
This is a repository copy of Modelflow:Towards reactive model management workflows.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/211858/

Version: Accepted Version

Proceedings Paper:
Sanchez, Beatriz, Kolovos, Dimitris S. orcid.org/0000-0002-1724-6563 and Paige, Richard
orcid.org/0000-0002-1978-9852 (2019) Modelflow:Towards reactive model management
workflows. In: Rossi, Matti and Sprinkle, Jonathan, (eds.) DSM 2019 - Proceedings of the
17th ACM SIGPLAN International Workshop on Domain-Specific Modeling, co-located with
SPLASH 2019. 17th ACM SIGPLAN International Workshop on Domain-Specific Modeling,
DSM 2019, co-located with SPLASH 2019, 20 Oct 2019 DSM 2019 - Proceedings of the
17th ACM SIGPLAN International Workshop on Domain-Specific Modeling, co-located with
SPLASH 2019 . ACM , GRC , pp. 30-39.

https://doi.org/10.1145/3358501.3361238

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

ModelFlow: Towards Reactive
Model Management Workflows

Beatriz A. Sanchez
Department of Computer Science

University of York
York, UK

basp500@york.ac.uk

Dimitris S. Kolovos
Department of Computer Science

University of York
York, UK

dimitris.kolovos@york.ac.uk

Richard F. Paige
McMaster University, Canada

paigeri@mcmaster.ca
University of York, UK

richard.paige@york.ac.uk

Abstract

In this paper we propose a domain specific language that
enables the description and execution of model manage-
ment workflows. Our language declares tasks and resources
involved in a multi-step model management process and
resolves the execution behaviour and order based on depen-
dencies among these components. We describe the abstract
and a concrete syntax of the language along with its exe-
cution semantics. Then, we demonstrate how the language
interpreter can orchestrate and execute a selection model
management tasks through a case study of a workflow that
generates a graphical editor from a metamodel.

Keywords Model Driven Engineering, Epsilon, Model Man-
agement, Workflow, Reactive

ACM Reference Format:

Beatriz A. Sanchez, Dimitris S. Kolovos, and Richard F. Paige. 2019.

ModelFlow: Towards Reactive Model Management Workflows. In

Proceedings of DSM ’19: Domain Specific Modeling Workshop (DSM

’19). ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 Introduction

It is through model management operations that concrete
software development artefacts can be produced in an auto-
mated fashion from models [12]. However, due to the het-
erogeneity of models and model management languages,
orchestrating them is an ongoing research topic [4, 15].

We propose a domain specific language that enables the ex-
ecution of model management workflows from resource (e.g.
File, EMF model) and task (e.g. model-to-model/text trans-
formation, model validation) declarations. At runtime, an
interpreter is able to resolve explicit and implicit dependen-
cies among these components and propose a corresponding
execution plan. The kinds of dependencies that are taken
into consideration include: inter-resource references, task
input and output resources, and inter-task dependencies.
These dependencies can be explicitly declared but some can
be inferred from the type of task or resource. The execution
plan can either schedule all tasks or respond to a resource

DSM ’19, October 20ś25, 2019, Athens, Greece

2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

update and schedule only the tasks required to restore the
overall consistency.
The rest of the paper is structured as follows. Section 2

discusses the motivation for this language. Section 3 presents
the abstract and concrete syntax of the language along with
its execution semantics and integration plans. Section 4
demonstrate how the language can capture a pre-existing
model management workflow introduced in the motivation.
Section 5 discusses related work. Finally, section 6 concludes
the paper and presents future work.

2 Motivation

As a motivating example for this work, the first part of this
section describes the automated graphical editor generation
process of the EuGENia [8] tool which builds on the EMF and
GMF code generation processes. Then, the section discusses
why the existing implementation of EuGENia is not as ef-
ficient as it could be. The last part of the section describes
envisioned features for a reactive model management work-
flow language which is later described in section 3.

2.1 EuGENia

EuGENia is an existing open-source tool that predates this
research and which uses metamodel annotations and model
transformations to streamline the process of generating graph-
ical model editors based on EMF and GMF [8]. For example,
Listing 1 shows a metamodel defined in Emfatic (a textual
notation for Ecore) which describes a Simple Component-
connector Language (SCL) [8]. This metamodel has been
extended with @emf and @gmf annotations placed on top of
the various metamodel constructs in order to specify aspects
of the EMF and GMF generation processes. The result of Eu-
GENia’s execution on this metamodel is the graphical editor
in Figure 1a.

1 @namespace(uri="scl", prefix="scl")

2 @emf.gen(basePackage="org.eclipse.epsilon.eugenia.

examples ")

3 package scl;

4 @gmf.diagram

5 @gmf.node(label="name", color= "232,232,232")

6 class Component {

7 attr String name;

8 @emf.gen(propertyMultiline="true")

9 attr String description;

10 @gmf.compartment(layout="free")

11 val Component [*] subcomponents;

12 @gmf.affixed

1

DSM ’19, October 20ś25, 2019, Athens, Greece B. Sanchez, D. Kolovos, R. Paige

13 val Port [*] ports;

14 }

15 @gmf.link(source="from", target="to", label="name",

target.decoration="arrow")

16 class Connector { 19

17 attr String name;

18 ref Port#outgoing from;

19 ref Port#incoming to;

20 }

21 @gmf.node(figure="ellipse ",size= "15,15", label.icon="

false",label.placement="external ", label="name")

22 class Port {

23 attr String name;

24 val Connector#from outgoing;

25 ref Connector#to incoming;

26 }

Listing 1. Annotated Emfatic metamodel of an SCL

(a) Initial

(b) Polished

Figure 1. SCL editor generated with EuGENia [8].

