
Towards Incremental Updates
in Large-Scale Model Indexes

Konstantinos Barmpis, Seyyed Shah and Dimitrios S. Kolovos

Department of Computer Science, University of York,
Heslington, York, YO10 5DD, UK

{kb,s.shah,dkolovos}@cs.york.ac.uk

Abstract. Hawk is a modular and scalable framework that supports
monitoring and indexing large collections of models stored in diverse
version control repositories. As such models are likely to evolve over
time, responding to change in an efficient manner is of paramount im-
portance. This paper presents the incremental update process in Hawk
and discusses the efficiency challenges faced. The paper also reports on
the evaluation of Hawk against an existing large-scale benchmark, fo-
cusing on the observed efficiency benefits in terms of update time; it
compares the time taken when using this approach against the naive ap-
proach used beforehand, and discusses the benefits of combining the two,
gaining improvements averaging a 70.7% decrease in execution time.

1 Introduction

As discussed in [9, 11], the ability of modelling and model management tools to
scale up in a collaborative development environment is essential for the wider
adoption of MDE. This paper contributes to the study of scalable techniques for
collaborative modelling, by presenting and empirically evaluating an incremental
approach for indexing evolving models stored in file-based repositories (such as
Git or SVN). Section 2 introduces the rationale behind model indexing and
provides a brief overview of an existing model indexing framework (Hawk [1]).
Section 3 presents a naive and an incremental approach for updating model
indexes in response to changes to models stored in file-based repositories that
Hawk monitors. Section 4 evaluates their performance on various mutants of
models from an existing large-scale benchmark. Section 5 discusses related work
and Section 6 concludes the paper and identifies directions for further work.

2 Background

This section overviews model indexing, providing motivation for using it in this
domain, and introduces the reader to Hawk, our model indexing framework.



2.1 Model Indexing

In a collaborative environment, models need to be version-controlled and shared
among many developers. The default approach for doing this is to use a file-
based version control system such as Git or SVN. This has certain advantages
as such version control systems are robust, widely-used and orthogonal to mod-
elling tools, the vast majority of which persist models as files. On the downside,
since such version control systems are unaware of the contents of model files,
performing queries on models stored in them requires developers to check these
models out locally first. This can be particularly inefficient for global queries
(e.g. is there a UML model in my repository that contains a class named “Cus-
tomer”?) that need to be executed on a large number of models. Also, file-based
version control systems do not provide support for model-element level opera-
tions such as locking or change notifications. To address these limitations, sev-
eral open-source and proprietary model-specific version control systems such as
CDO, EMFStore and MagicDraw’s TeamServer have been developed over the
last decade. As discussed in detail in Section 5, while such systems address some
of the limitations above, they require tight coupling with modelling tools, they
impose an administration overhead, and they lack the maturity, robustness and
wide adoption of file-based version-control systems.

In what can be seen as a happy medium between the two approaches to
model version control, model indexing is an approach that enables efficient global
model-element-level queries on collections of models stored in file-based version
control systems. To achieve this, a separate system is introduced which moni-
tors file-based repositories and maintains a fine-grained read-only representation
(graph) of models of interest, which is amenable to model-element-level query-
ing. Previous work [2, 3] has demonstrated promising results with regards to
query execution times, with up to 95.1% decrease in execution time for query-
ing model indexes [2], compared to direct querying of their constituent EMF
XMI-based models, and up to a further 71.7% decrease in execution time, when
derived (cached) attributes were used [3]. This motivates us to improve upon
this technology by improving the efficiency of handling model evolution in such
model indexes.

2.2 Hawk

Hawk is a model indexing system that can work with diverse file-based version
control systems (VCS) and model persistence formats whilst providing a com-
prehensive API through which modeling and model management tools can issue
queries. Hawk needs to be scalable so that it can accommodate large sets of
models, and non-invasive (the VCS repositories, where the primary copies of the
monitored models are stored, should not need to be modified or configured). In
order for Hawk to be able to index heterogeneous models in a back-end agnostic
manner, it provides two abstraction layers:
– Model Abstraction Layer This layer provides a set of abstractions for

representing heterogeneous models and metamodels in memory. Inspired



by EMF’s respective abstractions, metamodel resources contain types/meta-
classes (grouped in packages), which have typed attributes and references,
as well as annotations. Model resources contain objects representing model
elements, which have values for the attributes and references of their type.

