
Towards Scalable Querying
of Large-Scale Models

Konstantinos Barmpis and Dimitrios S. Kolovos

Department of Computer Science, University of York,
Heslington, York, YO10 5DD, UK
{kb,dkolovos}@cs.york.ac.uk

Abstract. Hawk is a modular and scalable framework that supports
monitoring and indexing large collections of models stored in diverse
version control repositories. Due to the aggregate size of indexed mod-
els, providing a reliable, usable, and fast mechanism for querying Hawk’s
index is essential. This paper presents the integration of Hawk with an ex-
isting model querying language, discusses the efficiency challenges faced,
and presents an approach based on the use of derived features and indexes
as a means of improving the performance of particular classes of queries.
The paper also reports on the evaluation of a prototype that implements
the proposed approach against the Grabats benchmark query, focusing
on the observed efficiency benefits in terms of query execution time. It
also compares the size and resource use of the model index against one
created without using such optimizations.

Keywords: scalability, model querying, model-driven engineering.

1 Introduction

The popularity and adoption of MDE in industry has increased substantially
in the past decade as it provides several benefits compared to traditional soft-
ware engineering practices, such as improved productivity and reuse [1], which
allow for systems to be built faster and cheaper. However, certain limitations
of supporting tools such as poor scalability which prevent wider use of MDE
in industry [2, 3] will need to be overcome. Scalability issues arise when large
models (of the order of millions of model elements) are used in MDE processes.

When referring to scalability issues in MDE they can be split into the fol-
lowing categories [4]:

1. Model persistence: storage of large models; ability to access and update such
models with low memory footprint and fast execution time.

2. Model querying and transformation: ability to perform intensive and complex
queries and transformations on large models with fast execution time.

3. Collaborative work: multiple developers being able to query, modify and
version control large-scale shared models in a non-invasive manner.

This paper contributes to the study of scalable techniques for large-scale
model persistence and querying by presenting the use of derived attributes to
substantially improve the efficiency of certain types of model queries, and re-
porting on the results obtained by exploring the integration of the Hawk [5] and
Epsilon [6] frameworks that have been used to implement this. This paper builds
upon [5] by discussing the implementation of the query layer the tool provides.
In this work we assume that the reader is familiar with the organization of 3-level
metamodeling architectures such as MOF/EMF.

The remainder of the paper is organized as follows. Section 2, introduces
model version control, Hawk and model indexing. Section 3 presents Hawk’s
query layer and discusses how it can be optimized by use of derived attributes in
the store. Section 4 presents the prototype implementation of the integration of
Hawk with the Epsilon platform for providing a general-purpose query layer. In
Section 5 this prototype integration is evaluated using variations of the Grabats
benchmark, in order to test its performance. Finally, Section 6 discusses the
application of these results and identifies interesting directions for further work
in this area.

2 Background

This section briefly introduces version control in the context of MDE, provides
an overview of Hawk and discusses querying, providing an overview of the various
forms available today that have motivated the work presented here.

2.1 Model Version Control

To tackle the challenge of collaborative development and version control of large
models, model-specific repositories and version control systems (such as CDO1

and ModelCVS) have been proposed. The main advantages of such systems
is that they provide support for synchronous collaboration, on-demand loading
and locking of model fragments, and global server-side queries on models. On the
downside, such repositories are typically proprietary, re-implement similar func-
tionality (user management, model fragment locking/unlocking, check-in/out),
and lack in features such as branching and tagging. Moreover, such repositories
need to be administered (e.g. backed up) separately, and there is limited tool
support for them outside the environment for which they were initially developed
for (e.g. integration with other IDEs, continuous integration systems, and other
3rd-party model measurement and analysis tools). Finally, they arguably lack
in robustness compared to file-based version control systems such as Subversion
and Git.

As such, switching from a file-based to a model-specific version control system
can require a significant leap of faith, which can become even more challenging
if the models in question are of significant business value. On the other hand,

1 http://www.eclipse.org/emf/cdo

in order to perform meaningful queries on models stored in a file-based version
control system (e.g. to identify cross-references between model files or to search
for model elements with particular properties across the entire repository), these
models need to be first checked out in the developer’s workspace and loaded into
memory. This can be tedious, or even impossible, for large-scale models.