To enable the generation of a graphical editor from a meta-
model, EuGENia extends and integrates the built-in EMF and
GMF code generation processes described below.
EMF. The EMF code generation process starts from the

definition of the domain metamodel (abstract syntax) in
Ecore or an Emfatic [17] file. Then built-in EMF model-to-
model transformations are used to produce the EMF gen-
erator model (GenModel) from the metamodel. The GenModel

captures Java implementation details and can be further
customised. Finally, an EMF built-in model-to-text transfor-
mation consumes the GenModel and produces the Java code
and required configuration files.
GMF. The Graphical Modeling Framework (GMF) pro-

vides a model-driven approach to the generation of Eclipse-
based graphical editors for EMF-based DSLs. Its code genera-
tion process builds on the EMF code generation process. The
first stage of this process involves the manual construction
of models that specify different aspects of the graphical syn-
tax of the language. These models include the graph model
(GmfGraph) which specifies the shapes, connections, labels,

decorations, etc.; the tooling model (GmfTool) which speci-
fies element creation tools; and the mapping model (GmfMap)
which maps the graphical elements in the GmfGraph model
with the creation tools of the GmfToolmodel and the abstract
syntax elements of the Ecore metamodel. The second stage
of the process involves the production of a generator model
(GmfGen) from the mapping model. The generator model con-
tains the implementation details required by the graphical
editor code generator and is produced from amodel-to-model
transformation. In the last stage, code is generated from the
generator model.

Why EuGENia? Without EuGENia, simple metamodel
changes can be propagated to the corresponding GenModel

by an EMF built-in reconciler without overwriting any user-
defined customisations. However, for more complex changes
the GenModel would need to be regenerated and customised
from scratch [8]. EuGENia provides a set of built-in meta-
model annotations to attach implementation semanticswhich
can be used to customise the GenModel after it is generated.
Some of these (starting with @emf) are illustrated in Listing 1.
Similarly, while GMF provides built-in wizards for gen-

erating the GmfTool, GmfGraph, and GmfMapping models from
the metamodel, the resulting models are very simple [8].
Consequently, these models need to be manually created and
updated after any metamodel changes [8]. With EuGENia,
another set of built-in metamodel annotations can be used
to attach graphical semantics to metamodel elements and
enable the automated derivation of these models from the
metamodel. Some of these (starting with @gmf) are illustrated
in Listing 1.

Overall, after model-to-model transformation tasks, EuGE-
Nia triggers built-in fixes derived from the used annotations
but also allows the execution of polishing transformations,
that is, user-defined in-place model transformations that
can be used to fine-tune the models produced by predefined
model-to-model transformations and model fixes. After fix-
ing and polishing, the initial SCL editor from the previous
example could look like Figure 1b. In addition, EuGENia pro-
vides and executes built-in metamodel validations that, upon
failure, halt the execution of subsequent steps of the EMF
and GMF processes.

The inter-model references and model equivalences used
in the overall graphical editor generation process are cap-
tured in Figure 2.

Figure 2. Inter-resource dependencies

2.2 Discussion

Consider the dependency graph in Figure 3 which shows
all the steps (groups of tasks sharing a colour) executed

2

ModelFlow: Towards Reactive Model Management Workflows DSM ’19, October 20ś25, 2019, Athens, Greece

by EuGENia and the model resources they consume and
produce.

Figure 3. Eugenia task-resource and inter-task dependencies.
The tasks in each step are sequentially ordered top-to-bottom. The solid

arrows show the input and output models of the different tasks. Dotted

arrows represent resource dependencies from Figure 2. Task names ending

in a question mark denote optional tasks.

Concurrency. EuGENia’s full workflow consists on the
sequential execution of the steps ecore, genmodel, gmf, gmfgen,
emfcode, and gmfcode. While this tool provides a much more
efficient approach than plain EMF and GMF, we can tell
from Figure 3 that some of those steps could be concurrently
executed.
Reactiveness and Incrementality. Consider a situation

in which a user removes the @gmf.compartment annotation
in line 10 of the Emfatic file of Listing 1. The Ecoremodel re-
sulting from Emfatic2Ecore would be different and so would
the output models of Ecore2GMFToolGraphMap. However, the
GenModel produced by Ecore2GenModel would remain the
same as there was no change in for the EMF generation pro-
cess. In this case, there would be no need to re-execute tasks
such as FixGenModel, PolishGenModel or GenerateDomainModel-
Code. While EuGENia supports partial executions through
the selection of sequential steps, ideally it should support
incremental executions where the minimal number of tasks
required in response to resource changes are scheduled. In
addition, it would be convenient if EuGENia could react to
resource changes and plan or even trigger execution of tasks
dependent on the changes.
Change protection. Consider a scenario in which a user

manually modifies the Ecore metamodel and re-executes
EuGENia process from this change, that is, all task except
Emfatic2Ecore. If the user later modifies Emfatic, the execu-
tion of Emfatic2Ecore would have the potential to overwrite
the previous changes in Ecore. In this case, the user should

be given the option to either discard the previous changes
e.g. by triggering Emfatic2Ecore, or to block tasks that may
overwrite the previous changes altogether. It would be con-
venient if EuGENia could detect this situations with the
potential to overwrite external resource changes and either
prompt before proceeding or accept parameters that instruct
how to respond to them.
Smart loading. In EuGENia, required models are loaded

before the execution of each task, and they are disposed
when the task is finished. The large models can make more
expensive the loading and disposing operations, even more
when this process is involves the same model in several tasks.
To make this process more efficient models should be loaded
just before the execution of the task that first uses them, and
disposed just after the task that uses them last is finished.