– Graph Database Abstraction Layer Extensive benchmarking showed
that graph databases such as Neo4J and OrientDB perform significantly
better than other technologies (e.g. relational databases) [2, 14] for the types
of queries of interest to a system like Hawk. To avoid coupling with a specific
graph database, this layer aims at providing a uniform interface for querying
and manipulating graph databases in an implementation-independent man-
ner. It is worth noting that implementations of this layer can conceptually be
used to connect to any back-end technology, but will suffer in performance
if the data model is not similar with the graph model used here.

Fig. 1. Overview of the relevant Hawk architecture

Hawk comprises components which can monitor a set of version control repos-
itories, parse and index models of interest stored in them. Figure 1 shows some
of the key components of Hawk and their interactions; in the figure, M1–M3 rep-
resent model files and MR1–MR3 represent in-memory model resources obtained
by parsing M1–M3. Below is a brief description of these components:

At the center of Hawk lies the Controller of the system, which knows which
Hawk components are currently active and is responsible for synchronizing with
any changes made to monitored files.

Resource Factories are used to parse metamodel and model files and create
the relevant metamodel and model resources described above, which are given
to the Controller to be propagated to the index. They know which files they can
parse and also provide a way to give any statically available metamodels to the
Controller (such as a UML metamodel – without them having to be manually
registered).

Version Control Managers are used to poll monitored version control systems
in order to get any changes (deltas) to model files of interest. If any such delta
is found, it passes it on to the Controller so that the changes can be propagated
to the model index.

Metamodel Updaters are used to insert metamodel resources to the index. As
Hawk does not currently deal with metamodel evolution, only the first version
of a metamodel is indexed. Model Updaters are used to update the index with
a new version of a model. In the sequel we examine how such updates can be
optimized, focusing on the components found inside the dashed box of Figure 1.



Prototype implementations of the various components exist as Java plugins1

and support: XMI EMF, BIM2 EMF and Modelio3 UML models and meta-
models, monitoring of folders on the local machine and on SVN version control
repositories, using Neo4J (version 2) Graph NoSQL database for persistence and
using Epsilon’s EOL [10] as a query engine.

Fig. 2. High-level overview of the contents of a library model index (persisted in a
NoSQL graph database), adapted from [3].

Overview of a Hawk model index An example of a Hawk index, containing
a simple library metamodel and a model that conforms to it, is illustrated in
Figure 2. In general, a model index typically contains the following entities [3]:

– Repository nodes. These represent a VCS repository and contain its URL
and last revision. They are linked with relationships to the Files they contain.

– File nodes. These represent files in a repository and contain information
on the file such as the path, current revision and type. They are linked with
relationships to the Elements they contain.

– Metamodel nodes. These represent metamodels and contain their names
and their unique namespace URIs (in EMF, these would be EPackages4).
They are linked with relationships to the (metamodel) Types they contain.

– Type nodes. These represent metamodel types (EClasses in EMF termi-
nology) and contain their name. They are linked with relationships to their
(model) Element instances.

– Element nodes. These represent model elements (EObjects in EMF termi-
nology) and contain their attributes (as properties) and their references (to
other model elements) as relationships to them.

1 https://github.com/kb634/mondo-hawk
2 http://www.openbim.org/
3 http://www.modelio.org/
4 We choose to draw parallels with concepts from EMF as they are well-understood



– Database Indexes. Metamodel nodes and File nodes are indexed5 in the
store, so that their nodes can be efficiently accessed for querying (commonly
used as starting points for complex graph traversal queries).
It is worth noting that a model index such as the one presented above may

end up being a full copy of the actual models found on the relevant version control
system but it does not have to be. In principle, if some contents of the model
are not deemed useful they can be omitted in order to gain an improvement in
injection and possibly query time.

2.3 Updating Model Indexes

As models can evolve over time, appropriate mechanisms need to be in place for
efficiently synchronizing the index with any changes in models it monitors. Two
alternative approaches that can be used for this:

Naive Synchronization In this approach, when a model file changes in a
repository, Hawk propagates this change by removing all its model elements in
the model index and then re-inserting them.
This approach, while seeming inefficient, has various potential benefits:
– The overhead of comparing the contents of the two versions (in two different

formats) is avoided. In order to perform an incremental update an element-
by-element comparison of the old and new versions of the models has to be
performed, which can be very costly.

