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ABSTRACT

Conservative execution, end-to-end traceability, and context-aware

resource handling are desirable features inmodelmanagement build

processes. Yet, none of the existing MDE-dedicated build tools (e.g.

MTC-Flow, MWE2) support such features. An initial investigation

of general-purpose build tools (e.g. ANT, Gradle) to assess whether

we could build a workflow engine with support for these desirable

features on top of it revealed limitations that could act as roadblocks

for our work. As such, we decided to design and implement a new

MDE-focused build tool (ModelFlow) from scratch to avoid being

constrained by assumptions and technical constraints of these tools.

We evaluated whether this decision was sensible by attempting

to replicate its behaviour with Gradle in a typical model-driven

engineering scenario. The evaluation highlighted scenarios where

Gradle could not be extended to achieve the desirable behaviour

which validates the decision to not base ModelFlow on top of it.
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1 INTRODUCTION

Conservative execution, end-to-end traceability, and context-aware

resource handling are desirable features in model management

build processes. Conservative executions ensure that the process

only executes required tasks based on the up-to-date state of its

resources. Context-aware resource handling minimizes the invo-

cation of potentially expensive load operations. And end-to-end
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traceability can be used for impact analysis, debugging and identi-

fication of refactoring opportunities [6].

To support the build process of MDE projects, some approaches

have opted for extending general purpose build tools with support

for model management tasks. This is the case of EMF, Epsilon and

ATL which have extended ANT to support model management

tasks, including model loading, disposal, validation and transfor-

mation. While several build tools provide out-of-the-box support

for incremental1 task executions, other features can be more chal-

lenging to adapt e.g. using models to influence the task execution

order and using them to provide end-to-end traceability. Other ap-

proaches such as MTC-Flow [1], MMINT [3] and ChainTracker [5]

have opted for dedicated solutions, some placing task-model inter-

dependencies at their core, others managing their traces. However,

none of these tools offer the incremental task execution, which is

important for efficiency, nor do they offer a context-aware approach

for model handling.

We performed an initial investigation of general-purpose build

tools such as Gradle [11] and Pluto [4], to assess whether we could

build a workflow engine with support for these desirable features

on top of it. This investigation (discussed in Sec. 2.2) revealed limita-

tions that could act as roadblocks for our work. As such, we decided

to design and implement a prototype from scratch to avoid being

constrained by these limitations. Our prototype, ModelFlow, con-

sists of a textual language for specifying model management tasks

and their dependencies, along with an interpreter that provides the

desirable MDE build tool features.

The semantics and syntax of the ModelFlow language were out-

lined in a previous paper [13] ś without a supporting implementa-

tion at that stage. Compared to [13], in this paper we: (a) provide an

in-depth analysis of background and related work, (b) present the

concrete architecture and implementation of ModelFlow, (c) demon-

strate its use in a more comprehensive scenario and at a finer level

of detail, and (d) evaluate its capabilities and performance against

Gradle.

Having implemented ModelFlow we evaluated whether this de-

cision was sensible by attempting to replicate its behaviour with

Gradle (best-of-breed general-purpose build tool) in a typical model-

driven engineering scenario. The evaluation highlighted scenarios

where Gradle could not be extended to achieve the desirable be-

haviour; this validates the decision to not base ModelFlow directly

on Gradle. Nevertheless, it is recognised that MDE tasks are only a

1In the sense that tasks define and check their inputs to determine if a re-execution is
needed
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subset of all tasks in a build, and that attempting to develop a com-

plete replacement for e.g. Gradle is a very ambitious task. Thus, in

future work we should explore how to 1) either propose extensions

to Gradle to accommodate the scenarios we have identified or 2) to

provide integration mechanisms between Gradle and ModelFlow.

Roadmap. The rest of the paper is structured as follows. Sec. 2

discusses existing build systems and presents a motivating example

that highlights their limitations in the context of MDE processes.

Sec. 3 describes ModelFlow and the facilities it provides to address

these limitations. Sec. 4 evaluates our solution with an experiment

and a qualitative analysis that compares ModelFlow against Gradle.

Sec. 5 discusses related work. Finally, Sec. 6 concludes the paper

and outlines future work.

2 BACKGROUND AND MOTIVATION

This section starts with a motivating example of a code generation

process that illustrates desirable features in a build tool that sup-

ports model management tasks. We then discuss and summarize

how widely-used and state-of-the-art build tools can support the

development process of the example.

2.1 Motivating example

Our motivating example describes a simplified process for generat-

ing a Java implementation of a component-based system. The pro-

cess consists of three model management tasks: validation, model-

to-model transformation, and model-to-text transformation. The

dependencies between tasks, models, metamodels and file resources

are illustrated in Figure 1. For simplicity, all models and metamod-

els in this example are built with EMF. The component model a○

represents a set of interconnected component blocks such as the

one in Figure 3a . The configuration model b○ defines Tolerance

elements that will be used to filter incoming signals of ports in

the component model using a configurable tolerance value. The

metamodels of a○ and b○ are presented in Figure 2.

Figure 1: Dependency Graph

The wellformedness of models a○ and b○ is validated with task
1○ using EVL [9] invariants2 such as the ones in Listing 1. The con-

straint HasSource in line 2 checks that all Connector elements in the

component model have a source, by checking that their from property

is defined. Similarly, the constraint PositiveValue in line 8 checks

2The type of element that the constraints act upon and the model they belong to is
indicated in the context environment e.g. component!Connector acts on Connector
elements from the component model. The message is displayed when the check fails.

Figure 2: configuration and component metamodels

that the value of elements of type Tolerance in the configuration

model are greater than zero.

