
This is a repository copy of Social interactions and habitat structure in understanding the 
dynamic space use of invasive wild pigs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/211730/

Version: Published Version

Article:

Ellison, N. orcid.org/0000-0001-6198-5470, Potts, J.R. orcid.org/0000-0002-8564-2904, 
Boudreau, M.R. orcid.org/0000-0002-6280-5598 et al. (3 more authors) (2024) Social 
interactions and habitat structure in understanding the dynamic space use of invasive wild 
pigs. Wildlife Biology: A journal for wildlife science, 2024 (5). e01247. ISSN 0909-6396 

https://doi.org/10.1002/wlb3.01247

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Page 1 of 13

This is an open access article under the terms of the Creative Commons 
Attribution License, which permits use, distribution and reproduction in any 
medium, provided the original work is properly cited.

Subject Editor: Stefano Focardi 
Editor-in-Chief: Ilse Storch 
Accepted 23 February 2024

doi: 10.1002/wlb3.01247
2024: e01247

WILDLIFE BIOLOGY

Wildlife Biology

www.wildlifebiology.org

© 2024 The Authors. Wildlife Biology published by John Wiley & Sons Ltd on behalf of Nordic 
Society Oikos

Untangling the abiotic and biotic feedback mechanisms driving animal movements 
and ranges is a core question in ecology, yet progress is hampered by inadequate mod-
elling procedures. Here we show how a recently developed process-based modelling 
approach, combining step-selection functions and individual-based models, enables 
a flexible method to infer movement drivers and multi-scale emergent space use pat-
terns. As a case study, we examine the movement behaviours of a highly invasive social 
generalist (wild pigs, Sus scrofa) in relation to conspecific space use and multiple land 
cover types in a complex agricultural landscape, showing that social interactions are 
predominantly more important to this species than selection for land cover. Thus, 
animal movement studies should not neglect the effects of sociality when inferring 
resource driven movements and, crucially, use multi-scale techniques that incorporate 
movement processes to untangle drivers of animal space use.

Keywords: process-based models, social interactions, space use, spatial patterns, step-
selection, Sus scrofa

Introduction

Deciphering the patterns created by animals as they navigate the landscape is a key 
area of ecological research, with results providing evidence for management decisions 
crucial for the sustainable use of natural resources (Morris 2003, Allen and Singh 
2016, Yang et al. 2021). Patterns of animal space use emerge from a complex network 
of movements driven by multiple dynamic and interlaced abiotic and biotic feedback 
processes. These mechanisms include spatio-temporal processes such as the movement 
of other organisms (Fryxell  et  al. 2007, Macandza et  al. 2012, Jeltsch et  al. 2013), 

Social interactions and habitat structure in understanding the 
dynamic space use of invasive wild pigs

Natasha Ellison ✉1,2,3, Jonathan R. Potts 4, Melanie R. Boudreau 1,2, Luca Börger5,6, 
Bronson K. Strickland1 and Garrett M. Street1,2

1Department of Wildlife, Fisheries, and Aquaculture, Mississippi State University, MS, USA
2Quantitative Ecology and Spatial Technologies Laboratory, Mississippi State University, MS, USA
3Geosystems Research Institute, Mississippi State University, MS, USA
4School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
5Department of Biosciences, Swansea University, Swansea, UK
6Centre for Biomathematics, Swansea University, Swansea, UK

Correspondence: Natasha Ellison (ne235@msstate.edu)

Research article



Page 2 of 13

changing landscapes (Riotte-Lambert et al. 2015) and anthro-
pogenic factors (Tabak et al. 2017), which are all challenging 
processes to model. Spatio-temporal models provide useful 
tools for studying these processes, though there is a challenge 
in selecting the most adequate and appropriate modelling 
approach for the questions being investigated (Murray 1993, 
Turchin 1998, Moorcroft  et  al. 2006, Avgar  et  al. 2016, 
Potts  et  al. 2022a). Of particular note, the process-based 
home range analysis methods of Moorcroft et al. (2006) use 
differential equations to model the interacting processes that 
change through time, but are used rarely in the literature due 
to the complexity of the methods (Ellison et al. 2024a).