– The index is expected to be capable of performing massive naive inserts
efficiently (such “mass inserts” are used by various database technologies
in order to rapidly store an initial version of the data, they may make the
model index unavailable during this process). When performing changes to
elements in the index (such as when performing an incremental update), this
cannot happen, so the time for each individual change to be propagated can
substantially increase.

The drawbacks of this approach are:
– The lack of knowledge about changes means that even a change in a single

element will require all elements in the model file to be removed and re-
inserted into the index. This gets more costly the smaller the change and
the larger the model file gets.

– The act of performing a “mass insert” into the index will require heavy usage
of its resources and may also limit its availability for use while the update
happens. Furthermore, if the index is inefficient in deleting elements, then
deleting such large contents may become a bottleneck.

Incremental Synchronization In this approach, model changes are identified
on a model element level by performing a comparison of the old version found in
the index with the new version found in the repository. As such, only affected el-
ements (added, removed, changed) have to be updated in the index for achieving
synchronization.

5 http://components.neo4j.org/neo4j-lucene-index/snapshot/



The benefits of this approach are:

– As each change is identified on a model element level, avoiding having to
delete and insert the entire model file into the index can potentially com-
pensate for the overhead of performing a full model comparison. Hence it can
be more efficient both in terms of time as well as resources and availability,
as only the relevant subsets of the index will be touched.

The drawbacks of this approach are:

– The overhead of model comparison may be larger than the gain of a fine-
grained update if the update is relatively large when compared to the model.

– Such updates impose various requirements on the model files, in order to
enable the required comparison (such as the need for model elements to
have a unique (non-volatile per file) identifier), which may not be satisfied
by some model representation formats.

3 Updates in Hawk

This section presents the process used for updating Hawk model indexes when
monitored models change, a combination of naive insertion and incremental up-
dates (using model element signatures – described below), and discusses how
this improves the efficiency of updates performed in large model indexes.

3.1 Overview of Hawk Updates

Hawk performs Algorithm 1 every time it finds a changed (added, removed,
updated) model file from any of its monitored repositories. As demonstrated in
the sequel, using this incremental updating when a model file is already indexed
provides a large performance gain when compared to naively deleting and re-
indexing it every time it is modified.

if model file already indexed then
if change of type added/updated then

incremental update (see Section 3.4)
else if change of type removed then

delete indexed elements of file, keeping cross-file references to these
elements as proxies

end
else

if change of type added/updated then
naive insertion (see Section 3.3)

end
end

Algorithm 1: Hawk Update Overview



3.2 Signature Calculation

In order to update a model, an efficient way to determine whether a model
element has changed is needed. A signature of a model element is a lightweight
proxy to its current state. In order to calculate a meaningful signature for model
elements indexed in Hawk (in order to enable support for incremental updates
of the model index, as models in it evolve), every mutable feature of the element
needs to be accounted for. As such, the following features are used to calculate
the signature of each element:
– all of the names and values of its attributes
– all of the names and the IDs (of the target elements) of its references

This works under the assumption that model elements cannot be re-typed during
model evolution, which is the case for the popular modeling technologies such
as EMF, as well as that model elements have immutable and unique IDs.

A signature can be represented as either a String containing the concate-
nation of the values listed above or as a hash-code of this String. The String
representation ensures that a unique signature exists for any model state, but
suffers in terms of comparison performance as potentially very long Strings will
have to be compared. On the other hand, the hash-code (Integer) representation
allows for rapid comparisons but has a chance (albeit small) for clashes, which
show different model states as having the same signature. We decided to use
the integer representation as this identifier, to allow rapid comparisons. This
signature is used to efficiently find changes in model elements, as detailed below.

3.3 Naive Insertion

For a naive insertion of a model file into Hawk a process outlined in Algorithm 2
is followed. In this process, the elements of the model file are firstly loaded into
memory as a model resource. Then, for each such element a node is created in
the index graph with its attributes as properties, and linked (using relationships)
to its file and type/supertypes. Finally, for each element its references are used
to link the node with other nodes in the graph.