2.2 Hawk

The limitations identified on both sides of the spectrum have motivated us to
design and implement a framework (Hawk) that enables developers to perform
queries on models stored in established file-based version control systems, with-
out needing to maintain a complete copy of them in their local workspace. To
achieve this, Hawk acts as a middle-man that creates and maintains indexes of
models stored in remote file-based version control repositories; a model index 2

is a persisted form of a collection of (potentially interconnected) models, and
its aim is to provide support for efficient querying of these models at a model
element granularity. As discussed in [5], in our view, this provides an orthogonal
approach for addressing the scalability concern that does not interfere with the
current state of practice.

This section briefly describes the architecture, design, and prototype imple-
mentation of Hawk to provide context for how it is used for indexing large models
and consequently to efficiently query such model indexes.

System architecture and design Hawk aims at delivering a system capable
of working with diverse file-based version control systems (VCS) and model per-
sistence formats whilst providing a comprehensive API through which modeling
and model management tools can query it. It needs to be scalable so that it
can accommodate large sets of models, and non-invasive (the VCS repositories
should not need to be modified or configured).

Hawk comprises components which monitor a set of version control systems,
parse and index relevant models stored in them. For details on supported version
control systems, model formats, index persistence back-ends as well as additional
components of Hawk readers can refer to [5].

Overview of a Hawk model index Based on results obtained through exten-
sive benchmarking [4], we have decided to use a NoSQL graph database (Neo4J3)
for persisting model indexes. An example of such an index, containing a simple
library metamodel and a model that conforms to it, is illustrated in Figure 1. In
general, a model index typically contains the following entities:
– Repository nodes. These represent a VCS repository and contain its URL

and last revision. They are linked with relationships to the Files they contain.

2 This should not to be confused with a database index provided by many SQL and
NoSQL databases

3 http://neo4j.org/

Fig. 1. High-level overview of the contents of a library model index (persisted in a
NoSQL graph database)

– File nodes. These represent files in a repository and contain information
on the file such as the path, current revision and type. They are linked with
relationships to the Elements or Metamodels they contain.

– Metamodel nodes. These represent metamodels and contain their names
and their unique namespace URIs (in EMF, these would be EPackages4).
They are linked with relationships to the (metamodel) Types they contain.

– Type nodes. These represent metamodel types (EClasses in EMF termi-
nology) and contain their name. They are linked with relationships to their
(model) Element instances.

– Element nodes. These represent model elements (EObjects in EMF termi-
nology) and can contain their attributes (as properties) and their references
(to other model elements) as relationships to them.

– Indexes. Metamodel nodes and File nodes are indexed5 in the store, so
that their nodes can be efficiently accessed for querying (commonly used as
starting points for complex graph traversal queries).

It is worth noting that a model index such as the one presented above may end
up being a fully copy of the actual models found on the relevant version control
system but it does not have to be. In principle, if some contents of the model
are not deemed useful they can be omitted in order to gain an improvement in
injection and possibly query time.

4 We choose to draw parallels with concepts from EMF as they are well-understood
and unambiguous.

5 http://components.neo4j.org/neo4j-lucene-index/snapshot/

2.3 Querying of Model Indexes

To be of practical value, a model indexing framework such as Hawk needs to be
able to provide correct and efficient responses to queries made on its indexes.
There are two principal ways of querying a model index:

Native querying The most straightforward, and often the most performant,
way of querying an index is using the native API of its persistence back-end. In
a model stored in a database the API provided by the tool providing the driver
used to persist said model would be used with a relevant query language (such
as SQL statements if a relational database is used or Cypher if a Neo4J NoSQL
database is used), or using direct API calls in a programing language such as
Java. Nevertheless, it also demonstrates certain shortcomings which should be
considered:
– Query Conciseness Native queries can be particularly verbose and, conse-

quently, difficult to write, understand and maintain. An example of this can
be found in Section 6.1 of [4].

