
On the Challenges of Model Decorations for
Capturing Complex Metadata

Horacio Hoyos Rodriguez
University of York

UK

Athanasios Zolotas
University of York

UK

Dimitris Kolovos
University of York

UK

Richard F. Paige
University of York

UK
McMaster University

Canada

Abstract—Model decorations have proven useful as an ex-
tension mechanism to provide bespoke language extensions for
particular scenarios in the language’s domain. However, the
current state of the art has only explored extension mechanisms
that allow capturing basic metadata, e.g. additional attributes.
In this paper we explore the challenges encountered when
decorations must capture more complex metadata, in particular
metadata that targets model management operations. Addi-
tionally, we provide an initial take on these challenges through
automated language extension generation. The generated ex-
tensions provide enhanced model decoration capabilities that
can support metadata of higher complexity.

Index Terms—model decorations, auto-generation, DSL,
challenges

I. Introduction
When a modelling language is designed, it is impossible

to anticipate all scenarios in which the language will
be used [1]. In some scenarios, additional information
might be required in order to bridge the gap between
intended and real use. Some languages (like UML) have
language constructs that allow users to capture additional
information in the model (UML profiles allow users to
define stereotypes that can add additional properties to an
element) for a specific scenario. However, this is not always
the case. Extending the language to meet these scenarios
can lead to model pollution [2], reduce the flexibility,
and require continuous changes to supporting tools (e.g.
editors, verification scripts, etc.).

The purpose of extending the language is to be able to
capture additional information (metadata). One possible
approach is to define a decorator language that extends the
base language by adding constructs that allow capturing
the new information. When the decorator language is
constructed with the same technologies as the original
language, the additional classes can have direct references
to the original classes [1]. As a result, new models can be
created that capture both the original and the extended
language concepts. This approach has the advantage that
the additional information is seamlessly captured in the
model. The drawback is that the original language is not
aware of these extensions and additional tooling is required
for also providing seamlessly navigating between elements
form the original language and elements of the metadata
(e.g. [1]).

Another approach is to capture the metadata in a
separate artefact. In this case the decorator language
also extends the base language by adding constructs that
allow capturing the new information. Since the metadata
is kept separate seamlessly navigation is not possible.
However, the metadata can be considered a separate model
which can then be used as input for model management
operations. This approach can be usefull when there exists
a set of exiting base models that cannot be modified to
add the additional metadata.
Different approaches [1], [3], [4], EMF Facet1, have

been proposed to support decorator languages. Albeit
providing solutions that target different concerns, their
common driver is to allow users to provide metadata that
complements the model data. In this paper we explore
why the challenges associated when the metadata is also
to be used to guide model management operations. We
understand model management operations as activities
that consume information captured in the model, e.g.
model validation, model-to-model transformations, model-
to-text generation, etc. We will use a particular language
and scenario to provide context for the challenges and
to present initial ideas on how to provide solutions for
these challenges. Our example a uses separate artefact for
metadata, but we think techniques can be applied in both
cases.
Section II introduces the domain that motivated this

work and Sect. III describes the metadata we are inter-
ested in and presents the challenges of capturing complex
metadata. Section IV gives an overview of our solution to
these challenges and finally Sect. V concludes.

II. GSN and GSN Patterns
The development of assurance cases is a key part of

engineering critical systems. Assurance cases are now an
accepted part of certification arguments in areas such as
defence, rail, automotive and aviation. An assurance case
presents a structured argument aimed at ensuring that the
safety or security of a system can be demonstrated with re-
spect to evidence (e.g., tests, inspections). Assurance cases
(or safety cases and security cases) are typically specified

1https://www.eclipse.org/facet/

https://www.eclipse.org/facet/

Goal Strategy Solution Assumption Context Modifiers

Fig. 1. Goal Structuring Notation [8]
.

using structured languages, including Goal Structuring
Notation (GSN) [5] or the OMG’s standard Structured
Assurance Case Metamodel (SACM) [6]. “Indeed, the
development and acceptance of a safety case is a key
element of safety regulation in many safety critical sectors.
However, safety cases are typically constructed manually,
since many tools rely on diagrammatic drawing support
input (i.e. ’boxes and arrows’). This is time-consuming
and expensive, especially when we are dealing with large
amounts of artefacts and iterative software development”
[7].
In our work as part of the SECT-AIR project we

were looking into developing tools that would reduce the
amount of manual work required to build safety cases.
In particular, we were interested in how the safety cases
could be auto-generated and how the information required
to generate them could be captured or retrieved from other
sources. This paper presents work on the former.