As this process often requires intense resource consumption, the batch mode
of Hawk’s back-end is used (if the specific back-end used supports it). This mode
makes the database unavailable until the process is completed, but Neo4J has
at least an order of magnitude better performance in terms of execution time
when compared to on-line (transactional) updating.

3.4 Incremental Updating

For incremental updating of a model file into Hawk, the process outlined in Al-
gorithm 3 is followed. In this process the signatures of each element are used to
efficiently determine which elements have changed. Then, for each new element
a node is created, for each changed element its properties and relevant references
are updated (keeping dangling cross-file references as proxies in Hawk for consis-
tency), and for each removed element its node is deleted. The complexity of this



use relevant factory to parse the file into a model resource
foreach element in the model resource do

create model element node in graph
create signature attribute in node
create a relationship from this node to its file node
create a relationship from this node to its type node (and relationships to
all its supertype nodes)

end
foreach element in the model resource do

foreach reference in the references of the element do
if reference of element is set then

foreach referenced element do
if referenced element is not a proxy then

create relationship from this node to the node of the
referenced element

else
add new proxy reference

end
end

end
end

end
Algorithm 2: Naive (batch) insertion algorithm

algorithm is O(m + n + d× r) where m is the number of model elements in the
updated model file, n is the number of model nodes in the model index linked to
the (previous version of the) updated file, d is the number of changed elements
and r is the number of target elements referenced by the changed element.

This process only alters the part of the model index which has actually
changed and as such, it does not need to use more resources than required by
the magnitude of the change, potentially saving on memory and execution time.

3.5 Derived Attributes

Derived attributes are used in Hawk in order to speed up certain types of queries
[2]. Such attributes are computed using expressions formed in the expression
language of a known Query Engine. A query engine in Hawk allows for expression
languages (such as OCL or Epsilon’s EOL [10]) to be used as a query mechanism
for a Hawk model index. Such derived attributes are hence pre-computed and
cached at indexing time and need to be maintained as the model index evolves.

A simple example is shown in Figure 3; here, the number of books each
author has published (named numberOfBooks) is pre-computed (using the EOL
expression return self.books.size()) and stored in a new DerivedAttribute node6

with the attribute name as the relationship linking it to its parent Element node.
This derived attribute is handled seamlessly with regards to querying, hence an
EOL query used to get the number of books of a specific author a would change
from a.books.size() to a.numberOfBooks (in both cases returning an integer).

Expressions of arbitrary complexity are expected to be used in practice so
that pre-caching the results of such expressions is actually worthwhile. A more

6 A new node is used for overcoming a limitation found during incremental updating
of derived attributes; further information on this can be found in Section 3.6



let nodes be the set containing the ids and pointers to all the nodes (in the model
index – linked with the updated file)

let signatures be the set containing the ids and signatures of the nodes
let delta be the set containing changed elements
let added be the set containing new elements (to be added to the model index)
let unchanged be the set containing elements which are the same
foreach node from all nodes in the model index that are linked with the updated file do

add node to nodes
add signature of node to signatures

end
foreach element in elements of model resource do

if element id exists in signatures then
if element signature not equal to current signature then

add element to delta
else

add element to unchanged
end

else
add element to added

end
end
/* add new nodes to model index */
foreach element in added do

add this new element in model file to model index
end
/* delete obsolete nodes and change altered node attributes */
foreach node in nodes do

if node id exists in delta then
remove current properties of node
set all model attributes of node as properties

else if node id does not exist in unchanged then
de-reference node (keeping dangling cross-file references as proxies)
delete node

end
end
/* change altered references */
foreach element in delta do

foreach reference in references of element do
if reference is set then

foreach referenced element in referenced elements of reference do
if referenced element is not proxy then

add id of referenced element to targetIds
else

add new proxy reference to model index
end

end
foreach relationship in relationships of node linked with the element do

if relationship target has id which exists in targetIds then
remove target from targetIds

else
delete relationship as new model does not have it

end
end
foreach id in targetIds do

add new relationship to model index
end

else
foreach relationship in relationships of node, with the same name as the
reference name do

delete this relationship
end

end
end

end

Algorithm 3: Incremental update algorithm



Fig. 3. Pre-computing the number of books of each author

realistic example (but one too complex to present in detail) would be to calculate
(for each author) the names of the authors which have co-written at least three
books with the author in question. This query can be presented in EOL as:

var coauthors = self.books.collect(a|a.authors.name);

var authormap = coauthors.flatten.excluding(self.name).asSet().mapBy(a|

coauthors.select(s|s.contains(a)).size());

var atLeastThreeBooks : Sequence;

for(a in authormap.keySet()){

if(a>=3) atLeastThreeBooks.add(authormap.get(a)); }

return atLeastThreeBooks.flatten();