– Query Abstraction Level Native queries are bound to the specific technology
used; they have to be engineered for that technology and cannot be used for
a different back-end without substantial alteration in most cases.

Back-end independent navigation and querying An alternative way to
access and query models is through higher-level query languages that are inde-
pendent of the persistence mechanism. Examples of such languages include the
Object Constraint Language (OCL), the Epsilon Object Language (EOL) [7]
(from the Epsilon [8] platform) and the Atlas Transformation Language (ATL),
which abstract over concrete model representation and persistence technologies
using intermediate layers such as the OCL pivot metamodel [9] and Epsilon
Model Connectivity [6] layer.

In terms of execution, queries expressed in such high-level languages can be
executed on an in-memory representation of the model, or translated into queries
expressed in persistence-level query languages such as SQL and XQuery6, at
compile-time or at run-time. Full translation is only feasible in cases where the
high-level and the lower-level query languages are isomorphic in terms of capabil-
ities. This is not always the case: for example, EOL supports dynamic dispatch
which is not supported in SQL. Even when full compile-time translation is not
feasible, partial translation at run-time has been shown to deliver significant
performance improvements as seen in [10].

3 Scalable Model Index Querying

This section will use the library example seen in Figure 1 as a running example
and will discuss how derived attributes can be used to improve the performance

6 http://journal.ub.tu-berlin.de/eceasst/article/viewFile/108/103

of queries made on Hawk model indexes. The principal aim of this work is to
present how using such derived attributes can greatly improve performance of
relevant queries made on such model indexes and to provide incentive for building
a complete framework for supporting them in Hawk.

3.1 Querying a Model Index

Regardless of the use of native or back-end independent querying, in order to
respond to a query (from now on referred to as the library query) requesting the
authors that have more than N books in the example index, the following steps
would have to occur:
1. The starting point of the query would have to be found. In this case, the

collection of all instances of Author in the model would have to be retrieved.
2. For each author node, the number of the “books” relationships of the node

identified in step 2 would need to be counted and compared against N.
Step 1 is easy to perform in Hawk as an index of Metamodels is kept which can

be used to rapidly provide a starting point for a query which requires elements of
a specific type (such as Author instances for example). If a query uses the whole
model index as a starting point then there is no optimization to be performed
as the entire model index would have to be traversed in order to find the Node
representing the Author type. Step 2 where we can begin optimizing to improve
the execution time of queries which have to iterate (possibly on multiple levels)
to find a result.

Fig. 2. Pre-computing the number of books of each author

An effective way to increase query efficiency is to pre-compute and cache –
at indexing time – information that can be used to speed up particular queries
of interest. Using the library example, we can store the total number of books of
each author under a new, derived, ‘numberOfBooks’ attribute attached to each
author, as shown in Figure 2. By pre-computing and caching this information,
the query above can be rewritten so that it does not have to iterate though all
the books of each author, but instead it can directly compare N against the
value of its (derived) ‘numberOfBooks’ property.

3.2 Adding Derived Attributes

Our aim in this work is to explore the impact that such derived attributes can
have on the performance of queries on large model indexes. As such, we have
opted for a minimal approach for defining derived attributes and their derivation
logic. In our current prototype, we need to create a derived attribute on the
relevant EClass (i.e. a derived integer attribute ‘numberOfBooks’ on the EClass
Author) and annotate it as ‘HawkDerivedFeature’. As illustrated in Figure 3, the
derivation logic is specified using an OCL-like (EOL in our prototype) expression
in the details of the annotation. Such attributes are currently created manually
by the user and if they cannot be resolved a simple error value is produced in
the index.

Fig. 3. Defining the numberOfBooks derived attribute

Since our focus is only on evaluating the performance improvements deliv-
ered, several interesting engineering problems that would have to be addressed
by a usable system have been intentionally ignored:
– How to enable the declaration of derived attributes when using an immutable

metamodel (e.g. UML);
– How to efficiently handle non-parsable expressions (on the expression lan-

guage level) or expressions failing on a model element basis (but parsable);
– How to allow parsers from other expression languages to be easily integrated

with the framework;
– How to efficiently deal with metamodel evolution, specifically how to handle

types of changes such as only evolving the annotations, evolving some of the
metamodel elements themselves but retaining the same annotations, evolving
both the metamodel elements and the annotations at the same time.
The following section discusses how we evaluate the derived attribute value

computation expressions and how we then use the computed values to enhance
the performance of queries in our prototype.