2.3 Features

The motivation for this work can be drawn from the previous
discussion. Overall, we envision a framework that enables
the declarative specification of tasks and resources, and can
detect and react to resource changes based on declared depen-
dencies among the model management tasks and resources.
The envisioned framework should be able to support smart
model loading and disposal based on a given model man-
agement execution plan. In addition, this framework should
be able to prevent an execution when it has the potential
to overwrite external changes in resources. Moreover, the
envisioned framework should be able to compute consis-
tency restoration plans and execute them when restricted
resources are externally modified, for example, when gen-
erated code that is not meant to be tweaked is externally
modified.
To achieve this we need a language and a supporting

execution engine that can capture inter-resource, inter-task
and resource-task dependencies from which execution plans
can be drawn for first-time executions and executions driven
by resource changes. The language should provide the ability
to declare optional tasks, alternative execution paths, and
to attach conditions on the execution of tasks possibly from
the results of former task executions. Such a language is
introduced in section 3.

3 The ModelFlow Language

In the following we present the abstract and concrete syn-
tax of ModelFlow along with its execution semantics. The
purpose of this language is to enable the declarative defini-
tion and reactive execution of workflows involving models
and model management tasks. We provide rationale on why
current tools such as Gradle or BPMN are not a good fit to
support desired features of the framework in section 5.

3.1 Abstract Syntax

The abstract syntax of the language is captured in the meta-
model presented in Figure 4. The metamodel constructs are
described below.

3

DSM ’19, October 20ś25, 2019, Athens, Greece B. Sanchez, D. Kolovos, R. Paige

Figure 4. Workflow Specification Metamodel

ResourceDefinition. This named element refers to a con-
crete procedure to represent and manipulate a model re-
source that is attached to an underlying technology such
as EMF, Simulink, File. These elements can check whether
resource instances that reference them as type are valid.
Resource. A resource is any software artefact that can be

manipulated in the workflow. The kind of resource is deter-
mined by its type which references a ResourceDefinition.
The properties of the resource are used to configure the
ResourceDefinition. For example, a resource named Gen-

Model of type EMF could be configured with the property
src with a value pointing to the EMF model file location. The
ResourceDefinition should validate whether the src prop-
erty is known and if its value is valid.
TaskDefinition.This named element defines the behaviour

of a model management activity. The kind of activity is used
as a classification of the model management activity such as
validation, model-to-model transformation, etc. In contrast,
the name of this element refers to a concrete model man-
agement implementation. For example a validation model
management task that uses the Epsilon Validation Language
(EVL) [11] is named EVL and classified as of validation kind.
These elements can check whether task instances that refer-
ence them as type are valid.
Task. This named element represents a concrete exe-

cutable model management activity. The type of model man-
agement activity to be executed is defined by the TaskDefinition.
The properties of the task are used to configure the TaskDefinition.
A task may reference resources that are to be consumed, mod-
ified or produced as a result of its execution. For example, a
task named myValidation of type EVL could be configured
with the property src whose value points to the location of
the validation script and an input resource (consumes ref-
erence) that points to the resource myModel defined in the
example above.
Workflow. A workflow element is the root of the model

and it represents a composite activity, that is, an executable
subprocess. Each workflow contains many Resource and Task
elements. When started, a workflow gives control to its in-
ternal tasks and upon completion, the control is returned to
the parent workflow.

Property. This element represents a key value pair used
to configure tasks and resources.

3.2 Concrete Syntax

We now present the concrete syntax of the language. The
language is mostly declarative to place the focus on the defi-
nition of tasks and resources and their inter-dependencies,
and not on the order that the interpreter will execute them.
The language also contains imperative fragments specified
in the form of EOL [9] statements (e.g. in the guard) to
support complex guards. Note that ResourceDefinition and
TaskDefinition elements are not part of the concrete syntax
as they are provided by the interpreter.

3.2.1 Resources

Based on the Resource construct described in the previous sec-
tion, Listing 2 provides the concrete syntax for a resource def-
inition. The resource declaration must start with either the
resource or model reserved words to differentiate resources
which need loading and disposing (i.e. the models). Then
follow the name of the resource (<Name>) and the name of the
ResourceDefinition type (<Type>). Optionally a list of comma
separated resources (<Resources>) can be inserted after the
references reserved word to declare dependencies. Inside
the keys is contained a list of relevant properties for the
resource type. The annotations on the resource declaration
influence the resolution of the execution plan and their se-
mantics will be described in the next section.

1 (@non -blocking)? (@root|@derived)?

2 (resource|model) <Name > type <Type >

3 (references <Resources >)?

4 {

5 (<Property.Key > (: expression |{ statementBlock }))*

6 }

Listing 2. Concrete syntax of a resource declaration.

Listing 3 is an example of two resource declarations: the first
for an EMF model named GenModel, and the second for a
FileSet resource named Sources.

1 model GenModel type EMF {

2 src : "workflow.genmodel"

3 metamodel : "http: //.../ emf /2002/ GenModel"

4 }

5 resource Sources type FileSet {

6 root { return "output"; }

7 includes : "**/*. java"

8 }

Listing 3. Resource declaration example.

3.2.2 Tasks

The concrete syntax of the Task construct is specified in
Listing 4. A modeling task starts with the task keyword fol-
lowed by the name of the task (<Name>) and its TypeDefinition
type (<Type>). Optionally, the task may specify dependen-
cies to other tasks which must be executed before it. Simi-
larly, the task may specify a comma separated list of tasks
(<OnFailTask>) to be executed upon the task’s failure.

4

ModelFlow: Towards Reactive Model Management Workflows DSM ’19, October 20ś25, 2019, Athens, Greece

In addition to the list of property key value pairs as in
the Resource declaration, inside the brackets a task may
declare guards (statements that must evaluate to true in
order to execute the task) and input (<in>), output (<out>) and
in/out (<inout>) resources which correspond to the consumes,
produces and modifies references in Figure 4. The concrete
syntax of each of these resources (<TaskResource>) is defined
(Listing 5).

1 task <Name > type <Type >

2 (, dependsOn <Tasks >)? (, onFail <OnFailTask >)?