This would return a Sequence of names of the other authors in question.
Caching such complex expressions during inserts/updates can significantly re-
duce query execution time of relevant queries, as shown in [2].

3.6 Updating of Derived Attributes

A naive approach for maintaining such attributes would involve having to fully
re-compute each one, every time any change happens to the model index. This is
due to the fact that any such attribute can potentially depend upon any model el-
ement in the index, thus any change can potentially affect any derived attribute.
Such an approach would be extremely inefficient and resource consuming.

As such, an incremental approach for updating derived attributes in Hawk
has been used. In this approach, which is an adaptation of the incremental OCL
evaluation approach discussed in [5], only attributes affected by a change made
to the model index are re-computed when an update happens. In order to know
which elements affect which derived attributes, the scope of a derived attribute
needs to be calculated. The scope of a derived attribute comprises the current
model elements (and/or features) in the model index this attribute needs to
access in order to be calculated. When a derived attribute is added/updated in
the model index, the query engine used to calculate this attribute also publishes
an AccessListener to Hawk, providing the collection of Accesses this attribute
performed. By recording these accesses (element and/or feature accesses), Hawk
updates only the derived attributes which access an element altered during an
incremental update. As the incremental update changes the minimal number of



elements during model evolution, the updating of derived attributes can be seen
to be as efficient as possible with respect to the magnitude of the change.

In more detail, every time an update process happens in Hawk, it records the
changes it has made to the model index. A change can be one of the following:

– A model element has been created / deleted
– A property of a model element has been altered
– A reference of a model element (to another one) has been created / deleted
• Note: complex changes (like move) are broken down to these simple changes.

Furthermore, every time a derived attribute is added or updated, it records the
accesses it requires in order to be computed. An access can be one of:

– Access to a property / reference of a model element
– Access to the collection of model elements of a specific type / kind

By having recorded the above mentioned changes and accesses, Hawk can
calculate which derived attributes need to be re-computed during a model update
using Algorithm 4. As the derived attribute is a node itself, it can be directly
referenced and updated if necessary; if the derived attribute was located inside
its parent Element node, that node would have to be referenced instead and
hence all derived attributes in it would have to be updated, as there would not
be a way to distinguish which ones need updating and which ones do not.

In the example above, for the derived attribute numberOfBooks of node a1,
the access would read as follows: The derived attribute numberOfBooks needs
to access node a1 for its feature books. Hence anytime the feature books changes
for node a1 (ie: if a member of this reference is added or removed), the de-
rived attribute numberOfBooks will have to be recomputed (and only then). As
demonstrated by [6], this approach works for expressions of arbitrary complexity
as long as they are deterministic (they do not introduce any randomness using
random number generators, hash-maps or other genuinely unordered collections).
As EOL defaults to using Sequences for collections and does not inherently use
random number generators, as long as the expressions provided do not specifi-
cally introduce non-determinism, this approach is sound [6].

let nodesToBeUpdated be the set containing the derived attribute nodes which
will have to be updated – initially empty

foreach change in the collection of changes do
if the change is a model element change then

add any derived attribute which accesses this element (or any of its
structural features) to nodesToBeUpdated

else if the change is a structural feature change then
add any derived attribute which accesses this structural feature to

nodesToBeUpdated
end

end
foreach node in nodesToBeUpdated do

re-compute the value of the (derived attribute) node
update the accesses to the new elements/features this node now requires

end
Algorithm 4: Derived attribute incremental update algorithm



4 Evaluation

In this section, an existing large-scale benchmark is used to conduct performance
tests for updating a Hawk model index. The sample models are mutated in order
to simulate changes that are picked up by Hawk.