1 context component!Connector {

2 constraint HasSource {

3 check : self.from.isDefined ()

4 message : self.name + " has no source" }}

5 context config!Tolerance {

6 constraint PositiveValue {

7 check : self.value > 0

8 message : "Tolerance with no positive value" }}

Listing 1: Sample EVL invariants

After the validation step, models a○ and b○ are consumed by an

ETL [8] model-to-model transformation 2○ to produce the extended

model c○. The outputmodel is an extended version of the component

model containing additional Filter components for each Tolerance

element in the configurationmodel. Each Filter is populated with the

value from the corresponding Tolerance element, and the incoming

Connector of the port targeted in the Tolerance is split into two

connectors: one that goes into the input port of the Filter and one

that comes out from its output port. The Filter is created in the same

container as the container of the port targeted by the Tolerance

element. Figure 3b represents the corresponding extended model

that resulted from Figure 3a which contains an additional Filter

component represented by the TemperatureFilter block.

1 public class TemperatureComparator {

2 private Double temperature , targetTemperature ,

difference;

3 private void compute () {

4 /* protected region compute on begin */

5 this.difference = this.targetTemperature -this.

temperature;

6 /* protected region compute end */

7 }}

Listing 2: Generated code of the TemperatureComparator

component

The remaining operation is an EGX [12] model-to-text trans-

formation 3○ which uses the extended model as input to generate

Java code. The resulting code establishes the connections between

components, but the developer is expected to handwrite their in-

ternal logic inside protected regions3. These regions are illustrated

3A section which should not be overwritten if the model-to-text transformation is
re-executed.
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in Listing 2 where lines 6 and 8 indicate the start and end of a

protected region that can be hand-written.

Provided the dependencies between the model and task artefacts

can be specified, a supporting MDE build tool should be able to

offer:

- Conservative task execution. The build execution must be con-

sistent with the impact that resource changes have on the different

tasks. A conservative task execution is able to identify and execute

only the tasks affected by a set of changes. For example, if we

change the generate.egx M2T transformation program it would be

desirable that the workflow only executes the M2T task as everything

else is not affected.

- Context-aware model loading and disposal. Model manage-

ment tasks are typically preceded and succeeded by loading and

saving/disposing of the models they operate on. Large models can

be slow to load andmemory-intensive [7, 14]. Therefore they should

be loaded only if they are required by tasks of the worklflow. Like-

wise, to free up memory, it is also important to dispose of them

as soon as they are no longer useful. For example, if only tasks

M2M and M2T are to be executed, the component and configuration

models can be disposed from memory immediately after M2M’s

execution, and the extended model does not need reloading to be

used by M2T. Following the execution of a task, a context-aware

model loading and disposal strategy knows if a loaded model needs

to be retained in memory to be reused by another task or if it can

be safely disposed of.

- End-to-end traceability. Capturing traceability links between

consumed/produced model elements and/or lines of code can be

useful for debugging and analysis purposes. While traceability in-

formation is often a by-product of individual model management

operations it is rarely offered as a combination of traces from tasks

in a workflow. To our knowledge, only ChainTracker [5] offers end-

to-end traceability from a workflow. Consider a scenario where a

developer noticed an incorrect tolerance value in of the generated

code for the TemperatureFilter component from Figure 3b. Having

access to the traces of the workflow execution could allow the

navigation from code, to the extended model and then to the con-

figuration model where the tolerance value could be fixed.

- Protection of output resources. Depending on the scope of a de-

veloper’s activity, different behaviours could be provided by anMDE

build tool. For instance, a developer could be evaluating whether

the extended model was producing the desired outcome with the

generated code. This process could involve manually modifying the

model and then executing the code generator. Having a mechanism

that prevents the execution of the M2M task (or that at least asks

if it should go ahead) can be useful to protect the manual changes

in the extended model from being overwritten. However, having a

mechanism that discards changes made to this intermediate model

to restore consistency can be useful in production mode.

2.2 Available solutions

We now discuss the level of support for the desirable MDE build tool

features presented above, within widely-used and state-of-the-art

build tools: Ant, Gradle, Pluto and Maven. Additional tools such as

MMINT, MTC-Flow, MWE2 and ChainTracker will be discussed in

the related work section.

Apache Ant is a widely used build tool written in Java. A build

definition in Ant is captured in an XML file and it starts with a root

project which contains one or more targets. Each target defines

one or more tasks which are sequentially executed. Ant uses target

inter-dependencies to compute its execution plan. Ant supports

incremental executions through the use of the uptodate tag which

checks whether a set of target resources are more up-to-date than

their source. If this is the case, this element updates the value of a

boolean property which can be used by targets to condition their

execution.

To illustrate how Ant would support conservative task execu-

tions, we use the build script in Listing 3 which triggers a code

generation task. The script contains two targets. The first target per-

forms an uptodate check (line 3) which updates the boolean value

of the template.updated property when the output.java has a more

recent timestamp than the template.egl file. In turn, this property

is used by the M2T target in line 5 as a condition for its execution.

This approach enables the triggering of the M2T target only when

the template file is more up-to-date than the generated file. This

strategy has two major drawbacks. One is that up-to-date checks

must be explicitly specified for each relevant combination of input

and outputs (e.g. transformation script, imported libraries, gener-

ated files) that should trigger a given task execution. Specifying

this information in both the task specification and the up-to-date

checks can be an error prone tasks and it involves duplicating infor-

mation. Another is that timestamps may not be the right property

to determine if files are up-to-date. For example, generated files

with protected regions may be modified inside these regions and

still be considered up-to-date. A similar reasoning applies if we

wanted to protect generated files from being overwritten, in that

they would need explicit conditional checks to be setup.