The Goal Structuring Notation (GSN) [8] is a well-
established graphical argumentation notation to represent
safety arguments in a structured way. It can be used to
explicitly present “the individual elements of any safety ar-
gument (requirements, claims, evidence and context) and
(perhaps more significantly) the relationships that exist
between these elements (i.e. how individual requirements
are supported by specific claims, how claims are supported
by evidence, etc.)” [5]. The GSN is widely adopted
within safety-critical industries (i.e. aerospace, railways
and defence) for the presentation of safety arguments
within safety cases.

A. The GSN Language
Fig. 1 presents some elements of the GSN notation,

in particular those used in the examples that follow.
A Goal represents a claim about the system. When a
claim can only be supported by other claims, a Strategy
is used to break down a goal into subgoals. When a
claim can be directly supported by evidence, a Solution
is used. Assumption and Context elements can be used
to provide additional information about when and how
a claim can be made. The modifiers are used to state
that an element needs to be instantiated (triangle) or
that it is undeveloped (diamond). Edges between elements
representSupportedBy relations and can either be simple,
choice (diamond) or multiple (circle).

B. GSN Patterns
In some particular domains it is common that parts

of the safety arguments follow a similar structure. The

Fig. 2. Physical Decomposition Pattern [10]

appearance of these repeated structures suggests that
they are a correct, comprehensive and convincing set
of arguments that can be reused in the future. These
successful structures can be captured as GSN patterns
[9].
All elements of a GSN pattern are uninstantiated (i.e.

they represent a to-be) and considered to be abstract.
GSN uses the Role mechanism (represented by text inside
curly braces) to indicate that parts of a label (names,
descriptions, etc) are replaceable [5]. For the structure,
relations (edges) can be marked optional, with a required
cardinally, or as choices to convey that the section of the
pattern under the edge has structural restrictions.
Fig. 2 presents an example of a GSN pattern. In Goal

G1 the {system} role allows the name of the system to
be replaced and in G2 the {ssystem} role can be used to
place the name of the different subsystems in the system.
The G1-S1-G2 structure shows that the claims about the
system are suported by claims about the system’s sub-
systems. The supported by relation between S1 and G2 is
labelled #subsystems to accommodate that a system can
be divided into any number of subsystems.
C. Pattern Instantiation
A GSN pattern is used by applying it to a specific

element of an existing GSN model. During instantiation,
the element is replaced by copies of the pattern’s elements.
Further, the roles are replaced by specific values and
optional values, multiplicities and choices are resolved.
This means that a sub-structure of the graph can be
copied 0, 1 or multiple times. From this, it follows that
pattern instantiation requires the existence of metadata
that provides values for the roles, as well as information
on how to resolve optional, multiplicities and choices. We
consider instantiation a model management operation on
the pattern, the existing model and the metadata.

III. Decorating GNS to capture pattern meta-data
In this section we discuss how decorations could be used

to support GSN Patterns and while doing so, we present

Fig. 3. Simplified extract of the GSN Metamodel with decorators.

the challenges that we have found when working with
complex metadata. Although the GSN standard discusses
patterns and defines how roles, optionals, multiplicities
and choices can be defined, the current GSN language
abstract syntax does not provide constructs to capture
this information. Effectively, the information is stored as
strings. As a result, any model operation needs to parse the
text in order to extract the correct values. For example, in
the case of roles, text inside curly braces can be extracted
to know what metadata must be captured in the model
or additional artefacts.

A. Capturing role metadata
Continuing with the role example, in order to capture

the exact roles, we need to extend the description text
attribute in GSN elements so that role can be captured.
Fig. 3 presents a simplified extract of the GSN metamodel
and a possible decoration for capturing roles. The shown
classes depict how the content of a goal (the text) is
made up of multiple LangStrings (to support different lan-
guages). In order to explicitly capture role information we
could decorate the LangString class. Using the approach
from [1] we defined a Pattern Goal class that captures the
use of goals in patterns and a Role class that allow us to
capture the differnt roles used in a goal.

As a result, for the pattern in Fig. 2 we could decorate
G2 with a Pattern Goal instance and one Role with name
ssystem. The proposed decoration effectively captures the
role information. But what about additional master data,
i.e. the role value(s)?

For pattern instantiation the above decoration is not
enough because it does not capture role value(s). We could
modify the Role class and add a value:String attribute to
capture the value to use for the role during instantiation.
However, this solution does not consider the semantics of
GSN pattern instantiation as explained next.