4.1 The GraBaTs 2009 Case Study

For evaluating query execution performance in Hawk we use large-scale models
extracted by reverse engineering existing Java code. The updated version of the
JDTAST metamodel used in the SharenGo Java Legacy Reverse-Engineering
MoDisco use case7, presented in the GraBaTs 2009 contest [7] described below,
as well as the five models provided in the contest, are used for this purpose.
In JDTAST TypeDeclarations are used to define Java classes and interfaces,
MethodDeclarations are used to define methods and Modifiers are used to define
modifiers (e.g static, synchronized) for Java classes and methods. Figures of the
relevant subset of the JDTAST metamodel are found in works like [2, 12].

The GraBaTs 2009 contest provided five models, Set0–Set4 (of progressively
larger models, with 70,447, 198,466, 2,082,841, 4,852,855 and 4,961,779 model
elements, respectively), conforming to the JDTAST metamodel. These models
are injected into Hawk and then mutated using various heuristics in order to
test and evaluate its update procedure. In the following sections we use this case
study as a running example to illustrate the implementation and to evaluate it.

4.2 Execution Environment

Performance figures that have been measured on a PC with Intel(R) Core(TM)
i5-4670K CPU @ 3.40GHz, with 32GB of physical memory, a Solid State Drive
(SSD) hard disk, and running the Windows 7 (64 bits) operating system are pre-
sented. The Java Virtual Machine (JVM) version 1.8.0 20-b26 has been restarted
for each measure as well as for each repetition of each measure. In each case,
20GB of RAM has been allocated to the JVM (which includes any virtual mem-
ory used by the embedded Neo4J database server running the tests).

4.3 Model Manipulation

In order to perform model manipulation operations, we used Epsilon’s EOL lan-
guage [10]. EOL is an imperative OCL dialect which supports model modifica-
tion. We decided to perform five model mutations (changes), which are represen-
tative of modifications performed in Java code. These mutations are performed
by five EOL operations (available online8). By using these operations in an EOL
script we can change the model it is run on in a realistic9 yet sufficiently random
manner10.
7 http://www.eclipse.org/gmt/MoDisco/useCases/JavaLegacyRE/
8 https://github.com/kb634/mondo-hawk/blob/master/model_manipulations.eol
9 Operations often used in manipulation of Java code, such as deleting a Java class

10 For example, by randomizing which Java class is deleted each time



4.4 Model Update Execution Time

Table 1 shows the average time taken to complete an update for the models
produced by performing the model mutations presented in Section 4.3 on the
original GraBaTs models. M(INS) represents the initial insert of the original
GraBaTs models into an empty Hawk index (using the naive insert process)
and M(0%)–M(50%) represent the update time (from the original model) to
one containing 0% to 50% content mutations. These mutations contain an equal
degree of each mutation operation found in Section 4.3 so that the total change
to the model ends up being N% of the original model contents. As such, each
of the five mutation operations performs changes equal to N

5 % of the original
model elements; since some changes are addition/removal operations on model
elements, the size of the resulting model is not the same as that of the original.

Table 1. Update Execution Time Results

Mutation
Execution Time (in seconds)

Set0 Set1 Set2 Set3 Set4
Naive Inc. Naive Inc. Naive Inc. Naive Inc. Naive Inc.