Studies analysing animal movement generally fit into two 
broad categories: correlative or process-based. In the former 
approach, animal location or population density data are cor-
related with environmental layers to gain an understanding of 
which environments are selected for, using species distribu-
tion methods such as resource-selection analysis (Boyce et al. 
2002). Although such methods have value in interpreting 
environmental preference, these models do not account for 
movement processes and biotic feedbacks, possibly miss-
ing important aspects that drive space use, such as social or 
inter-specific interactions (Potts et al. 2022b). Furthermore, 
when fitting such resource-selection models, the best model 
can be chosen using a variety of model selection procedures 
(AIC/BIC, cross-validation, etc.). These resource selection 
models generally evaluate the pattern of space use rather than 
evaluating the underlying process that leads to the pattern. 
However, many different movement processes can lead to 
very similar space-use patterns (Börger et al. 2011), meaning 
that untangling the behavioural drivers of space use, simply 
by correlating space use to environmental covariates, is dif-
ficult, if not impossible.

When modelling movement in response to variables that 
are themselves affected by animal movement, the feedback 
between movement decisions and the changing variable must 
be accounted for. For example, sociality is known to be a key 
driver of animal movement (Port  et  al. 2011, Carter  et  al. 
2013, Ward and Webster 2016), but is often ignored when 
modelling space use. The effect of conspecific and heterospe-
cific interactions on movement is not often implemented in 
animal movement research, most likely due to the require-
ment of complex modelling techniques. Despite this, stud-
ies using process-based differential equation models have 
shown that territoriality and social interactions in mam-
mals (Moorcroft et al. 2006, Bateman et al. 2015) and birds 
(Ellison et  al. 2020) are key drivers of space use, alongside 
some basic environmental structures.

Process-based models describe movements or the changing 
location of an animal through time, rather than just describ-
ing the fixed locations. They can also account for dynam-
ics governed by complex interconnected mechanisms, such 
as interacting animals or changing environments. Yet they 
can be mathematically challenging, difficult to implement 
and rely on the ability to identify the key governing mecha-
nisms in the first place. However, a solution is provided by 
step-selection analysis (SSA, Thurfjell et al. 2014a), a method 

commonly used by ecologists and wildlife managers to inves-
tigate animal habitat selection but without realising its wider 
potential. Specifically, SSA advances resource-selection analy-
sis by accounting for an animal’s ability to move as it makes 
habitat selection decisions, but furthermore is a process-based 
model. The model provides both a dynamic model of each 
animal’s spatial probability distribution over time (Potts and 
Schlägel 2020, Potts and Börger 2023) and an individual-
based model of the movements of each animal (Potts et al. 
2022a). The recently developed approach by Potts  et  al. 
(2022a) provides an advancement to the popular method of 
integrated SSA (Avgar et  al. 2016) to parameterise a simu-
lation model, introducing an accessible way to understand 
SSA-based movement models.

Here, we expand upon the recent advancements of SSA 
(Fleming  et  al. 2015, Potts  et  al. 2022a, Potts and Börger 
2023) and exemplify our approach by studying a highly social 
species, the invasive wild pig Sus scrofa (Keiter et al. 2016). 
Wild pigs are generalists that are able to use anthopogenically 
impacted and highly fragmented landscapes such as agroeco-
systems (Schley et  al. 2008, Thurfjell  et  al. 2009, Oliveira-
Santos et al. 2016), leading to extensive alterations to both 
natural and managed landscapes. In the USA alone, estimated 
damage to agricultural interests by pigs exceeds US$1.5 bil-
lion annually (Pimentel et al. 2005, Lewis et al. 2019). Pig 
behaviour is dictated at least in part by social interactions, 
where they show high animal intelligence (Held et al. 2005, 
Kornum and Knudsen 2011, Bolhuis et al. 2013) and have 
exceptional spatial memory (Held et al. 2005, Bolhuis et al. 
2013, Morelle  et  al. 2015, Brogi  et  al. 2022). This allows 
them to develop large social networks (Gabor  et  al. 1999, 
Podgórski et al. 2014), and since they are known to live in 
sounders of approximately 25 to 40 pigs (Beasley et al. 2018) 
this should have an influence on realized patterns of space use 
and habitat-related decisions. Understanding the interplay 
between social interactions and movement of wild pigs is thus 
paramount for ongoing management activities (Beasley et al. 
2018), mitigating potential disease transmission (Brown and 
Bevins 2018) and, by extension, improving our understand-
ing of the general drivers of ecosystem function and change.