1 <project name="Workflow" default="M2T">

2 <target name="checkFiles">

3 <uptodate targetfile="template.egl"

srcfile="output.java"

property="template.updated" />

4 </target >

5 <target name="M2T" depends="checkFiles"

if="template.updated">

6 <epsilon.emf.register file="component.ecore"/>

7 <epsilon.emf.loadModel name="M"

modelfile="extended.model"

metamodeluri="Component" read="true"

store="false"/>

8 <epsilon.egl src="template.egl"

target=''output.java''>

9 <model ref="M"/>

10 </epsilon.egl>

11 </target >

12 </project >

Listing 3: Ant incremental workflow

While Ant does not provide built-in support for model man-

agement tasks, relevant extensions have been contributed from

tools such as ATL and Epsilon. Examples of Epsilon tasks in Ant

are sown in lines 6-8 of Listing 3. In particular, lines 6 and 7 of

Listing 3 show how model loading and metamodel registering are

two separate tasks that must happen before the model management

task of line 8 can use them. Once loaded, these models are kept in
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(a) A boiler component (b) An extended boiler component

Figure 3: Boiler components

an in-memory model repository which is accessible by all model

management tasks. To support context-aware model loading and

disposal in Ant, a developer would have to define each task in a

separate target and load all the required modes before the execution

of a task. Even then, models reused in different Ant targets would

have to be disposed and reloaded in each.

Gradle is also a task-based build tool, language and depen-

dency manager. In contrast to Ant, tasks in Gradle do not have

to be contained in targets and they can directly depend on other

tasks. Its build life cycle consists of three phases: initialization,

configuration, and execution. After resolving project dependen-

cies in the initialization phase, the configuration phase builds a

graph of the tasks that are part of the build and computes which of

them are required to be executed in the execution phase [11].

Gradle was designed to support incremental execution of build

scripts. The task execution graph is not only influenced by task

interdependencies but also by their inputs and outputs [11]. These

values are typically evaluated at the configuration phase but some

inputs may be evaluated at the execution phase [11]. If the inputs

of a task have not changed, it is considered up-to-date and skipped,

otherwise it is executed [11]. In Gradle, properties of type file,

directory or file collections can be declared as inputs or outputs,

but properties of arbitrary nature such as strings can only be used

as inputs.

As demonstrated later in the paper, despite the ability to de-

clare dynamic task outputs, these are not used to mark tasks as

out-of-date. The lack of support for dynamically discovered de-

pendencies [4] makes output protection difficult and can make the

computation of the up-to-date status of a task inconsistent with

what its input and output resources suggest.

Thanks to Gradle’s language extension facilities, custom data

structures can be used to declare models which can be accessed by

the tasks in the build. An example data structure used to declare

the configuration model is shown in the listing below. We discuss

this in more detail and with reference to a concrete example in the

evaluation (Sec. 4.1).

1 models {

2 config(EMF){

3 modelFile = file('resources/m/config.model ')

4 metamodelFile =

file('resources/mm/configuration.ecore ') }}

Hybrid/pluto is an incremental build tool that performs dy-

namic analysis to enforce invariants on its dependency graph [4, 10].

This graph connects file nodes with built units (i.e. tasks) through

edges that indicate whether the build unit produces or requires the

file [4]. The initial version of the algorithm pluto [4] interleaved

dependency analysis with task execution. The hybrid version of

the algorithm considered the full dependency graph traversal un-

necessary in subsequent executions and proposed the use of file

changes to only select potentially impacted tasks and check their

consistency to decide whether to re-execute them [10].

To check whether a file is up-to-date, pluto uses the notion of

stampers which are functions which take a file and produce a value

or stamp based on some criteria such as its last modification date,

contents’ hash, or existence [4]. These stamps are saved in the

edges between a file and a task in the dependency graph. Because

of the stampers, Pluto is able to offer conservative task execution.

Nevertheless, Pluto does not use outputs to determine if a task

execution is appropriate.

Apache Maven is a build tool and dependency manager that

favours convention over configuration. Maven configures the build

process using one or more xml files called POMs.

In contrast to ANT, Maven has three predefined life cycles4

which go through specific phases in a predefined order. For exam-

ple its default life cycle includes the phases validate, initialize,

compile, and test in that order. Invoking any of those phases will

implicitly call those that precede it. Custom tasks can be defined but

they must be attached to a specific phase of a life cycle. Similarly,

the archetype of a maven project defines different tasks which are

executed by default at different phases of the life cycle. If more than

one task is attached to the same phase, they are executed in the

order in which they are declared.

While some Maven tasks can execute themselves incrementality,

it is not a feature of the build tool.

While some of these tools have support for up-to-date checks

to input resources, some are based on timestamps (e.g. Ant) or

single mechanisms (e.g. Gradle) and others offer a broad range of

possibilities (e.g. Pluto). None of these tools have a task execution

mechanism designed to support elements such as models to influ-

ence computed plans but there are cases where extensions can be

provided so that models influence the execution order (e.g. Ant,

Pluto, Gradle). In particular, Ant would requires extensive condi-

tional statements, Pluto would only be able to handle input models

and Gradle would need models to be resolved as sets of files. Only

Gradle and Pluto use outputs to influence task execution decisions

but Gradle can only handle output files and directories when they

are known before the task execution and Pluto does not know the

outputs until the end of the task’s execution. Evidently, none of

these tools has support for end-to-end traceability out-of-the-box,

but the data structure extension mechanisms of Gradle can be used

to capture models declarations which could be used to support

end-to-end traceability.