4 Implementation

Before discussing the derived attribute computation and caching process, this
section introduces Epsilon and its Model Connectivity Layer (EMC). It then
discusses implementation details of Hawk’s query layer integration with Epsilon.

4.1 Epsilon

The Epsilon platform [8] is an extensible family of languages for common model
management tasks and includes tailored languages for tasks such as model-to-
text transformation (EGL), model-to-model transformation (ETL), model refac-
toring (EWL), comparison (ECL), validation (EVL), migration (Flock), merging
(EML) and pattern matching (EPL). All task-specific languages in Epsilon build
on top of a core expression language – the Epsilon Object Language (EOL) – to
eliminate duplication and enhance consistency.

Ta
sk

-s
p

ec
if

ic

la
n

gu
ag

es
 Model Refactoring (EWL) Pattern Matching (EPL) Model Validation (EVL) …

Model Comparison (ECL) Model-to-model Transformation (ETL)

Model Merging (EML) Code Generation (EGL) Model Migration (Flock)

Te
ch

n
o

lo
gy

-s
p

ec
if

ic

d
ri

ve
rs

Eclipse Modeling Framework (EMF) Schema-less XML Neo4J Store OrientDB Store

Meta Data Repository (MDR) CSV Bibtex MetaEdit+ …

Epsilon Object Language (EOL) ≈ JavaScript + OCL

Epsilon Model Connectivity (EMC)

extend

implement

Fig. 4. The Epsilon Model Connectivity Layer

As seen in Figure 4, EOL – and as such all languages that build on top of it
– is not bound to a particular metamodeling architecture or model persistence
technology. Instead, an intermediate layer – the Epsilon Model Connectivity layer
– was introduced to allow for seamless integration of any modeling back-end.

The Epsilon Model Connectivity Layer (EMC) This layer of Epsilon uses
a driver-based approach where integration with a particular modeling technol-
ogy is achieved by implementing a driver that conforms to a Java interface
(IModel) provided by EMC. For a more detailed discussion on EMC and the
IModel interface, the reader can refer to Chapter 3 of [6].

4.2 Querying a Hawk Model Index Using the Epsilon Object
Language

Below, we summarize the implementation of the important methods needed by
an EMC driver to enable integration with Epsilon, as well as that of the derived
attributes used by Hawk’s driver to improve its query performance.

Table 1. Interesting methods in the IModel interface

Method Return Type Description

allContents() Collection<?> Returns a collection containing all of the nodes
contained in the index in the form of NeoId-
Wrappers

hasType(String
type)

boolean Returns whether the type type exists in the in-
dex by trying to find it through the Metamodel
index of the store.

getAllOfType(
String type)

Collection<?> Returns a collection containing all of the ob-
jects of type type in the index by first invok-
ing hasType(type) and, if successful, finding the
type using the Metamodel index and then cre-
ating a collection of NeoIdWrappers containing
every element which has an ofType relationship
to type.

getTypeOf(Object
instance)

Object Returns the type node of the element instance
in the index by directly accessing the node in-
stance (as this method is always passed a NeoId-
Wrapper as the instance) and navigating its
ofType relationship to get the type node. The
returned object is a NeoIdWrapper.

isOfType(Object
instance, String
type)

boolean Returns whether the node instance in this model
is of type type by first invoking hasType(type)
and, if successful, invoking getTypeOf(instance)
and performing a String comparison on the re-
sulting names.

knowsAboutProperty(
Object instance,
String property)

boolean Returns whether the element instance in this
index can have the structural feature property
by first invoking getTypeOf(instance) and then
invoking the EMF method getEStructuralFea-
ture(type, property).