Using wild pigs as a case study for our modelling frame-
work, we demonstrate how process-based models of emer-
gent space use may be used to gain new inference regarding 
the combined effects of conspecifics and vegetation type and 
structure. We investigate a preference for different areas of 
desired habitats constructed from a variety of agricultural 
crop species, alongside social interaction mechanisms to gain 
a full understanding of pigs’ movement choices. This allows 
us to better describe the spatial patterns emerging from move-
ment processes in response to both environmental variables 
and conspecific interactions. In particular, we are interested 
in understanding which factors are of greatest importance in 
determining pig movements: particular crops (resource avail-
ability), conspecific presence (social interactions) or a combi-
nation of both.

Within our framework there are two key components 
determining the space use of animals: the underlying 
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movement process (between two-hourly fixes) and the emer-
gent space use pattern of conspecifics across a longer time 
window (in our case, one month). We first use step-selection 
analysis to fit models to wild pig movements (the process) 
with respect to land cover types and the occurrence distribu-
tions of conspecifics. We further assess the eventual estimates 
of pig ranges (the patterns) using simulations of the step-
selection function and choose the best models based on three 
different comparisons with the empirical data. By evaluating 
both the process and pattern of spatial dynamics we construct 
a model that is better fit to the data than evaluating either 
one alone.

Material and methods

Data

Sixteen adult wild pigs were captured from November 2015 
to June 2016 in our study site in the Mississippi Alluvial 
Valley (approximately 33°31′34.32″N 90°4′38.28″W; 
Fig. 1). In this highly agricultural area of the Mississippi Delta 
pigs are known to be widespread and increasing in number 
(Paolini et al. 2018). In Mississippi, the wild pig population 
has expanded such that they are present in all counties of the 
state, but population density estimates are unknown. Each 
individual was equipped with a GPS collar that recorded 
locations every 2 h. Pigs were captured opportunistically with 
landowner approval from November 2015 to May 2016. 
The pigs were fitted with Iridium Global Positioning System 
(GPS) collars (LOTEK Engineering Ltd, (n = 3); Vectronic 
Aerospace GmbH (n = 13)). For this study we focused on the 
60 days of data from 5 April 2016 until 3 June 2016, as 5 

April 2016 was the first point when all 12 socially interacting 
individuals had data. From the 16 collared pigs, 12 individu-
als were chosen for our analysis (six females and six males) 
as they were determined to be both moving nearby to other 
pigs and somewhat independent, using correlation analysis 
(Supporting information). Finding enough sounders for the 
data collection was challenging, therefore on some occasions 
two pigs per trapped group were collared; furthermore, this 
indicates that the potential influence of unmarked sounders 
within the area was low. We analysed movements with respect 
to a variety of land cover types using the USDA National 
Agricultural Statistics Service Cropland Data Layer (2016). 
More details on data collection and the environmental lay-
ers used are included in the Supporting information and in 
Paolini et al. (2018).

Movement hypotheses

To fulfill their life history needs animals make movement 
decisions based on a combination of factors based on their 
physiology and knowledge gained from their previous move-
ments. Prior studies of wild pig behaviour indicate their deci-
sions are due to various land cover types (Paolini et al. 2018), 
but how are these decisions influenced by the spatial configu-
ration of that land cover and social interactions? We expect 
pigs may choose their movements based on some configura-
tion of land cover types and where other pigs have chosen to 
move in the past, with some overuse avoidance.

The predictive modelling framework

To understand habitat selection alongside the influence 
of social interactions, we used a modelling framework first 

Figure 1. Study site in the Mississippi Alluvial Valley represented on an outline of the state with all pig locations (in black). The movement 
tracks of 12 pigs used in this study are shown over a satellite image of the study site in the left panel. The right panel shows all pig locations 
over the USDA CropScape layers.
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introduced by Potts et al. (2022a), which is adapted here to 
include different methods of variable selection and model 
comparison (Fig. 2).