4http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
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3 MODELFLOW

ModelFlow is a prototype for specifying and executing multi-step

workflows involving model management tasks. ModelFlow consists

of a textual language for specifying model management tasks and

their dependencies, and an interpreter that can conservatively exe-

cute such workflows based on changes made to relevant artefacts

(e.g. models, model management programs, generated files). Mod-

elFlow also supports context-aware model loading and disposal and

offers end-to-end traceability. ModelFlow is in active development

and can be found in the EpsilonLabs projects5.

Component

Depends on

Resource key

Executor
Dependency 

Solver

Model 

Manager

Parameter 

Manager

Execution 

Tracer

End-to-End 

Tracer

Execution 

Solver

Workflow 

Specification

Figure 4: Component diagram of ModelFlow’s architecture

The architectural components of ModelFlow are shown in Fig-

ure 4. To execute a workflow, ModelFlow receives a workflow spec-

ification which contains all the tasks to be executed along with the

model resources that they will consume or produce. The workflow

specification language is described in Sec. 3.1 using the example

from Sec. 2.1. Using the same example, we then describe the build ex-

ecution process focusing on how it contributes to the conservative

task execution (Sec. 3.2), output protection (Sec. 3.3), context-aware

resource handling (Sec. 3.4), and end-to-end traceability (Sec. 3.5).

Then, we outline some implementation details in Sec. 3.6.

3.1 Workflow specification

The specification of the motivating example workflow is illustrated

in Listing 4. A model resource specification requires a name, a

model type (e.g. EMF, Simulink) and configuration parameters. For

example, lines 2-13 of Listing 4 declare threemodel resources: config,

component and extended. These models are of type epsilon:emf and

populate the src and metamodelFile parameters.

A task specification requires a the name of the task, its type (e.g.

EOL, ATL, etc.), configuration parameters and the names of any

models that are to be consumed, modified or produced. Optionally,

a task specification may contain a guard, i.e. a boolean condition

that should be met for it to be executable; and declare explicit depen-

dencies to other tasks by name. For example, lines 14-28 of Listing 4

declare three tasks: validate of type epsilon:evl,m2m of type epsilon

:etl and m2t of type epsilon:egx. These tasks specify their input

and output models after the in and out keywords, respectively, and

declare task interdependencies after dependsOn. The tasks populate

any configuration parameters inside the curly braces environment

such as the src and outputRoot parameters in lines 26-27 of task m2t.

The task and model resource types will process the parameters

in the specification. A task type can declare some of its parameters

as inputs or outputs so that tasks can determine if a re-execution is

needed in subsequent invocations. For example, the src parameter

of the three tasks in Listing 4 is declared as an input by the tasks.

5https://github.com/epsilonlabs/modelflow

Other task parameters that are not required in the configuration

can be implicitly declared as inputs or outputs by the task type. For

example the generated files of task m2t are declared as outputs by

the task type epsilon:egx.

1 param basedir;

2 model config is epsilon:emf {

3 src : basedir + "config.model"

4 metamodelFile : basedir + "configuration.ecore"

5 }

6 model component is epsilon:emf {

7 src : basedir + "component.model"

8 metamodelFile : basedir + "component.ecore"

9 }

10 model extended is epsilon:emf {

11 src : basedir + "extended.model"

12 metamodelFile : basedir + "component.ecore"

13 }

14 task validate is epsilon:evl

15 in config and component {

16 src : basedir + "validation.evl"

17 }

18 task m2m is epsilon:etl

19 in config and component

20 out extended

21 dependsOn validate {

22 src : basedir + "extended.etl"

23 }

24 task m2t is epsilon:egx

25 in extended {

26 src : basedir + "generate.egx"

27 outputRoot : "src -gen"

28 }

Listing 4: ModelFlow workflow

Although this example uses Epsilon tasks and model resources

only, our implementation is not bound to this framework neither

for tasks nor for resources. ModelFlow’s implementation already

supports tasks from the GMF and EMF frameworks and it can be

non-invasively extended to support additional modeling frame-

works and model management tasks.

3.2 Conservative task execution

The first step in the build execution involves deriving a depen-

dency graph from the workflow specification, i.e. a directed graph

built from explicit and implicit dependencies between tasks and

resources. This is done by the Dependency Solver component. Ex-

plicit dependencies are created when tasks declare a dependency

to another task and when tasks declare which resources are con-

sumed, produced or modified. In the motivating example, the M2M

task explicitly depends on the validation task and M2M explicitly

consumes models component and config. Implicit dependencies are

created when task parameters reference another task’s outputs e.g.

if a task used the generated files form M2T.

The next step in the build execution involves transforming the

dependency graph into an execution graph which is a directed

acyclic graph with task nodes only. This is done by the Execution

Solver component. The first step of this transformation consists

of adding all task nodes from the dependency graph in the new

execution graph. The second step consists of adding all task-to-

task edges found in the dependency graph. Finally, the algorithm

iterates over pairs of tasks creating edges in such a way that they
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satisfy themodel resource usage constraint defined below. In practice

this means that task-to-task dependencies take precedence over

resource-to-task ones. Attempting to create an edge that introduces

a cycle would result in an invalid execution graph and the execution

will be aborted.

Definition 1. The model resource usage [13] constraint specifies

that in an execution, a model resource: (a) can only be produced

by one task, (b) can be consumed and modified by any number of

tasks, and (c) must be produced before it can be modified.

This constraint ensures that the task graph is built in such a

way so that tasks that modify model resources are invoked before

tasks that read them, and that tasks that produce models are in-

voked before those that modify them. In subsequent executions, the

interpreter re-uses the same dependency and execution graphs6.