IModel interface method implementations In order to use Epsilon’s EOL
to query model indexes stored in Hawk, an implementation of the IModel in-
terface is required. In Table 1 we present a description of various methods of
interest in the IModel interface and a summary of their implementation details
in Hawk. Note that any model element loaded into memory is of Java class

NeoIdWrapper. This is a lightweight object which contains only the location of
the relevant model element in the store (its ‘id’ value for example in a Neo4J
NoSQL Graph database) as well as a reference to the Epsilon model it is part
of; this object can be used to load the element’s attributes and relationships on
demand.

Derived attribute value computation As discussed above, in the current
prototype, we use EOL expressions to describe the derived attributes to be
computed. For example, to derive the feature ‘numberOfBooks’ on an Author
node, we use the ‘self.books.size()’ expression, as shown in Figure 3. The keyword
‘self’ denotes the element itself and since in this case the element is an Author
instance (as the code was in an EAnnotation placed on the EClass Author) it will
successfully evaluate the expression, returning the value 1 in this case. Such EOL
expressions are actually executed, after the model insertion has been completed,
using Hawk’s EMC driver to query the database. Empirical data on the impact
this has on total insertion time can be found in Section 5.

Reverse reference navigation In the spirit of EMF’s eContainer() method
which allows an EObject to get access to its container object, Hawk provides a
mechanism for reverse-navigating a containment reference in order to access the
container. This feature is embedded into the parser by means of prefixing the
relevant reference with “revRefNav ”. For example, say one has an object ‘A’
with a containment reference called ‘contain’ to an object ‘B’. Then, by typing
“B.revRefNav contain” in EOL, we get as a result object A.

5 Evaluation

In this section, the Grabats metamodel and models are used to perform various
performance tests on the query layer of Hawk.

5.1 The Grabats 2009 Case Study

For evaluating query execution performance in Hawk we use large-scale models
extracted by reverse engineering existing Java code. The updated version of the
JDTAST metamodel used in the SharenGo Java Legacy Reverse-Engineering
MoDisco use case7, presented in the Grabats 2009 contest [11] described below,
as well as the five models provided in the contest, are used for this purpose.

In this metamodel, there are TypeDeclarations that are used to define Java
classes and interfaces, MethodDeclarations that are used to define Java methods
(in classes or interfaces, for example) and Modifiers that are used to define Java
modifiers (like static or synchronized) for Java classes or Java methods. Figures
of the relevant subset of the JDTAST metamodel are found in works like [4, 12].

7 http://www.eclipse.org/gmt/MoDisco/useCases/JavaLegacyRE/

The Grabats 2009 contest comprised several tasks, including the case study
used in this paper for benchmarking different model querying and pattern detec-
tion technologies. More specifically, task 1 of this case study is performed, using
all of the case studies’ models, set0 – set4 (which represent progressively larger
models, from one with 70447 model elements (set0) to one with 4961779 model
elements (set4)), all of which conform to the JDTAST metamodel.

These models are injected into Hawk for the insertion benchmark and then
queried using the Grabats 2009 task 1 query (from now on referred to as the
Grabats query) [13]. This query requests all instances of TypeDeclaration ele-
ments which declare at least one MethodDeclaration that has static and public
modifiers and has the declared type being its returning type.

In the following sections we use this case study as a running example to illus-
trate the Hawk implementation and evaluate the results of using this JDTAST
metamodel (and models).

5.2 Execution Environment

Performance figures that have been measured on a PC with Intel(R) Core(TM)
i5-2300 CPU @ 2.80GHz, with 8GB of physical memory, and running the Win-
dows 7 (64 bits) operating system are presented. The Java Virtual Machine
(JVM) version 1.7.0 45-b18 has been restarted for each measure as well as for
each repetition of each measure. In each case, 6GB of RAM has been allocated
to the JVM (which includes any virtual memory used by the embedded Neo4J
database server running the tests). Results are in seconds and Megabytes,
where appropriate.

5.3 Model Insertion

Tables 2 and 3 show the results for the insertion of the various Grabats XMI
models into Neo4J using three variants of the metamodel (derivation strategies):

Table 2. Model Insertion, Size Results

Model
Size (in Mb)

Original DerivedMethodDeclaration DerivedTypeDeclaration

Set0 20.474 20.542 20.533

Set1 61.193 61.388 61.226

Set2 534.448 547.339 535.156

Set3 1184.09 1219.15 1186.28

Set4 1279.42 1317.68 1281.88

– Original This is the unaltered version of the JDTAST metamodel provided
by the Grabats contest.