B. Capturing complex metadata
The pattern semantics indicate that during pattern

instantiation multiple copies of an element can be created.
This happens whenever the pattern has a multiplicity
relation. In such cases, the complete sub-tree, starting with

Fig. 4. Multi-level pattern [10]

the first node below the multiplicity, must be duplicated
as many times as the multiplicity role is defined.
Consider the pattern in Fig. 4 adapted from [10]2. The

pattern can be used to argue that hazards, their parts, and
their identified causes have been mitigated. The top-level
claim (G1) is developed over the lower-level hazards (G2)
that constitute the to the top-level hazard. The pattern
captures the argument implicit in a hazard table in which
hazards are linked to their causes (G3).
This pattern has two multiplicity relations: decomposi-

tion of the top-level hazard into other hazards, and the
causes linked to a hazard. Further, these relations are
nested. During instantiation, the sub-tree starting at G2
would need to be replicated hl times. And for each of this
copies, the subtree below G3 would need to be replicated
c times. As a result, when capturing role values, each
{ht} role value would need to be associated with many
{hl} values, and each {hl} value associated with many
{c} values. Thus, additional constructs are required in the
decoration language in order to capture the instantiation
semantics. That is, the decorator metadata has additional
complexity.
One possible solution is to mimic this tree structure by

allowing roles to have children and a parent, as presented
in Fig. 5. The main problem with this approach is that
it is too general. That is, any role structure is allowed to
be captured. For example, we could put c role metadata

2The original pattern also links hazards to their mitigations and
eventually to safety requirements.

under ht role metadata, which is clearly not what is
required. Therefore, this solution would require additional
validation to ensure that the metadata structure is well-
structured in order to be used for instantiation.

Ideally, we would like a decorator model with more
detailed information thus simplifying use of the complex
metadata. For example, we could add specific pattern
elements and roles to the decoration language, as pre-
sented in Fig. 6. However, these decorations would need
to be created per pattern and as more roles are used, the
complexity of modelling the required relations increases.

C. Overview of the challenges
Complex metadata, like those required for guiding

model management operations, place additional require-
ments on the decoration language. As discussed, a gen-
eral decoration language is not sufficiently expressive
to represent complex metadata and requires additional
validation activities. Second, the required decorations can
even per-model basis, turning the decoration activity in
much more time-consuming. A side effect of this fine-
grained granularity is that reuse of decoration languages
is reduced. In a nutshell, when metadata is tightly coupled
to the semantics of model operations, the ability to define
more fine-grained decorations and model more complex
relations is required.

IV. Generating decorators
This section presents one possible approach to solve

the challenges of creating decoration languages to manage
complex metadata. Our approach is based on the idea
of auto-generation of decoration languages. The auto-
generation approach provides some key features:

Fig. 5. Adding a tree-like structure to role decorations.

Fig. 6. Adding pattern specific elements.

• Facilitates creating fine-grained decorations, even
within the same domain.

• Speeds up development of tools (e.g. editors) to
construct decoration models.

• Can handle complex metadata (e.g. complexity based
on the language semantics).

Our prototype has been developed for GSN Patterns, but
it can be easily replicated in other domains.

A. Understanding the domain

For GSN Patterns, we identified that the complex
metadata is structured as a tree where branches are related
to the SupportedBy relations’ multiplicity, optionality
or selection. Since this tree structure is a result of the
semantics of GSN Pattern instantiation and not from
a particular pattern, we use it as a base structure for
the auto-generated decoration models. Thus, decoration
languages for GSN patterns follow a tree like structure in
which each node can capture specific role information.
In our approach we call the role:value pairs a link and

each node in the tree can have 0 or more links. We
also identified that roles are often reused throughout the
pattern in order to describe relations between them. For
example, in the pattern in Fig. 2 the system role is used
in G1 and C2. As a result, since links are captured for
each node this would result in duplicate information being
captured. Duplicate information can be the source for
errors and can lead to inconsistencies. For this reason,
our approach supports the concept of variables as in
most programming languages: variables are used to store
information to be referenced and manipulated. Finally,
apart from roles we also need to be able to capture
multiplicity and selection information.
Designing a Domain Specific Language (DSL), in this

case the decoration language, is not a trivial task. Consid-
erations like the framework used for development, selecting
the concepts captured by the language, and the level of ab-
straction, among others, must be taken in order to reduce
the risk associated with developing a DSL [11]. The main
characteristics of the GSN Pattern decoration language
are defined by the roles and by the relations between the
pattern elements. How these characteristics are captured
by the decoration language syntax, is presented in the
next sections.
Given that the nature of links is to capture text

values, we opted for creating decoration languages that
use textual notation. Fot this reason, we selected the
Xtext framework [12] as our target platform. That is,
the auto-generated decoration languages are specified as
Xtext concrete syntax instances. These instances can then
be used to generate editors that support the decoration
language. We will initially discuss the decoration language
syntax using EBNF and then show how we can do it in
Xtext.