Step-selection analysis and lasso regression

Step-selection analysis (SSA) quantifies movement choices 
by comparing movements in the data to alternative possible 
movements, while controlling for the confounding effects of 
preference for environmental conditions. We begin at step (c) 
in Fig. 2, as we have already detailed the data collection and 
outlined hypotheses (steps a–b). We parametrise a movement 
kernel describing the probability density of movement using 
SSA for each individual i from one location, y, at time t − τ 
to another, x, at time t, where τ is the time step. The move-
ment kernel used here has the following form (Eq. 1):

f t t

Z t Z t

K t

i

n n

i

,

0 1 1

( , | , )

| | ( , ) ( , )

( , )
,

� �

� � �

x y

x y x x

x

�

�
� � � �� �exp …

  (1)

where movement is modelled by a step length distribution 
such that |x − y| is the distance (step length) from y to x 
and β0 is the corresponding parameter to be estimated. In 
general, movement in step-selection analyses is defined using 
a combination of steps and turning angles with a variety of 
functions. We aim to keep our models simple and therefore 
use an exponential distribution of step lengths to define 

movement, resulting in the form of Eq. 1, detailed further 
in Supporting information. The exponential distribution 
is preferable to the discrete distribution of step lengths as 
it has an analytical form that relies on only one parameter. 
Turning angles are assumed to be described by a uniform dis-
tribution as this fits our data better than the well-used von 
Mises distribution (Avgar et al. 2016, Supporting informa-
tion). The variables hypothesised to influence movement 
decisions are given by Z1(x,t),…,Zn(x,t) and the correspond-
ing parameters to be estimated are β1,…,βn. The func-
tions Z1(x,t),…,Zn(x,t) represent either an environmental 
layer or the occurrence distribution of another animal that 
changes through time (Potts  et  al. 2022a). The denomina-
tor Ki(x,t) is a function which normalises fi(x|y), ensuring the 
output is a probability density function, and has the form 

K t Z t Z t di n n( , ) | |) ( , ) ( , )0 1 1x x z z z z� � � � �� ��� exp � � �… . 

We use integrated step-selection analyses (iSSA, Avgar et al. 
2016) to estimate parameters, as these methods parametrise 
movement capabilities simultaneously with habitat choice.

Wild pigs are thought to show quite different preferences 
for environmental features (Brogi et al. 2022), therefore we 
fit the step-selection models separately for each individual. 
The parameters estimated from fitting the above model give 
an indication of which land cover and social interaction 
variables are important to each individual. For each wild 
pig we fit parameters associated with 35 land cover classes 
and interactions with the other 11 pigs, producing a large 
amount of potential predictors in any regression which may 

(a)

(h)

(g) (f)

(e)

(b) (c) (d)

Figure 2. A schematic of the steps performed to create predictive models iteratively using both a step-selection analysis and movement simu-
lations. The framework follows that introduced by Potts et al. (2022a) where we adapt the model parametrisation in step (d) to choose 
variables using lasso penalties (Tibshirani 1996) and adapt the model selection procedure in step (h) to include comparing simulated and 
empirical movement paths using autocorrelated kernel density estimation (AKDE, Fleming et al. 2015).
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lead to overfitting. We thus use least absolute shrinkage 
and selection operator (lasso) regression (Tibshirani 1996) 
to estimate the important variables that lead to feral pig 
space use (step d, Fig. 2). These methods combine variable 
selection with overfitting prevention (i.e. regularization) to 
produce a fitted model that maximizes predictive accuracy 
by purposefully biasing uninformative model covariates 
toward 0. We implement the lasso in a conditional logis-
tic regression framework (Breslow and Day 1980), a com-
monly used method used to fit step-selection models that 
is easily implemented using the R package ‘clogitL1’ 
(Reid and Tibshirani 2014). Conditional logistic regression 
with lasso regularization adds a penalty term to traditional 
conditional logistic regression which, in short, encour-
ages simpler models with less parameters by highlighting 
the most important variables. In general lasso regression 
is extremely efficient when compared to other regression 
methods, particularly when elastic-net penalties are incor-
porated, as in the ‘clogitL1’ package (Hastie et al. 2009, 
Reid and Tibshirani 2014). Throughout this study we use 
lasso regression to fit the parameters of Eq. 1, which in turn 
indicates the variables that are important to each pig.