M(INS) 9.96 n/a 18.69 n/a 118.19 n/a 291.06 n/a 346.46 n/a

M(0%) 16.61 2.70 45.72 6.07 - 63.96 - 162.52 - 224.85

M(10%) 16.82 3.94 47.71 10.45 - 94.59 - 247.94 - 292.86

M(20%) 17.76 4.71 48.22 11.53 - 115.86 - 364.94 - 417.50

M(30%) 18.93 5.66 50.60 15.04 - 145.56 - 440.78 - 622.51

M(40%) 21.84 7.04 54.73 18.79 - 165.48 - 781.35 - -

M(50%) 22.09 7.97 60.21 20.92 - 193.41 - - - -

For each case both the incremental and naive updates were tested and com-
pared with one another. The naive update follows the process described in the
prequel for naive insertion, after having had the currently indexed elements
deleted from the index. As the naive update process failed to terminate for the
larger sets (Set2–Set4), figures for these models are not presented for the naive
update process. The reason for this failure is that the Neo4J back-end runs out
of memory when trying to delete the entire contents of the model index. This is
an unforeseen limitation in the Neo4J database, as we require of it to perform
a single transaction to delete the entire contents (as it does not support nested
transactions but only flattened nested transactions, which only commit when the
top-level transaction is closed) in order to maintain consistency between model
versions. We also note that the incremental update fails to complete for 50% of
Set3, 40% of Set4 and 50% of Set4. This is due to the fact that the magnitude of
the change is so large that not enough memory is available for Neo4J to be able
to fit this change in a transaction. The aim is to test the limits of Hawk, as such
a system typically aims at collecting a large amount of fragmented models and
not large monolithic ones; in the former case memory would not be an issue as



it can be flushed after each file is updated. Furthermore, a 40% or 50% change
on a model with millions of elements is not an expected use-case and again is
presented to test the limits of the system.

These results suggest that the incremental update process is substantially
faster than the naive approach, while also not compromising availability of the
index11. This can be largely attributed to there being no support for “mass
deletes” in the index, which ends up taking the majority of time needed for
a naive update. The actual time taken for the incremental updates is promis-
ing as it scales linearly with the magnitude of the change in the model, giving
us improvements of up to 78.10% decrease in execution time for a 10% model
change and up to 65.25% for a 50% model change, averaging a 70.7% decrease
in execution time over all of the comparable results12.

4.5 Derived Attribute Update Execution Time

Results for the execution time of altering derived attributes are not presented
as they would have to be compared to a baseline. Such a baseline would have
been to use a naive approach whereby all derived attributes in the model index
would have to be updated any time any model element or feature gets updated.
As this approach would have been inefficient compared to the incremental one,
it was never implemented so a meaningful comparison cannot be made.

4.6 Threats to Validity

There are five observed threats to the validity of this approach:
– The model mutations performed may have influenced the results. We tried

to limit this by performing multiple mutations in each case, all of which
contain a random factor in them.

– The percentage change of each model may not be indicative of real model
change. We tried to limit this by exploring a large variety of changes ranging
from zero to fifty percent of the original model.

– The model sizes used for empirical evaluation may not be indicative. Hawk
aims at handling large fragmented models, thus we anticipate that the size of
each fragment will not be orders of magnitude greater than the test models.

– Using an integer representation for the signatures has a chance for collisions;
this chance tends to 1 in 4.29 billion for non-trivial Strings. In all of the
empirical tests performed no clashes have been observed, which gives us
some confidence that the approach should be used for performance reasons.

– The last one is regarding the correctness of the incremental algorithm. While
this is not formally proven, empirical tests comparing the index state after
an incremental update with that of the original naive update, previously
used in Hawk (for the same changes), provided the same results for all of the
mutated models where both the incremental and naive updates completed.

11 As it does not block any incoming queries which may need to be performed
12 The 10 results from set0 and set1 that both naive and incremental approaches com-

pleted, disregarding the 0% change values as they are presented as a baseline.



5 Related Work

Aiming at tackling versioned collaborative development of models, proprietary
model repositories such as MagicDraw’s TeamServer13 have been developed; they
allow for model-element-level versioning, comparison and querying and support
multiple concurrent users. Nevertheless, such systems are highly-coupled with
the respective vendors’ modelling tools and hence have limited flexibility as they
bind the user to a specific technology.

Similarly, open-source model repositories such as CDO14 and EMFStore [8]
have arguably gained little traction while commonly supporting a wide variety
of back-end technologies. In our view, there are several valid reasons for this.
From a practitioner’s point of view, choosing a model-specific version control
system supported by a small open-source community over a robust and widely-
used and supported file-based version control system for storing business-critical
models is not a straightforward decision. Also, using two version control systems
in parallel (e.g. Git for code and CDO for models) can introduce fragmentation
as models and code changed in the context of the same conceptual commit, will
need to be manually distributed over two unconnected version control systems.

Various model persistence mechanisms have been developed in the past few
years as a scalable alternative to the XMI file-based model persistence used in
popular modeling technologies such as EMF. Many of these, such as NeoEMF
[4], Morsa [12], MongoEMF15 and EMF fragments [13] use NoSQL databases like
Neo4J or MongoDB as a back-end and deliver promising results with respect to
model traversal and querying. On the other hand such systems do not handle
version control of models stored in them.