– DerivedMethodDeclaration This version of the JDTAST metamodel in-
cludes three EAnnotation attributes (named isPublic, isStatic and isSameRe-
turnType) in the MethodDeclaration class which contain the EOL code to
derive (as a boolean) whether:
– The current instance of this MethodDeclaration (self) has as return type
the TypeDeclaration it is contained in. The EOL code reads as follows:

self.returnType.isTypeOf(SimpleType) and self.

revRefNav_bodyDeclarations.isTypeOf(TypeDeclaration) and

self.returnType.name.fullyQualifiedName == self.

revRefNav_bodyDeclarations.name.fullyQualifiedName

– The current instance of this MethodDeclaration (self) is public. The EOL
code reads as follows:

self.modifiers.exists(mod:Modifier|mod.public=="true"))

– The current instance of this MethodDeclaration (self) is static. The EOL
code reads as follows:

self.modifiers.exists(mod:Modifier|mod.static=="true"))

Where the attribute revRefNav bodyDeclarations allows reverse-navigation
of the containment reference (bodyDeclarations) and retrieves the instance
of the containing class (this is necessary as the JDTAST metamodel does
not specify an opposite reference to the containment bodyDeclarations).

– DerivedTypeDeclaration This version of the JDTAST metamodel in-
cludes a single EAnnotation attribute (named isGrabats) in the TypeDec-
laration class which contains the EOL code to derive (as a boolean) whether
the this instance (self) fulfills the Grabats query requirements. The EOL
code reads as follows:

self.bodyDeclarations.exists(md:MethodDeclaration|md.modifiers

.exists(mod:Modifier|mod.public=="true") and md.modifiers.

exists(mod:Modifier|mod.static=="true") and md.returnType.

isTypeOf(SimpleType) and md.returnType.name.

fullyQualifiedName == self.name.fullyQualifiedName)

From table 2 we note that the increase in size when deriving attributes is
very small (0.288% – 2.99%) so the only performance concern would be the
increase in insertion time. In table 3 the numbers in brackets represent the time
taken for the derivation of the attributes to be computed (which happens after
the full model insertion). From table 3 we calculate the insertion time increases
(using: derivationtime

totaltime−derivationtime × 100%) and present them in table 4. Table 4
demonstrates how there is a substantial (but reasonable) increase in insertion
time for both derivation strategies presented. What is interesting is that even
though DerivedTypeDeclaration computes a much heavier expression, due to
the fact that it is performed sparsely, it requires comparable (and even slightly
lower) insertion time to the DerivedMethodDeclaration strategy.

Table 3. Model Insertion, Execution time Results

Model
Execution Time (in seconds)

Original DerivedMethodDeclaration DerivedTypeDeclaration

Set0 16 16 (0.12) 16 (0.10)

Set1 34 36 (1.46) 37 (1.16)

Set2 553 658 (73) 625 (19)

Set3 2287 2650 (404) 2486 (347)

Set4 2502 2947 (493) 2893 (477)

Table 4. Model Insertion, Execution time Increase Percentage

Model
Execution Time Increase (in %)

DerivedMethodDeclaration DerivedTypeDeclaration

Set0 0.756 0.629

Set1 4.23 3.237

Set2 12.48 3.135

Set3 17.99 16.22

Set4 20.09 19.74

These results demonstrate that even though it is reasonable to add derived
attributes even for quite complex derivations, careful consideration is needed so
only important attributes are derived, otherwise it can result in unacceptable
insertion times.