Model selection by simulation

To select between different models, corresponding to dif-
ferent formulations of the movement kernel (Eq. 1), we 
simulate space use patterns using the movement kernel and 
compare these to the data (step (e), Fig. 2). Rather than 
simulating the movement kernel directly, we use a lattice-
based version of the model, following the methods of 
Potts et al. (2022a). This enables simulation of a continuous 
path though the landscape, rather than ‘jumping’ between 
successive locations each time step of length τ. The continu-
ous path is important when modelling response to conspe-
cifics, as in reality the pigs could have detected conspecifics 
at any point on their path, not just the locations recorded in 
the data. Simulations are performed on a grid of 400 × 400 
square cells, where each cell represents 100 × 100 m, over 
14 400 timesteps, where each timestep represents 3 min. 
Thus each simulation represents 30 days of actual time. 
Mathematical details of how the individual-based model is 
constructed from movement are given in Potts et al. (2022a) 
and Supporting information.

To compare models to the data we simulate movements 
of the 12 wild pigs over 30 days (steps f, g, Fig. 2) and 
compare the simulation patterns to occurrence distribu-
tions (ODs) that are calculated from the movement tracks 
in the relocation data. Comparisons are calculated in three 
ways: by comparing (1) ODs created by the simulated and 
empirical tracks, (2) comparing the average OD over all 
1000 simulated tracks to the empirical OD and (3) com-
paring autocorrelated kernel density estimations (AKDE, 
Fleming et al. 2015) for the simulated and empirical tracks 
(step h, Fig. 2). Comparisons (1) and (2) create ODs from 
the simulated tracks by counting the times each cell was vis-
ited in the simulated landscape and normalizing to create a 

discrete probability distribution, with the latter case using 
the average of all 1000 simulated ODs. For (3), we calculate 
AKDEs using the ‘ctmm’ package in R to estimate the space 
use of an animal from a stochastic movement track. Each 
of the three comparison methods are evaluated for similar-
ity using Bhattacharyya’s affinity index (BA, Bhattacharyya 
1946), which assumes values between 0 and 1, where a value 
of 1 would indicate that both distributions are exactly the 
same. We use the first two comparison methods as they are 
both easy to calculate when performing the simulations and 
additionally use AKDEs as they are more accurate estimates 
of space use. However, we recognise that calculating AKDEs 
is computationally expensive, so we later compare results to 
determine whether using AKDEs is worthwhile when inves-
tigating model fit.

Interactions with the environment

To examine which combination of land cover types are 
selected for by the wild pigs, we first reduce the amount of 
variables with an initial lasso regression. We remove any land 
cover types that do not seem important to any of the pigs (the 
β parameter was estimated as 0) and combine similar envi-
ronments (detailed in Supporting information), leaving 12 
land cover maps (Supporting information). For each of the 
12 binary land cover maps we create two density maps. First, 
the binary land cover layer is smoothed using a Gaussian 
function (detailed in Supporting information) to create envi-
ronments that have a lower density of a specific resource at 
the edges and higher density at the centre, which produces a 
gradient of resources. This smoothing allows one to model 
the gradual attraction gradient towards an environment by 
removing the abrupt edges defined by the cells of the land 
cover map. A second new map is created for each land cover 
type by squaring the values of the smoothed map; we will 
hereafter refer to the new maps as the linear and quadratic 
land cover maps.

The reason for using these two land cover maps is that 
it enables us to create a map of intermediate resources, 
that in some cases can be interpreted as using an environ-
mental edge. Suppose Z(x,t) denotes a the smoothed land 
cover map, then both Z(x,t) and Z(x,t)2 will be variables in 
the step selection analysis. Let βZ and β

Z 2  be the respec-
tive selection strengths for the variables defined by each 
map, which can be estimated using step-selection analysis. 
In the case that βZ > 0 and �

Z 2 0�  (i.e. realized selection 
for intermediate values of the resource), then the quantity 
Z t Z t Z tZ Zint( , ) = ( , ) ( , )2