3 {

4 (guard (: expression)|({ statementBlock }))?

5 (in(?)? : <TaskResource >(, <TaskResource >)*)?

6 (inout (?)? : <TaskResource >(, <TaskResource >)*)?

7 (out (?)? : <TaskResource >(, <TaskResource >)*)?

8 (<Property.Key >(?) ?(: expression |{ statementBlock }))*

9 }

Listing 4. Concrete syntax of a task declaration.

1 ((<taskPropertyName > as)?<Resource.Name >(?) ?({

2 (<Property.Key >(?) ?(: expression |{ statementBlock }))*

3 })?

Listing 5. Concrete syntax of <TaskResource>.

An example of a model validation task using the EVL lan-
guage is presented in Listing 6. This task takes as input two
models: the GenModel declared in Listing 3 and an Ecore-
Model resource whose expand property is set to true. Note
that this task would only execute if the source (src) file exists
as indicated by the question mark.

1 task validateGenModel type EVL {

2 in : GenModel, EcoreModel {

3 expand : true

4 }

5 out : self.validationTrace as TraceResource

6 src? : "mmop/validate.evl"

7 }

8 @derived model TraceResource type JavaModel;

Listing 6. Task declaration example.

3.2.3 Workflow

Listing 7 provides the concrete syntax for a workflow con-
struct definition. Theworkflowdefinition requires the workflow
reserved word and a name for the workflow. It may declare
parameters that may be used in its guard or by its contained
resource and task declarations (<resourceDeclaration> and
<taskDeclaration>) to configure their properties.

1 (@(primary|lazy)?

2 workflow <Name > {

3 (param <Param.Name >(?)? : <Param.Type > (= <Default.

Value >)?;)*

4 (guard (: expression |{ statementBlock }))?

5 (<resourceDeclaration >)*

6 (<taskDeclaration >)*

7 }

Listing 7. Concrete syntax of a workflow declaration.

Listing 8 provides an example of aworkflowdefinition (Eugenia)
followed by its invocation as a task (graphical-Editor) in
the Main workflow.

1 @lazy workflow Eugenia {

2 param sourceName : String;

3 guard : sourceName.startsWith("Emf")

4 task A type X {...}

5 }

6 @primary workflow Main {

7 task graphicalEditor type Eugenia {

8 sourceName : "EmfMetamodel"

9 }

10 }

Listing 8.Workflow declaration example.

3.3 Execution semantics

This section provides a discussion of the language execution
semantics. Section 3.3.1 discusses the dependency resolution
mechanism. Section 3.3.2 describes how resources are moni-
tored in order to trigger workflow executions. Then, section
3.3.3 illustrates how the dependency graph is used to build an
execution plan. Finally, section 3.3.4 presents the execution
trace model used to support incremental executions.

3.3.1 Dependency resolution

The task- and resource-type definitions such as EVL and
EMF, respectively, are made available through the interpreter.
While some definitions may be available by default, others
could be registered at runtime. These task- and resource-type
definitions are used to check if task and resource declarations
in the workflow are valid and well-formed.

The next step after validation is the dependency resolution
which produces a directed graph with interconnected task
and resource nodes. The first step of this process consists
on the insertion of declared resources and tasks as nodes.
Then, directed edges among tasks are inserted based on
declared explicit dependencies such as the dependsOn clauses.
At the same time edges between resources and tasks are
inserted based on the task’s declared input, output and in/out
resources.
Task- and resource- type definitions can also implicitly

create dependencies with non-declared resources. Take for
example the validation task in Listing 6 where the src at-
tribute represents a validation script that the EVL task-type
definition requires. A change in the script would imply that
the validation task needs re-executing and consequently this
resource is registered as an input of the task. Implicit depen-
dencies are also inserted in the dependency graph.

3.3.2 Resource change event processing

After a clean execution of the workflow, the ModelFlow
engine starts monitoring all resources present in the de-
pendency graph for changes. Each resource-type definition
should provide a mechanism that can compute a unique
stamp [15] for the resource that determines whether the re-
source has changed e.g. the last modification time of the re-
source or a hash of its contents. Themonitor collects resource
change events and re-computes their stamp. Changes derived
from the workflow execution are excluded. If the value of
the stamp changes, the resource is considered dirty and may

5

DSM ’19, October 20ś25, 2019, Athens, Greece B. Sanchez, D. Kolovos, R. Paige

trigger an incremental workflow re-execution. Depending
on the workflow’s execution mode, resource changes may
immediately trigger the execution or be collected until an
execution is requested.

3.3.3 Execution plan

Once the dependency graph is constructed it can be used to
assemble the execution plan. This is achieved by transform-
ing the directed dependency graph (DDG) into a Directed
Acyclic Task Graph (DATG).

The transformation identifies root resource and tasks and
creates inter-task dependencies based on different criteria.
For example, explicit task inter-dependencies are created
immediately. Then for each resource, tasks that produce it
go before tasks that modify it while tasks that alter it go
before tasks that only read it. This situation is illustrated in
Figure 5 where Figure 5a shows a dependency graph with re-
sources Ecore, GenModel and GeneratedEmfSources and tasks
Ecore2Gen-Model, FixGenModel and GenerateDiagramCode and
its respective DATG in Figure 5b which resolves Ecore as root
resource and makes Ecore2GenModel (produces GenModel) go
before FixGenModel (modifies GenModel) and FixGenModel go
before GenerateDiagramCode (reads GenModel).