The next step in the build is to execute the plan. This is orches-

trated by the Executor component by iterating over the graph in

topographical order. This ensures all required tasks are executed be-

fore the task at hand. In the present implementation of ModelFlow,

tasks are executed sequentially. In future work we will add support

for concurrent executions.

There are several checks that each task in the iteration needs to

perform to decide whether it must run before actually preparing

for the execution. These checks are based on the up-to-date state

of its input and output parameters and resources. The first check

consists of verifying if the task is enabled and if its guard is satisfied.

If both conditions are met, the task goes on to evaluate its inputs

and outputs. If it is its first-time invocation of the task, no further

checks are required and the task proceeds to prepare itself for

execution. If there has been a previous execution, the Execution

Tracer component computes whether its output and input models

and parameters have changed. A more detailed explanation of how

the Execution Tracer performs this computation is given in Sec. 3.4.

If outputs have changed, the task (or the user) may decide to invoke

the output protection logic which prevents the task’s execution, or

to continue with the checks. If outputs have not changed (or were

not relevant to prevent the execution) but inputs have, then the

task now prepares for execution.

By the time a task must get ready for execution, its parameters

have already been configured but models may still need to be loaded.

After models have been loaded, the current input models and pa-

rameters are recorded by the Execution Tracer. The task is then

executed and afterwards their output parameters and models are

recorded by the Execution Tracer. If available, model management

traces can be passed to the End-to-End tracer at this stage.

3.3 Protection of Outputs

Consider the extended model that is produced from the model-to-

model transformation in the motivating example. After execut-

ing the workflow, a developer might manually modify this model

with the intention of understanding how the changes are propa-

gated to the code using the model-to-model transformation. When

a task is being considered for execution, one of the first checks

made is whether its output properties and resources have exter-

nally changed. In case the outputs have externally changed, if the

6There is currently no mechanism to invalidate the graphs if a workflow specification
has changed

build execution is in interactive mode then it will pause to ask the

user whether to execute the task, as this would discard the external

changes. If the build execution is in non-interactive mode, then the

user can specify the desired behaviour in advance by specifying

whether to protect or discard external changes.

In the example where the extended model is externally modi-

fied, triggering a build with the output protective behaviour enabled

would result in skipping the model-to-model transformation to

avoid the extended model from being overwritten, and on the exe-

cution of the code generation task as its input model would have

externally changed. In contrast, triggering an execution with this

protective behaviour disabled, would result in the execution of the

model-to-model transformation to restore the consistency of this

model.

3.4 Context-aware resource handling

In ModelFlow, a model is a resource that needs to be loaded into an

in-memory representation7 and be disposed of when no longer in

use. In addition, models are resources that influence the task execu-

tion order when used across multiple tasks. Both models and task

parameters can be used as inputs or outputs of a task. In practice,

this means that based on changes to their values from previous

executions, a task can determine if its execution is required.

The Parameter Manager and Model Manager components are

both in charge of determining if parameters or models have changed

from previous executions. They do so by computing stamps for these

elements which are then recorded by the Execution Tracer compo-

nent. Stamps were first introduced by Erdweg et al. [4] as values

that could precisely indicate whether the file was up-to-date e.g. a

timestamp, a hash, etc. Depending on whether the parameter is an

input or an output its stamp is computed differently in ModelFlow.

For models, the stamp also depends on whether it has already been

loaded or not.

Parameter Manager. When the Executor starts to process a task

and there is a trace from a previous execution available, the Param-

eter Manager is requested to compute new stamps for the input and

output parameters. Consider the model-to-text transformation from

the motivating example. The epsilon:egx M2T task type declares the

transformation script (src) as an input parameter and the generated

files as implicit output parameters. The Parameter Manager starts

by evaluating the task’s input parameters in order to compare their

hashes to the ones in the trace. In the case of the model-to-text

transformation the input stamp of the src parameter is computed

as the hash of the file and its value is compared to the one from the

execution trace.

The Parameter Manager then moves on to assess whether the

output parameters have changed from the previous execution. In

contrast to inputs, outputs cannot be fully evaluated at this point,

unless the task is executed. As such, the trace of output param-

eters must have sufficient information so that the stamp can be

recomputed without having to re-execute the task. For instance,

7The data that needs to be loaded in memory depends on the underlying modelling
framework/tool. For example, an XMI-based EMF model needs to be fully loaded into
memory, while a database-backed model persisted in NeoEMF [2] or CDO [15] can be
loaded partially and on demand.
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the stamp value for the generated files is a map that uses the path

of generated files as keys and their stamp as value.

The implementations for the different types of tasks can con-

tribute their own parameter stampers. For example, the epsilon:egx

task type contributes one that computes the stamp from the con-

tents of the file, ignoring any text within protected regions.

If the task is to go ahead with the execution, the already com-

puted stamps for the input parameters are registered by the Exe-

cution Tracer. After the task is executed, the parameter manager

computes a new stamp for the output parameters and the Execution

Tracer records the new values.

Model Manager. After processing the input and output parame-

ters, the Model Manager goes on to evaluate the stamps for input

and output models if a previous execution trace is available. As

for task parameters, the Model Manager uses different stampers

depending on whether models are inputs or outputs. In addition,

the stamp of input models is computed differently if the model

has been loaded or not. More precisely, the unloaded stamp is com-

puted for output models and for input models that have not yet

been loaded e.g. for being used by another task. If the input models

are available as loaded models, then the loaded stamp is computed

instead. Consider the configuration and extended models used by

the model-to-model transformation from the motivating example.