2x x x� ��  produces a map where the 
largest magnitude values are areas of intermediate resource 
abundance, calibrated so this intermediate abundance tends 
to be selected over areas of lower or higher abundance. 
Because our landscape is characterized by wide expanses of 
common land cover types (e.g. large corn fields and wild-
life reserves; Fig. 1), Zint(x,t) tends to have larger values at 
boundaries between land cover types – that is, land cover 
edges. We provide visual examples of this in the Supporting 
information.
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Hence, by including both linear and quadratic versions 
of the variables we are testing whether the pigs’ functional 
response to each land cover type is linear or quadratic, which 
in turn tests whether the pigs were attracted to intermediate 
values of each land cover type. We define three models to 
compare against a null model, each including the 12 envi-
ronmental variables (Supporting information). These models 
describe movement with respect to: M1, the binary environ-
ments; M2, the smoothed environments; or M3, the smoothed 
environments and their quadratic functions. Model M3 is 
defined to understand whether pigs select for intermediate 
values of resource abundance, which for certain environment 
structures and parameter magnitudes can be considered as a 
preference for the edges of crops, as described above.

Social interactions

The space use of the 12 pigs visualised in Fig. 1 is restricted 
to one area and therefore unlikely to be fully described by 
the land cover types that are distributed across the entire 
landscape. Social interactions are known to affect wild pigs’ 
movement behaviour (Spitz and Janeau 1995) and therefore 
their overall space use (Potts et al. 2022a). To understand 
each pig’s movement choices in response to the 11 other 
pigs, we create occurrence distributions (ODs) for each pig 
that reflect their probable space use over time (Cozzi  et  al. 
2018). Over a 30-day moving window the OD for each pig 
(Ui(x,t) for i = 1,…,12) is calculated each day using the R 
package ‘ctmm’, using movements over the previous 30 days 
(Potts  et  al. 2022a). The knowledge each pig holds of the 
other 11 pigs’ space use may be formed from either direct 
and/or indirect social interactions, possibly mediated by 
memory (Potts and Lewis 2019). Direct social interactions 
occur when the pigs overlap in both space and time, and indi-
rect interactions could, for example, be marks on the envi-
ronment such as scent marking or rooting.

In addition to evaluating each pig’s movement in 
response to the other pigs’ ODs, we consider the possibil-
ity that wild pigs are avoiding too many social interactions 
with the same individuals by analysing their movement in 
response to the quadratic values of the other pigs’ ODs. We 
note here that including both the linear and quadratic ver-
sions of each pig’s ODs can model the situation where pigs 
are attracted to other pigs’ ODs but not to the high den-
sity areas, therefore modelling an overuse avoidance. This is 
similar to the linear and quadratic land cover maps showing 
intermediate values of resources, whereas for ODs it models 
intermediately used areas.

We define two models for conspecific interactions (with-
out environmental parameters): M4 and M5, which both esti-
mate parameters for each of the 12 pigs’ ODs, but M5 has 12 
additional β parameters that describe movement with respect 
to the quadratic values of the ODs. We include the qua-
dratic variable for each pig’s own OD in model M4 and M5 to 
describe an overuse avoidance of previously visited locations, 
shown to be important in Potts et al. (2022a).

Social and environmental interactions

We combine the social and environmental models detailed 
above and develop further models that reflect pigs mak-
ing movement decisions based on a combination of the 
11 other pigs ODs and the 12 environmental conditions. 
Models M6–M8 define movement based on social interac-
tions alongside the binary environments (model M1 and 
interactions), the smoothed environments (model M2 
and interactions) and the smoothed environments with 
their quadratic versions (model M3 and interactions), 
respectively.

The modelling framework we follow (Fig. 2) uses an itera-
tive process that redefines models based on the results of the 
previous steps. Therefore, after fitting and simulating models 
M0–M8, we further created models that consist of a subset 
of environmental variables that reflect the most influential 
variables on space use and use those within simulations, 
named models M9 onward. All models and their structures 
are reported in Table 1.