(a) Dependency Graph

(b) Directed Acyclic Graph

Figure 5. Example with task-resource dependencies

Once the DATG is built, it can be iterated in topological
order, triggering the execution of each visited task. When a
task node has multiple outgoing edges, the outgoing paths
can be executed independently (and therefore, potentially
concurrently). In contrast, if a task has multiple incoming
edges it must wait for the incoming paths to complete.
In a clean execution of the workflow, the full DDG is

transformed into a DATG. In contrast, when the workflow
must be executed from a specific task or when it is triggered
by a resource (or group of resources) update, then the DATG
is produced from a sub-graph of the DDG which consists of
dependencies relevant for the starting task or, respectively,
for the changed resources.
Consider the dependency graph in Figure 6a. A change

in resource Emfatic or Ecore would respectively trigger the
executions in Figure 6b. The change in Emfaticwould trigger
an execution equivalent to a clean execution but a change in
Ecore would result in a partial execution where Ecore and
GenModel would be consistent with each other as they are
derived from the change in Ecore but Emfatic would be left
out. In this scenario, a later change in Emfatic would poten-
tially overwrite Ecore as it would trigger Emfatic2Ecore. To
protect the changes in Ecore, ModelFlow would by default

prevent the execution of any tasks that have the potential
to overwrite it. Alternatively, Ecore could be marked in a
way that does not block any tasks from overwriting its ex-
ternal changes, therefore enabling Emfatic to execute. This
is the role of the @non-blocking annotation in a resource
declaration.

(a) Dependency Graph

(b) Directed Acyclic Graph

Figure 6. Complete/partial execution based on resource
changes

Consider the dependency graph in Figure 7. In this case,
the graph shows a circular dependency between resources
Ecore and Emfatic through the Emfatic2Ecore and Ecore2Emfatic
tasks. In absence of a @root annotation on either Ecore or
Emfatic, one would be randomly selected as root in a clean
execution. Both execution plans are illustrated in Figure 7b
which are equivalent to execution plans based on changes on
these resources. Despite not all tasks being executed when
Ecore or Emfatic are selected as roots, all consumed/pro-
duced resources are up-to-date as a result of the execution,
therefore there is no need to block any task from executing
to protect changes in either Ecore or Emfatic. In contrast,
if GenModel was externally modified, Ecore2GenModel execu-
tions resulting frommodifications of Ecore or Emfaticwould
be blocked.

(a) Dependency Graph

(b) Directed Acyclic Graph

Figure 7. Complete execution based on resource changes

Before an execution plan is carried out, ModelFlow would
check that the plan has no impact on any resources pro-
tected from overwriting. Before the execution of each task,
ModelFlow checks if all inputs (explicit and implicit) are
up-to-date comparing their stamps against those in the exe-
cution trace. If all inputs are up-to-date the execution of the
task is skipped.
For a group of tasks in which a resource is produced or

modified, the resource is managed in a transactional way so
that if the output of the first task is equivalent to that of the
task’s previous execution then the resource is rolled back to
the version of the previous execution. This is only valid if all
other inputs in remaining tasks in the group remain the same,
otherwise the task are executed. For example in Figure 5b

6

ModelFlow: Towards Reactive Model Management Workflows DSM ’19, October 20ś25, 2019, Athens, Greece

where Ecore2GenModel and FixGenModel produce and modify
GenModel, this task group would roll-back to the previous
version of GenModel if the outcome of Ecore2GenModel was
the same as in its previous execution since FixGenModel only
has GenModel as input, that is, it can be skipped. The rationale
for this is that if ModelFlow skips FixGenModel for having
the same resources as in last execution but does not roll-
back GenModel then this resource would not go through the
modifications of FixGenModel and would therefore be left
in an unfinished state. Alternatively, if the resource-type
definition does not support rolling-back procedures then the
members in the task group would all be executed so that all
modifications on the resource are applied.
Rules. Below are some rules on the establishment of

resource-task dependencies (consumed, produced, modified)
which are used to build the execution plan and help to break
dependency cycles.

− For each resource, only one task should produce it as
output. If several, their execution must be exclusive.

− If several tasks modify the same resource, their execu-
tion must be made sequential. If no explicit dependency
among these tasks is found, their order would be chosen
randomly.

− There is no restriction on the number of tasks that can
read a resource.

3.3.4 Execution trace model

At a clean execution, the tracemodel is created. The ExecutionTrace
element is the root of the model and points to the main work-
flow file. For the clean execution and any subsequent ones, a
new WorkflowExecution element will be created in the root.
These elements contain the set of triggering resources (if
any) as ResourceSnapshot elements, in addition to the list of
tasks that were executed as TaskExecution elements. Each
ResourceSnapshot points to a workflow Resource and records
its stamp at a given time. TaskExecution elements point to a
declared Task and refer to a list of input ResourceSnapshot el-
ements and contain new output ResourceSnapshot elements.
In addition, an TaskExecution element keeps a list of its pre-
decessors and successors. The ExecutionTrace root keeps a
list of the latest ResourceSnapshots for each declared Resource
and also a list of currently protected Resources, that is, those
with potential to be overwritten by other tasks.

Figure 8. Workflow Execution Trace Metamodel

With this configuration it is possible to identify whether
resources have changed from previous executions and if
tasks can overwrite changes on protected resources.

3.4 Integration with build systems

We envision the framework’s ability to (a) execute non-
modeling tasks and (b) be executed from popular task execu-
tion engines such as Maven, Gradle or Ant.
To enable the execution of Maven, Gradle or Ant tasks

from ModelFlow, we envision their declaration as regular
tasks that do not accept any declared input, output or in/out
resources but which may implicitly register resources such
as the script (src) file as inputs and any produced resources
as outputs. Furthermore, these task could specify the set of
tasks to be executed in the form of goals for Maven, tasks
for Gradle and targets for Ant.

