB)

2000 1 40.83 316.77

2000 2 88.61 58.97

2000 3 124.60 48.43

2000 4 168.39 283.53

2000 5 212.60 276.61

4000 1 167.89 97.24

4000 2 345.54 75.94

4000 3 545.45 94.69

4000 4 740.26 852.79

4000 5 950.55 546.58

6000 1 384.27 1131.14

6000 2 754.12 968.73

6000 3 1192.69 599.44

6000 4 1736.60 1030.33

6000 5 2224.22 955.47

8000 1 724.76 968.26

8000 2 1510.34 827.48

8000 3 2341.29 842.78

8000 4 3188.45 777.47

8000 5 4221.06 680.05

10000 1 1198.81 244.07

10000 2 2368.72 596.18

10000 3 3678.04 624.46

10000 4 5000.96 507.28

10000 5 6366.22 231.46

Table 3: Average execution time and memory consumption

form the different number of files and sync regions

files with 5 sync regions each) the average time taken for the 3 runs

was around 1 hour and 45 minutes (6,366.22 seconds). Even in this

extreme scenario the synchronisation completes successfully.

Figure 6 presents the same data but this time as the number of

generated files is increasing for each of the scenarios for the same

number of sync regions. Each line in Figure 6 represents a scenario

with fixed number of sync regions and the 5 data points on the line

represent the 5 different sizes of file sets.

Finally, in Figures 5 and 7 the average memory consumption

is presented as the number of sync regions increase (keeping the

number of files fixed) and as the number of files increases (keeping

the number of sync regions fixed), respectively. There is no clear

correlation, which is explained by the fact that Java garbage collec-

tion is clearing up memory when needed. What is of importance,

is that in the worst case our prototype solution consumed about

1GB of memory (1131.14MB - see highlighted value in the memory

consumption column of Table 3).

0

1000

2000

3000

4000

5000

6000

7000

1 Sync Region 2 Sync Regions 3 Sync Regions 4 Sync Regions 5 Sync Regions

A
v
e

ra
g

e
 T

o
ta

l
T

im
e

 i
n

 S
e

co
n

d
s

Number of Sync Regions Per File

Performance / Scalability Experiment (Time as Sync Regions Increase)

2000 Files

4000 Files

6000 Files

8000 Files

10000 Files

Figure 4: Results of measuring the average time for different

size of models and number of sync regions as the number of

sync regions increases.

5.3 Generalisability

To assess the generalisability of the synchronisation algorithm,

we adapted the M2T transformation to generate files for different

languages such as Java, Python, HTML, and Ruby.We tested the syn-

chronisation prototype solution by repeating the synchronisation

Towards Round-Trip Engineering of Code Fragments Embedded in Models MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

0

200

400

600

800

1000

1200

1 Sync Region 2 Sync Regions 3 Sync Regions 4 Sync Regions 5 Sync Regions

A
v
e

ra
g

e
 M

e
m

o
ry

 U
sa

g
e

 i
n

 M
B

Number of Sync Regions Per File

Performance / Scalability Experiment (Memory Usage as Sync Regions Increase)

2000 Files

4000 Files

6000 Files

8000 Files

10000 Files

Figure 5: Results ofmeasuring the averagememory for differ-

ent size of models and number of sync regions as the number

of sync regions increases.

0

1000

2000

3000

4000

5000

6000

7000

2000 Files 4000 Files 6000 Files 8000 Files 10000 Files

A
ve

ra
g

e
 T

o
ta

l
T

im
e

 i
n

 S
e

co
n

d
s

Number of Generated Files / Components in the model

Performance / Scalability Experiment (Time as Generated Files Increase)

1 Sync Region

2 Sync Regions

3 Sync Regions

4 Sync Regions

5 Sync Regions

Figure 6: Results of measuring the average time for different

size of models and number of sync regions as the number of

files increases.

0

200

400

600

800

1000

1200

2000 Files 4000 Files 6000 Files 8000 Files 10000 Files

A
v
e

ra
g

e
 M

e
m

o
ry

 U
sa

g
e

 i
n

 M
B

Number of Generated Files / Components in the model

Performance / Scalability Experiment (Memory Usage as Generated Files Increase)

1 Sync Region

2 Sync Regions

3 Sync Regions

4 Sync Regions

5 Sync Regions

Figure 7: Results ofmeasuring the averagememory for differ-

ent size of models and number of sync regions as the number

of files increases.

Target language Opening Comment Format Closing Comment Format Test Result

Java // or /* */ Pass

HTML <!Ð Ð> Pass

Python # N/A Pass

Ruby # or =begin =end Pass

Table 4: Generalisability experiment results

(in the form of JUnit tests) 100 times for each of the aforemen-

tioned programming languages. In this experiment, the content of

all regions in the generated files was different to the corresponding

values in the source model. Table 4 presents the open/close com-

ment format used for each of the target programming languages

and the results (i.e., the synchronisation algorithm passed all the

tests and updated the models as expected).