5.4 Query Execution Time

Table 5 shows the results for performing the first Grabats 2009 [11, 13] query on
the various persisted models. As previously mentioned, the Grabats query finds
all occurrences of TypeDeclaration elements that declare at least one public static
method with the declared type as its returning type. For these tests three queries
have been created in EOL (Q1 – Q3):
– Q1 reads:

TypeDeclaration.all.collect(

td|td.bodyDeclarations.select(

md:MethodDeclaration|md.modifiers.exists(mod:Modifier|mod.

public=="true")

and md.modifiers.exists(mod:Modifier|mod.static=="true")

and md.returnType.isTypeOf(SimpleType)

and md.returnType.name.fullyQualifiedName == td.name.

fullyQualifiedName))

This query (Q1) is the basic Grabats query using the original metamodel to
insert the relevant models into Hawk. As such it only uses attributes found
in the unaltered JDTAST metamodel.

– Q2 reads:

TypeDeclaration.all.collect(

td|td.bodyDeclarations.select(

md:MethodDeclaration|md.isPublic == "true"

and md.isStatic == "true"

and md.isSameReturnType == "true"))

This query (Q2) contains the annotations described above for the Derived-
MethodDeclaration insertion. As it uses attributes found in the unaltered
JDTAST metamodel as well as the derived attributes ‘isPublic’, ‘isStatic’
and ‘isSameReturnType’.

– Q3 reads:

TypeDeclaration.all.select(td|td.isGrabats == "true")

This query (Q3) contains the annotations described above for the Derived-
TypeDeclaration insertion. As it uses attributes found in the unaltered JD-
TAST metamodel as well as the derived attribute ‘isGrabats’.

Table 5. Grabats Query Execution Time Results

Model
Execution Time (in seconds)

Original DerivedMethodDeclaration DerivedTypeDeclaration
Q1 Q1 Q2 Q1 Q3

Set0 0.391 0.391 0.281 0.391 0.172

Set1 0.797 0.794 0.651 0.750 0.516

Set2 5.398 5.583 3.893 5.521 1.890

Set3 11.358 14.979 8.427 13.916 3.543

Set4 13.333 15.962 9.198 15.363 3.776

Query Q1 is run on all three types of inserted models as it does not contain
any new constructs. Q2 is run on models which have used the DerivedMethod-
Declaration annotations as it contains constructs using features derived by virtue
of that annotated metamodel. Q3 is similarly run on models which have used
the DerivedTypeDeclaration annotations.

It should be noted that the querying of the original models (using the original
query – Q1) in Epsilon, which was presented in [4] has slightly worst execution
times as it uses an older version of the EMC driver implemented for Hawk (and
also ran Java 1.6).

The first interesting thing to note here is that running Q1 on the models with
derived attributes is slightly less performant on the larger models (set2 – set4)

than running it on the unaltered model. This is to be expected as the driver
has to navigate through a larger database in these cases (as it is augmented
with the derived attributes). As such, any operation which requires iteration on
attributes of an object will possibly be slower than originally. Running Q1 on
DerivedMethodDeclaration is slightly slower than Q1 on DerivedTypeDeclara-
tion as DerivedTypeDeclaration only introduces one new attribute (isGrabats)
for each TypeDeclaration while DerivedMethodDeclaration introduces three new
attributes for each MethodDeclaration (and there are more MethodDeclaration
instances than TypeDeclaration ones).

Looking at Q2, we see that it offers a significant performance increase to the
original tests with mean improvement of 26.23% and maximum improvement of
31.01% (on the largest model, set4). Similarly for Q3 we note an even larger
improvement in performance with mean 59.35% and maximum 71.68% (again,
on the largest model, set4).

These results support the idea that for both small and large model sizes
the targeted use of derived attributes can greatly benefit the resulting queries.
What’s more, these results seem to indicate that the larger the model size
the more effective using derived attributes is in improving performance. Tak-
ing the larger models (set2 – set4) we note that the improvement percentage
stays roughly the same or even tends to increase with the size of the model.

6 Conclusions and Further Work

From the empirical data collected we can conclude that using derived attributes
in Hawk greatly improves the performance of queries performed that make use
of them. There seems to be a steady (almost entirely positively correlated) re-
lationship between the percentage increase in the performance gain (in terms
of execution time) on queries performed and model size. Nevertheless there are
two compromises to be made when considering the use of such attributes. The
first is that the insertion time of models containing derived attributes is slower
than the original models due to the overhead of deriving them. The second is
that using several broad derived attributes, while less performant than using
one single targeted derived attribute (while taking the same if not more time
to insert), enables their possible use for different queries on the model while
the targeted attribute can only be used in a much narrower scope. Finally, we
note that general queries performed on models using derived attributes seem to
be slightly less performant than ones using the original model; as such, derived
attributes should only be used when there is reasonable confidence that they
will be required (for example when needing to perform a known heavyweight
transformation or query on the model).