1 task compileWithMaven type Maven {

2 src : "dir/pom.xml"

3 goal : "compile:compile"

4 }

5 task compileWithGradle type Gradle {

6 src : "dir/build.gradle"

7 task : "compile"

8 }

9 task compileWithAnt type Ant {

10 src : "dir/build.xml"

11 target : "main"

12 }

To enable the execution of ModelFlow from build tools like
Maven, Gradle or Ant, a plug-in can be registered in their
task repositories where full or partial workflow invocations
can be made. The workflow could register the execution
trace in a local repository to enable incremental executions
aware of resource changes.

1 <model.flow src=" myfile.mflow"/>

4 Case study: EuGENia

In this section we demonstrate ModelFlow’s capacity to cap-
ture a real model management scenario through a case study
that defines a reactive workflow that can generate a graphi-
cal editor based on the EuGENia (section 2). Note that while
the EuGENia tool only uses EMF models, the language can
support other modeling formats such as Simulink.

The workflow presented in Listing 9 defines the resources,
tasks and configuration parameters that EuGENia requires to
produce the graphical editor. The first line is the declaration
of the workflow which requires the modelName parameter
(line 2) to be set in order to locate all required models. Op-
tionally, the polishBasedir parameter (line 3) can be set up
to locate polishing scripts.
This workflow declares 9 resources: one File resource, 2

FileSet resources and 6 EMFmodels. EMFmodels must specify
the model file (src) and the metamodel (metamodel) they con-
form to. The GeneratedEmfSources and GeneratedGmfSources

resources are derived.
7

DSM ’19, October 20ś25, 2019, Athens, Greece B. Sanchez, D. Kolovos, R. Paige

This workflow declares 14 tasks. Tasks of types ETL, EOL
and EVL are transformation, query and validation tasks im-
plemented using Epsilon’s respective languages [10, 10, 11].
The previous task types require a script (src) which is an
implicit input resource. The Emfatic2Ecore task is a text-to-
model transformation that transforms an Emfatic file into an
Ecoremodel. EcoreCodeGenerator and DiagramCodeGenerator
are model-to-text transformations that take an model of EMF
type as input and generate code. The generated output files
can be accessed through the task’s generatedFiles prop-
erty and which are assigned to the GeneratedEmfSources and
GeneratedGmfSources resources by EcoreCodeGenerator and
DiagramCodeGenerator respectively. Finally, GmfTransformTo-
GenModel is a built-in GMF model-to-model transformation
which produces the GmfGen model.

1 workflow EuGENia {

2 param modelName : String;

3 param polishBasedir? : String = baseDir;

4 pre {

5 var basefile : String = baseDir + modelName;

6 }

7 resource Emfatic type File {

8 src : basefile + ".emf"

9 }

10 @non -blocking model Ecore type EMF {

11 src : basefile + ".ecore"

12 metamodel : "http: //.../ emf /2002/ Ecore"

13 }

14 model GenModel type EMF {

15 src : basefile + ".genmodel"

16 metamodel : "http: //.../ emf /2002/ GenModel"

17 }

18 model GmfGen type EMF {

19 src : basefile + ".gmfgen"

20 metamodel : "http: //.../ gmf /2009/ GenModel"

21 }

22 model GmfMap type EMF {

23 src : basefile + ".gmfmap"

24 metamodel : "http: //.../ gmf /2008/ mappings"

25 }

26 model GmfTool type EMF {

27 src : basefile + ".gmftool"

28 metamodel : "http: //.../ gmf /2005/ ToolDefinition"

29 }

30 model GmfGraph type EMF {

31 src : basefile + ".gmfgraph"

32 metamodel : "http: //.../ gmf /2006/ GraphicalDef ..."

33 }

34 @derived resource GeneratedEmfSources type FileSet;

35 @derived resource GeneratedGmfSources type FileSet;

36 task Emfatic2Ecore type Emfatic2Ecore {

37 in : Emfatic

38 out : Ecore

39 }

40 task ValidateEcoreForGenModel type EVL {

41 in : Ecore

42 src : "mmop/evl/Ecore2GenModel.evl"

43 }

44 task Ecore2GenModel type ETL dependsOn

ValidateEcoreForGenModel {

45 in : Ecore

46 out : GenModel

47 src : "mmop/etl/Ecore2GenModel.etl"

48 }

49 task FixGenModel type EOL {

50 in : Ecore

51 inout : GenModel

52 src : "mmop/eol/FixGenModel.eol"

53 }

54 task PolishGenModel type EOL dependsOn FixGenModel {

55 in : Ecore

56 inout : GenModel

57 src? : polishBasedir + "FixGenModel.eol"

58 }

59 task GenerateDomainModelCode type EcoreCodeGenerator {

60 in : GenModel

61 out : self.generatedFiles as GeneratedGmfSources

62 }

63 task ValidateEcoreForGMFToolGraphMap type EVL {

64 in : Ecore

65 src : "mmop/evl/ECore2GMF.evl"

66 }

67 task Ecore2GMFToolGraphMap type EOL dependsOn

ValidateEcoreForGMFToolGraphMap {

68 in : Ecore

69 out : GmfMap, GmfGraph, GmfTool

70 src : "mmop/eol/ECore2GMF.eol"

71 }

72 task PolishGMFToolGraphMap type EOL {

73 in : Ecore

74 inout : GmfMap, GmfGraph, GmfTool

75 src? : polishBasedir + "ECore2GMF.eol"

76 }

77 task GmfMap2GmfGen type GmfTransformToGenModel {

78 in : Ecore, GmfMap, GenModel

79 out : GmfGen

80 }

81 task FixGmfGen type EOL {

82 in : Ecore, GenModel, GmfGraph, GmfTool, GmfMap

83 inout : GmfGen

84 src : "mmop/eol/FixGMFGen.eol"

85 }

86 task PolishGmfGen type EOL dependsOn FixGmfGen {

87 in : Ecore, GenModel, GmfGraph, GmfTool, GmfMap

88 inout : GmfGen

89 src? : polishBasedir + "FixGMFGen.eol"

90 }

91 task GenerateDiagramCode type DiagramCodeGenerator {

92 in : GmfGen

93 out : self.generatedFiles as GeneratedGmfSources

94 }}// close task and workflow

Listing 9. EuGENia workflow definition

The previous workflow produces the directed dependency
graph shown in Figure 9.