B. A GSN Pattern decoration template
Our first step was to define a language template that

captures the tree structure and the existence of links. The
template define the basic constructs that all specific GSN
Pattern decoration languages will have. The proposed
language is indentation-based (i.e. structure is defined
by indentation), thus the tree structure is represented by
indentation levels. The template is presented in Listing 1
in a textual representation (EBNF). We use the <xxx>
notation to represent a replaceable concept.

Listing 1. Template for GSN Pattern Languages
1 data ::= var iable * <gsnnode>*;
2 var iab le ::= ID ’=’ STRING;
3 <gsnnode> ::= (count <branchnode>) | <node>;
4 <branchnode> ::= ’<name>_br ’ ’ : ’ <node>*;
5 <node> ::= ’<node_name>’ ’ : ’<l ink>* gsnnode* ;
6 <link> ::= ’*<role>’ ’=’ ID | STRING;
7 count ::= <max> | (<min>,<max>)

The Pattern (meta)data (line 1) is composed of variables
and gsnnodes. A variable (line 2) has a name, given by an
ID and a value of type String. A gsnnode can either be a
branch node or a simple node. Branch nodes are used to
represent nodes that follow a multiplicity relation. Branch
nodes have multiplicity limits given by their count and
can only contain other nodes (line 4). Count is loosely
defined as either a max, or min,max replaceable concepts
so there is flexibility for fixed and dynamic (role) counts.
The proposed min/min-max representation can capture
both multiplicity (min..max) and selection (min ofmax)
information. A node (line 5) has a name, and can have
multiple links and nested nodes. Finally, a link allows
paring a role to its value. Links are prefixed with an ’*’ to
differentiate them from nodes. The value can either be a
String or the name of a previously defined variable (ID).

Replaceable concepts are intended to be substituted
by specific pattern values when auto-generating the GSN
pattern’s language. Each of the nodes in the pattern
should have a corresponding node construct. Each of
the multiplicity relations should have a corresponding
branchnode construct. For each of the roles on each node,
a <link> construct with the roles name should be present.

Listing 2 presents the decoration language specification
for the pattern in Fig. 4. Branches from goals G1 and G2
have been defined as branch nodes: g2_br and g3_br. In
both cases the ability to have multiple subtrees is specified
by indicating that the construct can appear multiple times
(‘*’ in EBNF). Simple nodes for G1, G2 and G3 (lines 2, 6
and 10) have definitions for roles ht, hl and c respectively.
There is also an explicit capturing of the multiplicities via
hl (line 5) and c (line 9). Note that using the proposed
structure for decoration languages, the node names, roles
and structure are hard-coded into the language, giving
little room for errors when capturing metadata (i.e. using
the language to create models).

Listing 2. Simple Pattern DSL
1 data ::= ’G1 ’ ’ : ’ g1 s1 ;

2 g1 ::= ’*ht ’ ’=’ ID | STRING;
3 s1 ::= ’S1 ’ ’ : ’ hl g2_br* ;
4 g2_br ::= ’G2 ’ ’ : ’ g2 s2 ;
5 hl ::= ’ hl_count ’ ’=’ INT;
6 g2 ::= ’*hl ’ ’=’ ID | STRING;
7 s2 ::= ’S2 ’ ’ : ’ c g3_br* ;
8 g3_br ::= ’G3 ’ ’ : ’ g3 ;
9 c ::= ’ c_count ’ ’=’ INT;

10 g3 ::= ’*c ’ ’=’ ID | STRING;

C. Matching domain semantics to grammar constructs

So far we have presented the GSN Pattern languages
in EBNF notation. However, we stated that we target
the Xtext framework. In this section we present how the
GSN Pattern instantiation semantics can be mapped to
grammar constructs supported by Xtext.
The proposed template and example language only

discuss the case of multiplicities in relations. However,
GSN pattern instantiation semantics also accounts for
optional and select relations. Optional relations depict
the case in which the target node (and its sub-tree)
of the relation can either be present or not. Selection
relations depict the case in which n of the target nodes
(and its sub-tree) of the relation can be present or not.
The mapping between multiplicities and optionals, and
grammar constructs is as follows:
Option These relations are represented graphical in

GSN with an empty circle in the relation.
Since the relation indicates present or not, we
use the Xtext optional construct, denoted by
a question mark (?), to represent it. That is,
if a branchnode is optional it will be followed
by a question mark: <>_br?.