In this case, configuration is an input that was used in the previous

validation task and extended is an output. As such the stamp for the

extended model is calculated using an unloaded stamper, while that

for the configuration model is computed using a loaded one. Both

of these models are of epsilon:emf model type which contributes

both a loaded and an unloaded stamper. For these model types,

the loaded stamp is computed by serializing (not persisting) the

in-memory EMF resource while the unloaded stamp is computed

from the file. A similar approach can be adopted for models split

across many files, computing the stamp for all their fragments.

If a task is to go ahead with the execution, it requests the Model

Manager to retrieve all required models in loaded condition. At this

point the stamp of the input models is recorded by the Execution

Tracer. After the execution of the task, theModel Manager computes

the loaded hash of output models and the Execution Tracer records

their new value. In the execution trace, a record of the latest output

value is always kept to be able to detect external changes.

Context-awareness. After input and output models, and task pa-

rameters have been processed, if the task must go ahead with its

execution then the Model Manager assigns to the task all model

resources it requires for its execution, i.e. those to be consumed,

modified and produced. This component creates and loads a model

if none is available from previous executions or returns an instance

of a model from a previous execution. The model types (e.g. EMF)

decide if models that have been previously used can be re-used

by the task. For example, a model that was previously loaded as

an output model in another task could be configured by the EMF

implementation to switch to read-only if is now being required as

input.

After the task is executed and the traces produced by the task

have been recorded by the End-to-End Tracer component, models

that are not used by any future tasks are disposed.

3.5 End-to-end traceability

The execution of model management tasks may contribute a set

of traces e.g. between model elements, or between elements and

regions in text files. The End-to-End Tracer component is responsi-

ble for updating the model management trace model. ModelFlow’s

engine provides a generic interface, which model management task

providers (e.g. ATL, Acceleo) can use to translate their traces into.

This enables the component to keep all traces in the same format.

The end-to-end traceability metamodel is presented in Figure 5,

and is an extended version of the one published in [13]. The root el-

ement is theManagementTrace which contains a TaskTrace element

for each task in the build. This element binds a collection of Trace

elements to a task in the build. A trace supports arbitrary multi-

plicities of source and target Elements at various granularity levels.

These elements are associated to a resource in the build which is

their container. An element may be a ModelElement, a ModelEle-

mentProperty, a File or a collection of file Regions. Note that, in the

case of model elements, they are expected to have unique identi-

fiers within their model. The Link that connects source and target

elements of a trace can have a type but can also specify the name of

the Operation or rule associated to the trace e.g. a model-to-model

transformation rule named toleranceToComponent. The metamodel

also support attaching metadata to the traces by using Property

elements.

Figure 5: End-to-End Management Trace Metamodel

3.6 Implementation

Given the maturity of existing incremental build tools such as Gra-

dle and the availability of relevant prototypes such as Pluto, the de-

cision to build ModelFlow from first principles needs to be justified.

At this stage, we have opted to implement ModelFlow as a stan-

dalone tool and not as an extension of an existing build system (e.g.

Pluto/Gradle) to avoid any assumptions and technical constraints

imposed by the architectures of these systems (e.g. Gradle does

not support dynamic task outputs as discussed in Sec. 2.2). Having

understood the information and mechanisms required to achieve

conservative execution of model management tasks, context-aware
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model loading and disposal, and end-to-end traceability, extend-

ing Gradle/Pluto to accommodate similar capabilities is mainly an

engineering activity.

ModelFlow is currently implemented as a series of Eclipse Java

plugins that extend the language and processing facilities of the Ep-

silon project. As a model-based project, it uses several metamodels

to capture the workflow specification, the execution trace, and the

end-to-end traceability. Currently, workflow specifications can be

prescribed using a Java API or a concrete Epsilon-based syntax.

4 EVALUATION

We now present a qualitative evaluation of ModelFlow based on a

common subset of features shared with Gradle.

4.1 Experiment setup

We have executed the workflow from the motivating example both

in Gradle and ModelFlow under seven different scenarios. The

first scenario represents a clean build, while all other scenarios

represent realistic changes to resources (models, generated files)

which affect subsequent executions. These scenarios are described

in Sec. 4.2. Both build tools parse an equivalent build script that

captures the workflow and uses the same model management tasks

and resources.

Gradle setup. We have extended Gradle to support the execu-

tion of the EVL, ETL and EGX tasks required by the workflow. In

addition, we have also extended its DSL to support a custom data

structure where models can be defined once. The Gradle workflow

specification is presented in Listing 5. Lines 1-14 illustrate a custom

data structure that we implemented to capture the models. Each

model indicates its type in brackets, while configuration parameters

are captured within curly braces. The model management tasks of

the workflow are declared in lines 15-33. Each task receives the

names of its input and output models as parameters.

As a general-purpose build tool, Gradle does not support most of

the desired MDE build tool features out of the box. Its conservative

execution mechanism is based on inputs and expected outputs i.e.

known before the task execution. In addition, dynamic resources

such as models cannot influence the task execution order, there is

no end-to-end traceability offered and outputs are not protected at

any point.

Our Gradle task extensions for Epsilon have been implemented

so that they resolve required input and output models from the

model DSL extension and the model files are declared as dynamic

inputs or outputs. We have some task parameters as inputs or

outpus as we do in ModelFlow, however their hashes are computed

with the default mechanism used by Gradle. Upon execution, our

task implementations iterate over required input and output models,

loading all required models before execution and disposing all after

the execution.