5.4 Threats to Validity

The results obtained through the experiments described in this

section are consistent with our expectations based on the inher-

ent (linear) complexity of the proposed synchronisation algorithm

when sync regions increase. However, it is not clear if the same

linear trend exists in the case where the number of files increases.

This requires further investigation to identify if there is any bot-

tleneck in the implementation. To build additional confidence on

the generalisability of the results, the prototype would benefit from

evaluation in more extreme scenarios (e.g. with a large number of

sync regions per file, with large individual sync regions).

5.5 User Evaluation

Beyond evaluating the correctness, performance and scalability of

the proposed sync regions approach, it would also be useful to verify

that it delivers the expected benefits to modellers in practice. This

would require an experimental setup that would involve developing

a domain-specific language and a supporting generator, training

users in their use and then measuring whether the benefits of being

able to edit code fragments within a target-language-aware IDE

outweigh the burden of the extra step to run the synchronisation

process described in Section ??. As the benefits of using a modern

IDE compared to a plain text editor are well-recognised, we argue

that the value of such an experiment is minimal.

Comparing the effectiveness of sync regions with other ap-

proaches such as protected regions or inheritance/delegation-based

generated code augmentation would be much more interesting

but also very challenging to generalise as essentially the benefits

of sync regions would boil down to the value of maintaining the

model as the single source of truth of the system. Arguably, this

can vary significantly depending on the extent to which code frag-

ments need to be embedded in models, the size and complexity of

such fragments and the programming language in which they are

written, as well as the team’s established processes and domain-

specific constraints (e.g. certification requirements). To extract any

generalisable observations, a series of such experiments involving

different DSLs, generators and domains would need to be carried

out, which is beyond the scope of this paper.

6 RELATED WORK

Greifenberg et al. [7] summarised known mechanisms for integrat-

ing generated and handwritten code for object-oriented program-

ming languages:

• Generation gap is a pattern that keeps the handwritten and

generated code separate by putting them in different classes

using inheritance [3] or delegation [4]. More specifically, del-

egation is a pattern of object composition in object-oriented

programming (OOP) [4]. It consists of two objects: a delega-

tor and a delegate. The delegator works by delegating parts

of its functionality to the delegate by invoking the latter’s

methods. To achieve this, the delegate provides an interface

that declares the method signatures that can be invoked.

The include mechanism that languages such as PHP (but

not Java) provide is another approach for integrating hand-

written and generated code. However, not all the languages

support such mechanisms (e.g., HTML, LATEX) and as a

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Almutairi, et al.

result such approaches cannot be applied for all the target

languages.

• Some object-oriented languages (such as C#) provide support

for partial classes, i.e. classes split acrossmultiple source code

files (some of which can be generated and some of which

can be hand-written) that are combined into a single logical

class when the application is compiled.

• A part-merger is a syntax-aware component that is able to

merge multiple files of a certain type such as Java files, into

one file [8, 19].

• Protected regions are regions that are declared in the gener-

ation templates by the developers for the purpose of adding

handwritten code to the generated files and protecting it

upon regeneration [15].ManyM2T transformation languages

provide support for protected regions such as EGL, XPand [17]

and Acceleo [2]. Gascuena et al. [5] mentioned the impor-

tance of having a mechanism that would enable developers

to manually add handwritten code and presented protected

areas as a solution.

The sync regions approach presented in this paper is most similar

to protected regions as in both approaches generated and hand-

written content co-exists in the same files. The main difference is

that while in protected regions hand-written content is preserved

by the M2T transformation engine upon regeneration, in sync re-

gions it is automatically copied back into the model in a separate

synchronisation step, thus restoring the model as the single source

of truth.

Action and executable (modelling) languages, like the Founda-

tional Subset for Executable UML Models (fUML) [12] and the

Action Language for Foundational UML (Alf) [11] can eliminate

the need for injecting general-purpose language code fragments in

models, improvemodel analysability and facilitate multi-target code

generation. On the flip side, the editors/IDEs of such languages tend

to provide inferior support for features such as code navigation,

completion and debugging compared to the respective facilities

of general-purpose programming languages. Also, this requires

developers to learn yet another language ś often with limited doc-

umentation/examples compared to general-purpose programming

languages.

7 CONCLUSION AND FUTUREWORK

In this paper, we have presented an approach that facilitates au-

tomated synchronisation between models and textual artefacts

generated from them via template-based M2T transformation. We

have implemented the proposed approach on top of an existingM2T

language (EGL) and we have conducted preliminary evaluation of

its scalability. The results of our evaluation experiment suggest that

the synchronisation algorithm scales linearly with the number of

sync regions but further experimentation is required to identify if

increasing the number of files has an exponential impact in the ex-

ecution time; a primary investigation has already been carried out

while a full investigation is included in our plans for future work.