4.1 Scenarios

In this section we introduce a series of scenarios based on the
previous workflow definition and we describe the expected
execution plan, as the engine has not yet been implemented.
The scenarios are accompanied by figures that illustrate exe-
cution plans as sequence of tasks. Some resources may be
present to highlight their relation with tasks as a input/out-
put (solid arrow) or as a workflow trigger (dashed arrow).

4.1.1 Clean execution

Consider the first-time execution of the workflow. Because
most tasks use Ecore as input and only Emfatic2Ecore pro-
duces Ecore the execution plan algorithm can infer that
Emfatic is the root of the execution plan and Emfatic2Ecore

the first task to be executed. From the full DDG, the result-
ing execution plan (DATG) is presented in Figure 10. The

8

ModelFlow: Towards Reactive Model Management Workflows DSM ’19, October 20ś25, 2019, Athens, Greece

Figure 9. Simplified directed dependency graph. Tasks are
denoted by rectangles and resources by ellipses. Dotted ellipses represent

implicit resource declarations (such as a script file). Dashed ellipses repre-

sent derived resources. Solid arrows represent resource-task dependencies,

dashed ones inter-task dependencies and dotted ones implicit resource-task

dependencies. Inter-resource dependencies (Figure 2) and additional implicit

resources are left out for simplicity.

figure shows two independent paths that can be executed
concurrently after Emfatic2Ecore. However, due to the de-
pendency of GmfMap2GmfGen to resources produced in both
branches, both paths need to be finished before proceed-
ing with this task. While the execution of PolishGenModel,
PolishGMFToolGraphMap and PolishGmfGen would be sched-
uled, they would only be executed if their source file exists.

Figure 10.Workflow’s first execution sequence. Similar ex-
ecution plan when Emfatic is modified.

4.1.2 Resource modifications

Emfatic. A change in this resource produces a plan equiv-
alent to a clean execution. If the change in the Emfatic re-
source produced a different Ecore resource as a result of
Emfatic2Ecore, both ValidateEcoreForGMFToolGraphMap and
ValidateEcoreForGenModelwould be triggered and since Ecore-
2GenModel and Ecore2GMFToolGraphMap depend on them, they
would also be executed. Alternatively if the produced Ecore

resource did not change there would be no need to roll-back

to a previous version, as there are no tasks that modify it,
nor to continue with the workflow, as everything would be
up-to-date.
If the Ecore2GenModel task produced a different GenModel

than in last execution, then FixGenModel and PolishGenModel

would need to be executed. In contrast, if the Ecore2GenModel
task produced the same GenModel as in its previous execu-
tion, this resource would have to be rolled-back as there are
two other tasks that modify this resource and stopping the
execution after Ecore2GenModel would leave the resource in
an inconsistent state.

Ecore. Consider an execution triggered by the modifica-
tion of the Ecore resource. A similar execution plan as in Fig-
ure 10 would be triggered except that the first task would no
longer be Emfatic2Ecore but instead the two concurrent exe-
cution paths that start with ValidateEcoreForGMFToolGraphMap

and ValidateEcoreForGenModel, respectively.
This is because the workflow that reacts to a resource change
starts where the resource is read and not where it is produced
or modified. Since the Emfatic resource is not involved in any
of tasks of this execution plan, at the end of the execution it
would not be up-to-date with all other resources. However,
since the Ecore model is annotated with @non-blocking, any
modifications to the Emfatic would trigger Emfatic2Ecore
and its subsequent tasks discarding any previous external
changes in the Ecore.

Figure 11. Execution plan when GenModel is modified.

’enModel. Consider an execution triggered by the exter-
nal modification of the GenModel resource. In this case, Fig-
ure 11 would be executed and the tasks Ecore2GenModel,
FixGenModel and PolishGenModel would be blocked.

’eneratedEmfSources.Consider a change in one of the out-
put files produced by the GenerateDomainModelCode model-
to-text transformation, that is, the GeneratedEmfSources re-
source. In this case any subsequent execution plan which
involved the execution of the GenerateDomainModelCode task
would have it blocked to protect the external changes of this
resource.

Similar execution plans can be produced when GmfTool,
GmfGraph, GmfMap, GmfGen are modified. For tasks that use con-
figuration parameters as input resources (such as the source
file of the task), upon their modification we can assume that
the workflow would be triggered with these tasks as starting
points.

5 Related Work

General purpose business process and workflow modeling
languages such as BPMN [13], YAWL [19], UMLActivities [5]

9

DSM ’19, October 20ś25, 2019, Athens, Greece B. Sanchez, D. Kolovos, R. Paige

can be used to define model management processes. How-
ever, these languages are focused on the specification of
the control flow instead of the dependencies among tasks
and resources. The idea behind resource-task dependencies
is that different execution plans are possible based on re-
source update events. The orchestration of model manage-
ment activities can also be achieve with graphical model
management tools such as MMINT [4], MTC-Flow[2] and
Wires* [14]. Like the aforementioned modeling languages,
these tools also place emphasis on the execution flow and
while some specify consumption/production relationships
with models, they do not use them to determine an execution
plan. Other textual model management orchestration tools
such as MWE2 [18], MoScript[7] only support sequential
definition and execution of activities.