Obtaining these encouraging results motivates us for implementing a fully en-
gineered solution of using derived attributes in Hawk, while taking into account
the concerns mentioned at the end of Section 3.1, in the future. Firstly, restrict-
ing the types of expressions allowed for derived attributes to be computed, so
that model evolution can be performed in reasonable time, is planned. Next,

a way to persist the expressions for derived attributes outside the metamodel,
when the metamodel is immutable for example, will be looked at. Finally, use
of embedded indexes found in Graph NoSQL databases in order to index spe-
cific attributes of interest, with the goal of further increasing query performance
when such attributes are required for much of the computation of the query, will
be investigated.

Acknowledgements

This research was part supported by the EPSRC, through the Large-Scale Com-
plex IT Systems project (EP/F001096/1) and by the EU, through the MONDO
FP7 STREP project (#611125).

References

1. Mohagheghi, P., Fernandez, M., Martell, J., Fritzsche, M., Gilani, W.: MDE Adop-
tion in Industry: Challenges and Success Criteria. In: Models in Software Engineer-
ing. Volume 5421 of Lecture Notes in Computer Science. Springer (2009) 54–59

2. Kolovos, D.S., Paige, R.F., Polack, F.A.: Scalability: The Holy Grail of Model
Driven Engineering. In: Proc. Workshop on Challenges in MDE, collocated with
MoDELS ’08, Toulouse, France. (2008)

3. Mougenot, A., Darrasse, A., Blanc, X., Soria, M.: Uniform Random Generation of
Huge Metamodel Instances. In: Proceedings of ECMDA-FA ’09, Berlin, Heidelberg,
Springer-Verlag (2009) 130–145

4. Barmpis, K., Kolovos, D.: Evaluation of contemporary graph databases for efficient
persistence of large-scale models. Journal of Object Technology [to appear] (2014)

5. Barmpis, K., Kolovos, D.: Hawk: towards a scalable model indexing architecture.
In: Proceedings of the Workshop on Scalability in Model Driven Engineering. Big-
MDE ’13, New York, NY, USA, ACM (2013) 6:1–6:9

6. Kolovos, D.S., Rose, L., Garcia, A.D. and Paige, R.F.: The Epsilon Book. (2008)
http://www.eclipse.org/epsilon/doc/book/.

7. Kolovos, D.S., Paige, R.F. and Polack, F.A.: The Epsilon Object Language. In:
Proc. European Conference in Model Driven Architecture (EC-MDA) 2006. Vol-
ume 4066 of LNCS., Bilbao, Spain (July 2006) 128–142

8. Paige, R.F., Kolovos, D.S., Rose, L.M., Drivalos, N. and Polack, F.A.: The Design
of a Conceptual Framework and Technical Infrastructure for Model Management
Language Engineering. In: Proc. 14th IEEE International Conf. on Engineering of
Complex Computer Systems, Potsdam, Germany (2009)

9. Willink, E.: Aligning OCL with UML. In: Proceedings of the Workshop on OCL
and Textual Modelling. Electronic Communications of the EASST (2011)

10. Kolovos, D.S., Wei, R., Barmpis, K.: An approach for efficient querying of large
relational datasets with ocl-based languages. In: XM 2013–Extreme Modeling
Workshop. (2013) 48

11. Grabats2009: 5th Int. Workshop on Graph-Based Tools (2012) URL:
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/.

12. Pagán, J.E., Cuadrado, J.S., Molina, J.G.: A repository for scalable model man-
agement. Software & Systems Modeling (2013) 1–21

13. Sottet, J.S., Jouault, F.: Program comprehension. In: Proc. 5th Int. Workshop on
Graph-Based Tools. (2009)