Going forward, we plan to extend the proposed approach so that it

can detect changes that have been made by developers outside of

sync regions in generated files, so that they are not inadvertently

overwritten the next time the M2T transformation is executed. User

evaluation, in the context described in Section 5.5, would also be of

interest.

ACKNOWLEDGMENTS

The work in this paper has been partially funded through the HI-

CLASS InnovateUK project (contract no. 113213).

REFERENCES
[1] Eclipse Foundation. 2011. "Java emitter templates" [Online]. https://projects.

eclipse.org/projects/modeling.m2t.jet
[2] Eclipse Foundation. 2022. Acceleo [Online]. www.eclipse.org/acceleo
[3] Martin Fowler. 2010. Domain-specific languages. Pearson Education.
[4] Erich Gamma. 1995. Design patterns: elements of reusable object-oriented software.

Pearson Education.
[5] Jose M Gascuena, Elena Navarro, Patricia Fernández-Sotos, Antonio Fernandez-

Caballero, and Juan Pavon. 2015. IDK and ICARO to develop multi-agent systems
in support of Ambient Intelligence. Journal of Intelligent & Fuzzy Systems 28, 1,
3ś15.

[6] Joseph D Gradecki and Jim Cole. 2003. Mastering Apache Velocity.
[7] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look, Pedram

Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dimitri Plotnikov, Dirk
Reiss, Alexander Roth, et al. 2015. A comparison of mechanisms for integrating
handwritten and generated code for object-oriented programming languages.
In 2015 3rd International Conference on Model-Driven Engineering and Software
Development (MODELSWARD). IEEE, 74ś85.

[8] Timo Greifenberg, Katrin Hölldobler, Carsten Kolassa, Markus Look, Pedram
Mir Seyed Nazari, Klaus Müller, Antonio Navarro Perez, Dimitri Plotnikov, Dirk
Reiß, Alexander Roth, et al. 2015. Integration of handwritten and generated
object-oriented code. In International Conference on Model-Driven Engineering
and Software Development. Springer, 112ś132.

[9] Benjamin Klatt. 2007. Xpand: A closer look at the model2text transformation
language. , 2008 pages.

[10] Stephen J. Mellor, Stephen Tockey, Rodolphe Arthaud, and Philippe Leblanc. 1999.
An Action Language for UML: Proposal for a Precise Execution Semantics. In
The Unified Modeling Language. ńUMLż’98: Beyond the Notation, Jean Bézivin
and Pierre-Alain Muller (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
307ś318.

[11] Object Management Group. 2017. Action Language for Foundational UML (Alf).
OMG Standard.

[12] Object Management Group. 2021. Semantics of a Foundational Subset for Exe-
cutable UML Models (fUML). OMG Standard.

[13] T. Parr. 2013. łStringTemplate,ž [Online]. https://www.stringtemplate.org/
[14] Louis M Rose, Nicholas Matragkas, Dimitrios S Kolovos, and Richard F Paige.

2012. A feature model for model-to-text transformation languages. In Proceedings
of the 4th International Workshop on Modeling in Software Engineering. IEEE Press,
57ś63.

[15] Louis M Rose, Richard F Paige, Dimitrios S Kolovos, and Fiona AC Polack.
2008. The epsilon generation language. In European Conference on Model Driven
Architecture-Foundations and Applications. Springer, 1ś16.

[16] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2009. EMF:
Eclipse Modeling Framework 2.0 (2nd ed.). Addison-Wesley Professional.

[17] Eugene Syriani, Lechanceux Luhunu, and Houari Sahraoui. 2018. Systematic
mapping study of template-based code generation. Computer Languages, Systems
& Structures 52 (2018), 43ś62.

[18] Johannes Trageser. 2020. On the Need for a Formally Complete and Standardized
LanguageMapping between C++ and UML. In Proceedings of the 15th International
Conference on Evaluation of Novel Approaches to Software Engineering - ENASE,.
INSTICC, SciTePress, 540ś547. https://doi.org/10.5220/0009578305400547

[19] Steffen Zschaler and Awais Rashid. 2011. Towards Modular Code Generators
Using Symmetric Language-Aware Aspects. In Proceedings of the 1st Interna-
tional Workshop on Free Composition (Lancaster, United Kingdom) (FREECO ’11).
Association for Computing Machinery, New York, NY, USA, Article 6, 5 pages.
https://doi.org/10.1145/2068776.2068782

	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Implementing Component Behaviour

	3 Extending M2T Templates with Sync Regions
	3.1 Specifying Sync Regions
	3.2 Synchronising Sync Regions with Model Elements
	3.3 Synchronisation Algorithm

	4 Applicability and Limitations
	5 Evaluation
	5.1 Correctness
	5.2 Performance and Scalability
	5.3 Generalisability
	5.4 Threats to Validity
	5.5 User Evaluation

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