Selection These relations are represented graphically in
GSN with a solid diamond relation with one
source and multiple targets. Additionally, the
label of the relation is of the form n of m,
which indicates an n of m selection. Both n
and m can be replaced by roles. In Xtext
we use the Alternatives construct, denoted
by a bar (|), to represent it. Note that the
alternative construct can list the alternatives
but can’t enforce the limits.

Multiple These relations are represented graphically
in GSN with an filled circle in the relation.
Additionally, the label of the relation is of the
form n..m or m, which indicates an n to m or
0 to m multiplicity. In Xtext we use the zero
or more construct, denoted by an asterisk (*),
to represent it. As with the selection case, we
cannot enforce the limits via the grammar.

Since limit information for both selection and multiplicity
relations is captured in the model, this information can
be used to provide instant validation on the generated
editors.

Fig. 7. Extended/Hierarchical physical decomposition pattern,
adapted from [10].

D. Example
Fig. 7 presents the Extended/Hierarchical physical de-

composition pattern (EPDP), adapted from [10]. The
intent of the pattern is to assure that failure hazards of a
system have been sufficiently mitigated. An excerpt of the
automatically generated language in Xtext is presented in
Listing 3, which includes some Xtext features that are
important in our approach.
The BEGIN and END keywords are used to specify that

the language is indentation based. In Xtext rules can be
assigned to variables to ease retrieving information. For
example, in line 2 we store all the Vars in a variable called
vars. When inspecting the parsed tree, these variable
names can be used to easily replace their values when
used elsewhere. Line 44 shows another important feature
of Xtext. The name inside square brackets indicates that
a variable reference (VarRef) must point to a previously
defined variable (Var). This will guarantee that only
previously defined variables are used, reducing the number
of errors.

Listing 3. EPD pattern language in Xtext
1 data :
2 (vars+=Var)*
3 top=g1 ;
4 g1 :
5 ’G1 ’ ’ : ’
6 BEGIN
7 ’ *s ’ ’=’ s=(STRING | VarRef) ;
8 g1s1=s1 | (count=s2_count g1s2+=s2_br*) ;

9 END;
10 s1 :
11 ’S1 : ’
12 BEGIN
13 s1c1=c1 (count=g2_count s1g2+=g2_br)* ;
14 END;
15 c1 :
16 ’C1 ’ ’ : ’
17 BEGIN
18 ’ *s ’ ’=’ s=(STRING | VarRef) ;
19 ’ *pbt ’ ’=’ pbt=(STRING | VarRef) ;
20 END
21 g2_br :
22 BEGIN
23 top=g2 (g2s1=s1 | g2s2=s2) ;
24 END
25 g2_count :
26 ’ subsystems_count ’ ’=’ INT;
27 g2 :
28 ’G2 ’ ’ : ’
29 BEGIN
30 ’ *ss ’ ’=’ ss=(STRING | VarRef) ;
31 END
32 s2_gb :
33 top=s2
34 s2_count :
35 ’ strategies_count ’ ’=’ INT;
36 s2 :
37 ’S2 ’ ’ : ’
38 BEGIN
39 ’ *r ’ ’=’ r=(STRING | VarRef) ;
40 END
41 Var :
42 name = ID ’=’ value=STRING;
43 VarRef :
44 r e f = [Var] ;

E. The generated editor
Fig. 8 presents screenshots of the generated Pattern

language editor for another Pattern. In Figure 8a missing
links are marked as errors. By using content assist (Fig-
ure 8b) users can find which links are missing. Further,
only the links required by the specific node are allowed
thus eliminating errors. Similarly, in Figure 8c the absence
of required nodes (in this case S1) is also highlighted as
an error. As with links, the content assist will correctly
list/add the missing nodes for that specific section of
the pattern. Finally, when using variables, the editor
highlights unknown variables as errors. In this case, the
Fr_id variable has not been declared. The editor can
suggest possible replacements and as before, the content
assist can also be used (Figure 8e).
To evaluate our approach, we are planning to run

a comparative study with safety engineers. The main
objective would be to measure the gains, if any, of using
auto-generation. We are also interested in a qualitative
evaluation about the proposed syntax and language struc-
ture.