6 Conclusions and Further Work

In this work we presented an incremental approach to updating model indexes,
using lightweight model element signatures. From the empirical data collected we
can conclude that incremental updates seem to outperform a naive approach to
achieving synchronization in model indexes. As availability can be important in
this context, the fact that the solution which does not compromise availability is
the most performant is noteworthy. We also discussed an incremental approach
for updating derived attributes which uses model changes and accesses to only
update derived attributes affected by a model change.

Obtaining these results motivates us to further this work by investigating the
use of derived references in model indexes, by providing better support for meta-
model evolution, and by providing support for scoping queries to limit results to
elements found in specific files in an efficient manner.

13 http://www.nomagic.com/products/teamwork-server.html
14 http://www.eclipse.org/cdo/documentation/index.php
15 https://github.com/BryanHunt/mongo-emf/



Acknowledgments This research was part supported by the EPSRC, through
the Large-Scale Complex IT Systems project (EP/F001096/1) and by the EU,
through the MONDO FP7 STREP project (#611125).

References

1. Barmpis, K., Kolovos, D.S.: Hawk: towards a scalable model indexing architecture.
In: Proceedings of the Workshop on Scalability in Model Driven Engineering. pp.
6:1–6:9. BigMDE ’13, ACM, New York, NY, USA (June 2013)

2. Barmpis, K., Kolovos, D.S.: Evaluation of contemporary graph databases for effi-
cient persistence of large-scale models. Journal of Object Technology 13-3, 3:1–26
(July 2014)

3. Barmpis, K., Kolovos, D.S.: Towards scalable querying of large-scale models. In:
Proceedings of the 10th European Conference on Modelling Foundations and Ap-
plications. ECMFA’14 (July 2014)

4. Benelallam, A., Gómez, A., Sunyé, G., Tisi, M., Launay, D.: Neo4emf, a scalable
persistence layer for emf models. In: Modelling Foundations and Applications, pp.
230–241. Springer (2014)

5. Egyed, A.: Instant consistency checking for the uml. In: Proc. of the 28th Interna-
tional Conference on Software Engineering. pp. 381–390. ICSE ’06, ACM (2006)

6. Egyed, A.: Automatically detecting and tracking inconsistencies in software design
models. Software Engineering, IEEE Transactions on 37(2), 188–204 (2011)

7. GraBaTs: 5th Int. Workshop on Graph-Based Tools (2009), http://is.tm.tue.
nl/staff/pvgorp/events/grabats2009/

8. Koegel, M., Helming, J.: Emfstore: a model repository for emf models. In: Proceed-
ings of the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 2. pp. 307–308. ACM (2010)

9. Kolovos, D.S., Paige, R.F., Polack, F.A.: Scalability: The Holy Grail of Model
Driven Engineering. In: Proc. Workshop on Challenges in MDE, collocated with
MoDELS ’08, Toulouse, France (2008)

10. Kolovos, D.S., Paige, R.F. and Polack, F.A.: The Epsilon Object Language. In:
Proc. European Conference in Model Driven Architecture (EC-MDA) 2006. LNCS,
vol. 4066, pp. 128–142. Bilbao, Spain (July 2006)

11. Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform Random Generation
of Huge Metamodel Instances. In: Proceedings of ECMDA-FA ’09. pp. 130–145.
Springer-Verlag, Berlin, Heidelberg (2009)

12. Pagán, J.E., Cuadrado, J.S., Molina, J.G.: A repository for scalable model man-
agement. Software & Systems Modeling pp. 1–21 (2013)

13. Scheidgen, M., Zubow, A.: Map/reduce on emf models. In: Proceedings of the 1st
International Workshop on Model-Driven Engineering for High Performance and
Cloud Computing. pp. 7:1–7:5. MDHPCL ’12 (2012)

14. Shah, S.M., Wei, R., Kolovos, D.S., Rose, L.M., Paige, R.F., Barmpis, K.: A frame-
work to benchmark nosql data stores for large-scale model persistence. In: Proc.
15th Conf. on Model-Driven Engineering Lang. and Systems, Models’14 (2014)