1 epsilon {

2 models {

3 config(EMF){

4 modelFile = file('resources/m/config.model ')

5 metamodelFile =

file('resources/mm/configuration.ecore ')

6 }

7 component(EMF){

8 modelFile = file('resources/m/component.model ')

9 metamodelFile =

file('resources/mm/component.ecore ')

10 }

11 extended(EMF){

12 modelFile = file('resources/m/extended.model ')

13 metamodelFile =

file('resources/mm/component.ecore ') }}}

14 task validate(type: EVL){

15 src = file('resources/mmt/validation.evl')

16 input = 'config '

17 input = 'component ' }

18 task m2m(type: ETL){

19 src = file('resources/mmt/extended.etl')

20 input = 'config '

21 input = 'component '

22 output = 'extended '

23 dependsOn validate }

24 task m2t(type: EGX){

25 src = file('resources/mmt/generate.egx')

26 outputRoot = file('src -gen')

27 input = 'extended ' }

Listing 5: Gradle workflow

ModelFlow setup. We ran ModelFlow in non-interactive mode

(see Sec. 3.3) and configured it to discard any changes in the task out-

puts of tasks. No model management traces were recorded. These

actions were taken to make ModelFlow’s execution similar to Gra-

dle’s except from how up-to-date checks for task parameters and

model resources.

4.2 Scenarios and Results

We describe below the set of changes that the different scenarios

involved, along with the observed behaviour of the tools.

1) Clean execution: This scenario represents a first-time execu-

tion where no caches are available. Both tools behaved as expected,

that is, all tasks were executed.

2) No changes: After a clean execution, in this scenario we trigger

a new one having made no changes to input or output resources.

As such, we wouldn’t expect any task to be executed, which is the

case for both tools in the experiment.

3) Change in the source model: In this scenario the component

model file is modified after a clean execution by changing the

name of a port in the component model. We expect everything to

re-execute as component is a input model for the validation and

model-to-model transformation tasks, and this property should be

propagated to the extended model and into the generated code. In

the experiment, this is the case in both tools.

4) Change in intermediate output model: In this scenario we mod-

ify the value of a filter element in the extended model after a clean

execution. Using the non protective execution mode of ModelFlow,

we expect it to trigger the transformation to restore the consistency

of this model and to skip the code generation. A similar behaviour

is expected from Gradle. This is the observed behaviour on both.

5) Template changes: After a clean execution, this scenario con-

sists of triggering an execution after modifying the template files

required by the model-to-text transformation. As this is the only

task affected, we expect both tools to only execute that task. This

is the observed behaviour on both build tools.
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6) Non-protected changes in generated code: In this scenario, we

add a comment outside of the protected regions of a generated file.

In contrast to the previous scenario, it is the task’s outputs that are

modified not its inputs. In this case ModelFlow only executed the

model-to-text transformation, overwriting the not-allowed changes

in the generated code, while Gradle skipped all tasks, leaving the

changes in the generated code.

7) Protected changes in generated code: In this scenario, we add a

print statement inside a protected region of a file from the generated

code. We expect all tasks to be skipped as the output should be

considered up-to-date for the code generating task. In this case,

both build tools behave as expected.

4.2.1 Performance analysis. We report on the execution times of

the scenarios in which both tools reacted to changes in the same

way. The time measure of their execution are shown in Figure 6.

The value reported for the first scenario correspond to the time of

the first execution (clean), while all other scenarios report on the

time of the second execution.
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Figure 6: Execution time of each scenario in milliseconds.

The workflow was configured to use a component model (24kB)

that represents a system of controllers (such as the one displayed

in Figure 3a), and a configuration model (686 bytes) that was used

to create a filter for each controller. Each scenario was executed

20 times with 5 warm-up iterations. We used Gradle version 6.2.1

and invoked it with the Gradle Tooling API ensuring no cache files

were available between iterations. The experiments were executed

on a 8-Core Intel Core i9 CPU @ 2.3 GHz with 16 GB of RAM and

the Java Virtual Machine was provided with up to 4GB of memory

running with JDK 1.8.0_231.

4.3 Discussion

While most scenarios resulted in similar behaviour on both built

tools, we now discuss those that didn’t.

In Scenario 4, ModelFlow can respond to changes in the extended

model in two different ways: either to (a) use the modified model

as source and trigger the code generation; or (b) discard the modifi-

cations in the model by triggering the transformation and skipping

the code generation. However, this is not possible in Gradle which

by default respond with the second approach which discards the

changes invoking the transformation. Moreover, the reason why

the model-to-model task is executed in Gradle is because the model

file (declared as output) is known before the task execution.

In Scenario 6, ModelFlow executed the model-to-text transforma-

tion which was able to restore the build consistency while Gradle

skipped the output analysis for the generated files which are known

after the execution.

In Scenario 7 both tools behave as expected but for different

reasons. ModelFlow does not execute because it determines that

the outputs have not been modified from previous executions, while

Gradle simply skips the output analysis for the same reasons as in

Scenario 6.

Regarding performance, the computation of changes to input

resources was slower in ModelFlow, particularly in the first-time

execution. However, subsequent executions were nearly identical to

Gradle’s. The computation of output resources is more exhaustive

in ModelFlow which may account for some of the overhead. While

there was no mechanism to reuse loaded models in Gradle, the size

of models used does no incur on a significant reloading overhead.

In future evaluations, the use of larger models could highlight

the impact that the mode reuse approach has on the workflow

performance.

4.4 Threats to validity

One clear threat to validity are the implementation differences be-

tween the two build engines, inherent to their own architectures.

We have minimised this threat by implementing the code of the

invoked tasks as equivalent as possible so that the results of the

evaluation reflect the impact of the architectural decisions and not

of the individual tasks. Furthermore, we opted for a custom data

structure to declare the models, so that tasks can receive the models

in a similar fashion as tasks in ModelFlow do. The purpose of the

performance evaluation was to give a time context to the qualitative

evaluation but was not intended to measure the scalability of the

approaches as the size of the models used in the experiment are

small. That said, we have removed from the performance evalua-

tion those scenarios in which the behaviour of the two tools was

different.