V. Conclusions
Model decorations are key to allow DSL to be used

beyond their intended use. This paper presented the
challenges associated when the model decorations need
to handle complex metadata and why the state of the art

(a) Missing Links (b) Content assist (c) Missing Nodes

(d) Variable resolution (e) Content assist for variables

Fig. 8. Pattern aware meta-data editor

is not sufficiently expressive. For example, when metadata
affects the execution model management operations on the
decorated models.

We also presented a possible solution for the challenges
which is based on the automatic generation of the decora-
tion languages. The generation can take into consideration
the semantics of the domain and the requirements of
the model management operations. Auto-generation allows
complex decoration languages to be generated for more
fine-grained scenarios and reduces the manual labour that
entails the creation of multiple decoration languages.

Acknowledgment
This work was supported by the SECT-AIR project,

funded by the Aerospace Technology Institute and Inno-
vate UK, as project number 113099.

References
[1] D. S. Kolovos, L. M. Rose, N. Drivalos Matragkas, R. F.

Paige, F. A. C. Polack, and K. J. Fernandes, “Constructing
and navigating non-invasive model decorations,” in Theory and
Practice of Model Transformations, L. Tratt and M. Gogolla,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp.
138–152.

[2] D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “On-demand
merging of traceability links with models,” in 2nd ECMDA
Traceability Workshop (2006), Proceedings of the, 2006.

[3] P. Langer, K. Wieland, M. Wimmer, and J. Cabot, “From
uml profiles to emf profiles and beyond,” in Objects, Models,
Components, Patterns, J. Bishop and A. Vallecillo, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 52–67.

[4] H. Bruneliere, J. Garcia, P. Desfray, D. E. Khelladi, R. Hebig,
R. Bendraou, and J. Cabot, “On lightweight metamodel ex-
tension to support modeling tools agility,” in Modelling Foun-
dations and Applications, G. Taentzer and F. Bordeleau, Eds.
Cham: Springer International Publishing, 2015, pp. 62–74.

[5] S. A. C. W. Group, “Goal structuring notation community
standard,” Online, The Safety-Critical Systems Club, 2018.

[6] OMG, “Structured assurance case metamodel,”
https://www.omg.org/spec/SACM/2.0/PDF, 2018. [Online].
Available: https://www.omg.org/spec/SACM/About-SACM/

[7] E. Denney, G. Pai, and J. Pohl, “Automating the generation
of heterogeneous aviation safety cases,” NASA, Tech. Rep.
NASA/CR-2011-215983, 2012.

[8] T. Kelly and R. Weaver, “The goal structuring notation – a
safety argument notation,” in Proc. of Dependable Systems and
Networks 2004 Workshop on Assurance Cases, 2004.

[9] T. Kelly and J. McDermid, “Safety case patterns-reusing
successful arguments,” in IEE Colloquium on Understanding
Patterns and Their Application to Systems Engineering (Digest
No. 1998/308), 4 1998, pp. 3/1–3/9.

[10] E. W. Denney and G. J. Pai, “Safety case patterns: Theory and
applications,” NASA, Tech. Rep. 20150004086, 2015.

[11] U. Frank, Domain-Specific Modeling Languages: Requirements
Analysis and Design Guidelines. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 133–157. [Online]. Available:
https://doi.org/10.1007/978-3-642-36654-3_6

[12] M. Eysholdt and H. Behrens, “Xtext: Implement your language
faster than the quick and dirty way,” in Proceedings of
the ACM International Conference Companion on Object
Oriented Programming Systems Languages and Applications
Companion, ser. OOPSLA ’10. New York, NY, USA: ACM,
2010, pp. 307–309. [Online]. Available: http://doi.acm.org/10.
1145/1869542.1869625

https://www.omg.org/spec/SACM/About-SACM/
https://doi.org/10.1007/978-3-642-36654-3_6
http://doi.acm.org/10.1145/1869542.1869625
http://doi.acm.org/10.1145/1869542.1869625

	Introduction
	GSN and GSN Patterns
	The GSN Language
	GSN Patterns
	Pattern Instantiation

	Decorating GNS to capture pattern meta-data
	Capturing role metadata
	Capturing complex metadata
	Overview of the challenges

	Generating decorators
	Understanding the domain
	A gsn Pattern decoration template
	Matching domain semantics to grammar constructs
	Example
	The generated editor

	Conclusions
	References