Build tools such as Ant [16], Gradle [3], and Pluto [6] have
made progress regarding incremental execution plans. These
tools have the ability to check for resource changes and react
accordingly but don’t protect modified resources from being
overwritten by default. In addition, these tools rely their
incrementality on file-based resource changes. Our language
is intended to support multiple criteria based on the resource
type definition. For example, a database model such as PTC-
Integrity Modeler [1] should be able to detect modifications
based on information from the database. Moreover, Ant’s
relies on łexcessive use of [the] uptodatež [6] command to
support incrementality.

6 Conclusions and Future Work

This paper presented a domain specific language that en-
ables the reactive execution of model management tasks
by capturing dependencies among task and resources. We
presented the concrete and abstract syntax of the language
along with its execution semantics and integration facilities
with other build tools such as Maven, Gradle and Ant. In
particular, the execution semantics make use the task and
resource inter-dependencies to propose execution plans that
may be blocked to protect externally modified resources
from being overwritten or be triggered to discard external
manual modifications. We demonstrated how the proposed
language can capture a model management scenario that
is based on the model management activities performed by
the EuGENia tool which produces graphical editors from
annotated metamodels.
FutureWork. We are in the process of implementing the

execution engine for this language, along with basic model
management tasks and resource types. In the future we plan
to add support for its integrations with other build tools and
to add tooling support which includes an editor and graphical
views of the workflow dependencies and execution plans.

Acknowledgement
This work was partially supported by the Engineering and Physical Sci-
ences Research Council (EPSRC) through the National Productivity Invest-
ment Fund (NPIF) in partnership with Rolls-Royce (EP/R512230/1), and by

the Mexican National Council for Science and Technology (CONACyT)
(602430/472773).

References
[1] [n.d.]. PTC Integrity Modeler. http://www.ptc.com/en/products/plm/

plm-products/integrity-modeler

[2] Camilo Alvarez and Rubby Casallas. 2013. MTC Flow: A tool to design,

develop and deploy model transformation chains. In Proceedings of the

workshop on ACadeMics Tooling with Eclipse - ACME ’13. ACM Press,

New York, New York, USA, 1ś9.

[3] Adam L. Davis and Adam L. Davis. 2016. Gradle. In Learning Groovy.

[4] Alessio Di Sandro, Rick Salay, Michalis Famelis, Sahar Kokaly, and

Marsha Chechik. 2015. MMINT: A graphical tool for interactive model

management. In Proceedings of Model Driven Engineering Languages

and Systems (MODELS). 82ś97.

[5] Marlon Dumas and Arthur H.M. ter Hofstede. 2001. UML Activity

Diagrams as a Workflow Specification Language. Proceedings of the

UML’2001 Conference (2001), 76ś90.

[6] Sebastian Erdweg, Moritz Lichter, and Manuel Weiel. 2015. A sound

and optimal incremental build system with dynamic dependencies.

In Proceedings of the 2015 ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications.

89ś106.

[7] Wolfgang Kling, Frédéric Jouault, Dennis Wagelaar, Marco Brambilla,

and Jordi Cabot. 2012. MoScript: A DSL for Querying andManipulating

Model Repositories. In SLE 2011: Software Language Engineering. 180ś

200.

[8] Dimitrios S. Kolovos, Antonio García-Domínguez, Louis M. Rose, and

Richard F. Paige. 2017. Eugenia: towards disciplined and automated

development of GMF-based graphical model editors. Software and

Systems Modeling 16, 1 (2017), 229ś255.

[9] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. 2006.

The Epsilon Object Language (EOL). Lecture Notes in Computer Science

4066 LNCS (2006), 128ś142.

[10] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. 2008. The

epsilon transformation language. Lecture Notes in Computer Science

5063 LNCS (2008), 46ś60.

[11] Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. 2009. On

the evolution of OCL for capturing structural constraints in modelling

languages. Lecture Notes in Computer Science 5115 LNCS (2009), 204ś

218.

[12] Dimitrios S. Kolovos, Massimo Tisi, Jordi Cabot, Louis M. Rose,

Nicholas Matragkas, Richard F. Paige, Esther Guerra, Jesús Sánchez

Cuadrado, Juan De Lara, István Ráth, and Dániel Varró. 2013. A re-

search roadmap towards achieving scalability in model driven engi-

neering. Proceedings of the Workshop on Scalability in Model Driven

Engineering - BigMDE ’13 (2013), 1ś10.

[13] O M G Document Number and Associated Schema Files. 2012. Business

Process Model and Notation. Lecture Notes in Business Information

Processing, Vol. 125. Springer Berlin Heidelberg, Berlin, Heidelberg.

[14] José E Rivera, Daniel Ruiz-Gonzalez, Fernando Lopez-Romero, José

Bautista, and Antonio Vallecillo. 2009. Orchestrating ATL Model

Transformations. In Proc. of MtATL 2009. 34ś46.

[15] Perdita Stevens. 2018. Towards sound, optimal, and flexible building

from megamodels. In Proceedings of the 21th ACM/IEEE International

Conference on Model Driven Engineering Languages and Systems - MOD-

ELS ’18. ACM Press, New York, New York, USA, 301ś311.

[16] James Sugrue. 2015. Apache Ant. DZone (2015).

[17] The Eclipse Foundation. [n.d.]. Emfatic. https://www.eclipse.org/

emfatic/

[18] The Eclipse Foundation. [n.d.]. MWE 2 - XText. https://www.eclipse.

org/Xtext/documentation/306_mwe2.html

[19] W.M.P. van der Aalst andA.H.M. ter Hofstede. 2005. YAWL: yet another

workflow language. Information Systems 30, 4 (jun 2005), 245ś275.

10

	Abstract
	1 Introduction
	2 Motivation
	2.1 EuGENia
	2.2 Discussion
	2.3 Features

	3 The ModelFlow Language
	3.1 Abstract Syntax
	3.2 Concrete Syntax
	3.3 Execution semantics
	3.4 Integration with build systems

	4 Case study: EuGENia
	4.1 Scenarios

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgment
	References