5 RELATED WORK

There are several model management frameworks and tools that

provide facilities to manage workflows such as the one presented

in Sec. 2.1. We now discuss some of these tools with a focus on

their incremental workflow mechanisms, context-awareness for

model loading/disposal and end-to-end traceability facilities. As

none of these tools have mechanisms to protect externally modified

outputs, we leave this feature outside of the discussion.

MMINT is an extensible and graphical model management tool

for exploration and experimentation [3] . At its core MMINT builds

a megamodel that is described at two levels of abstraction: the

type-level where metamodels are interrelated through relationships

and megamodel operators (e.g. filter, map, reduce, merge) [3] defin-

ing the relationships and operations allowed for models at the

instance-level. From their definition model management operations

are strongly typed and to execute them they must be invoked man-

ually and individually. In this context, only relevant model loading

activities are triggered when editor views are opened and when
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model management operations are invoked. Similarly, the strong

and explicit typing of model relationships allows model manage-

ment operations to produce trace links at model element level that

become part of the megamodel. While the tool can be extended

to support different metamodels, its scope seems to be limited to

EMF-based models. To our knowledge, there is no dependency

graph, task execution schedule nor execution incrementality as

these features escape the rapid prototyping purpose of the tool.

MTC-Flow is a graphical tool that enables the definition and

execution of chains of model management operations [1]. A work-

flow definition consists of the declaration of models and files that

are consumed or produced by transformations (operations which

use a model as input, output or both). These chains of operations

are executed by identifying the input resources of the workflow

and invoking the tasks that consume them. When a task finishes

its execution it notifies that the output models and files are ready

to be used by the tasks that use them as input. Before each opera-

tion is executed, validations may be performed on the models that

it uses. In MTC-Flow, the workflow definition itself works as an

explicit dependency graph. This tool supports a variety of model

management tasks from different frameworks and its notion of a

model is sufficiently abstract so that each task can implement their

own model interpretation. That being said, for each task execution,

models are created, loaded and disposed regardless of whether they

are later reused by other tasks. Similarly, there are no validations

to check whether an input or output file or model has changed

from a previous execution to determine whether a re-execution is

required. Regarding model management traceability, MTC-Flow

does not seem to support it at any level.

MWE2 is a workflow engine that allows the definition of tasks

that read/write EMF resources, perform operations on them and

generate artefacts from them. It is worth noting that MWE2 is a

language designed to be used by the Xtext language generator to

configure itself. As such, it is not concerned with incrementality,

managing execution or model management traces, nor with dealing

with non-EMFmodels. The execution life cycle of MWE2 consists of

three phases: pre-execution, execution and post-execution. At each

of these phases, all tasks and sub-workflows invoke the method that

corresponds to the phase in the order in which they are declared,

i.e. sequentially. This execution process is therefore not engaged

with task interdependencies. Regarding model handling, MWE2

relies on explicit tasks to read and write EMF models.

ChainTracker [5] is a state-of-the-art traceability tool that also

supports the execution of model-to-model and model-to-text trans-

formations using ATL and Acceleo, correspondingly. The main

contributions of this tool are traceability collection and analysis in

the form of visualisations. As such, we are not aware of any mech-

anisms in place for conservative workflow executions or context-

aware model loading and disposal. Within its traceability model,

ChainTracker not only considers model resources but also how

metamodel constructs at attribute level are used by invoked rules

in the model management tasks.

A summary of how the different tools support the desirable

features listed in Sec. 2.1 is captured in Table 1. The łConservative

Executionž column indicates whether the tools have support for

incrementality at workflow level. A full circle is given if they do

out-of-the-box, half circle if they need to be explicitly specified

outside the tasks and an empty circle if there is no known support.

The łContext-Aware Resourcesž column indicates whether the tool

can perform context-aware model loading and disposal. A full circle

is given if models are loaded and disposed based on their use on the

workflow. Half a circle is given if no model loading or disposal tasks

need to be specified but models are loaded and disposed by the tool

on every task they are used. An empty circle is given if the loading

and disposal tasks must be invoked by the user. The łEnd-to-End

Traceabilityž column indicates whether the tool provides model

management traces. A full circle is given if end-to-end traces are

provided as a by-product of the execution. Half a circle is given

if individual task traces may be available if requested but not as

part of an end-to-end product. An empty circle is given if no model

management traces are available.

Tool Conservative

Execution

Context-Aware

Resources

End-to-End

Traceability

MTC-Flow # G# #

MMINT # G#  

MWE # # #

ChainTracker # G#  

ModelFlow    

Table 1: Model management tools

6 CONCLUSIONS AND FUTUREWORK

We presented ModelFlow, a prototype MDE build tool designed

to conservatively execute workflows that include model manage-

ment tasks while offering end-to-end traceability and context-aware

model loading. Our decision to implement ModelFlow from scratch

was evaluated by attempting to replicate its behaviour with Gra-

dle in a typical model-driven engineering scenario. Our evaluation

validated this decision by highlighting scenarios that Gradle was

unable to handle.

Future Work. We recognise that MDE tasks are only a subset

of all tasks in a build and that attempting to develop a complete

replacement for a build tool such as Gradle would be an ambitious

task. Thus, in future work we will explore how to either propose

extensions to Gradle to accommodate the scenarios we have iden-

tified or to provide integration mechanisms between Gradle and

ModelFlow. Furthermore, we will investigate howModelFlow copes

with more complex workflows and concurrent execution.
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