Results

Interactions with the environment

Before introducing social interactions into the models we 
first consider only interactions with the 12 environmen-
tal factors. The purpose of this is to see what inference we 
observe in the absence of controlling for social interactions. 
Later on, we will report our more complete results, where 
we account for social interactions and give a comparison. 
This comparison will help highlight the importance of con-
trolling for social interactions. The results for these models 
(M1 and M2) indicate that generally wild pigs are select-
ing for corn, cotton, open water and woodland environ-
ments, while avoiding rice, soybean, fallow and open spaces 
(Table 2). However, this story unfolds further when move-
ment is evaluated in respect to the quadratic version of these 
land cover maps (Table 3). Here we see that, overall, pigs 
are selecting for corn, soybean, water and woodland, yet 
the positive parameters for linear variables and the negative 
parameters for quadratic variables suggest pigs are selecting 
for the intermediate values of these land cover types, sug-
gesting that there may be some optimum land cover struc-
ture. Only by including quadratic variables do we find the 
attraction to open water is specific to intermediate densi-
ties of water. Similarly, we note that pigs are attracted to 
intermediate values of soybean land cover, whereas the prior 
analysis (M2) indicted pigs did not select for soybean fields. 
We note here that many of these variables are not selected 
by the lasso analysis when social variables are included. 
Despite this, it is possible that some social selection could 
actually be selection for land cover variables and vice versa 
(some land cover selection could be social selection) and 
this is hard to disentangle. Therefore, we report these land 
cover selection lessons tentatively.

 1
9
0
3
2
2
0
x
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://n
so

jo
u
rn

als.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/w

lb
3
.0

1
2
4
7
 b

y
 U

n
iv

ersity
 O

f S
h
effield

, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [2
3

/0
4

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n

s L
icen

se



Page 7 of 13

Social interactions

The effect of conspecific interactions on wild pig movement 
indicated that almost all pigs are either attracted to the occur-
rence distributions of the other pigs (βi > 0) or not affected 
by them (βi = 0); however, there are eight occurrences of pigs 
avoiding other pigs, and nearly all pigs are repelled away from 
areas they and other pigs had used often (Supporting infor-
mation). When including an overuse avoidance we find that 
all non-zero parameters were positive for the linear variables 
and almost all negative for the quadratic variables. These 
parameter estimations suggest that pigs are selecting for loca-
tions known to be used by other individuals but avoiding 
those areas which are overused.

Social and environmental interactions

Combining both the parameters for environmental and con-
specific interactions provide step-selection models that reflect 
pig movements based on both sociality and habitat choice. 
We find that social interactions between pigs are predomi-
nantly more important to their movement choices than the 
environmental layers (Supporting information). The model 
coefficients reduce to 0 for almost all environmental layers, 
apart from fallow areas and woodlands. An attraction towards 
woodland areas and away from fallow areas is indicated for 
all pigs; and, when including quadratic terms, attraction to 
intermediate areas is indicated where for larger areas of soy-
bean and woodland is likely to be edge habitat.

Table 1. Simulation results for models using social interactions, binary environments and Gaussian smoothed environments (σ = 25, 
Supporting information). Variables that describes conspecific overuse avoidance and self overuse avoidance are denoted as OA and SOA, 
respectively (these appear as quadratic terms in the movement kernel). For models containing environmental variables (e.g. Binary env, 
Gaussian env), if the quadratic variables for these environments were included then this this is denoted as ‘QuadEnv’ in the table. Full 
descriptions of the models are shown in the Supporting information alongside the results for the models including Gaussian smoothing for 
both σ = 50 and σ = 75. Similarity between each model and the empirical movement tracks is evaluated using Bhattacharyya’s affinity index 
(BA, Bhattacharyya 1946) averaged over all simulations and all pigs, where bold values indicate the highest BA. Comparisons are calculated 
in three ways, by (1) comparing the OD of the empirical and simulated movements for each track and taking the overall average BA, 
(2) calculating the average OD for all simulations and comparing to the empirical OD and (3) calculating an autocorrelated kernel density 
estimation (AKDE) of each of the empirical and simulated movements for each track and taking the overall average BA.

Model Variables in model (1) Simulation BA (2) Ave BA (3) AKDE BA

M0 Null model 0.118 ± 0.0033 0.254 0.459 ± 0.0053
M1 Binary Env 0.132 ± 0.0034 0.266 0.48 ± 0.0054
M2 Gaussian Env 0.129 ± 0.0033 0.261 0.508 ± 0.0058
M3 Gaussian Env + QuadEnv 0.145 ± 0.0035 0.280 0.576 ± 0.0056
M4 Social + SOA 0.218 ± 0.0055 0.414 0.58 ± 0.0066
M5 Social + OA 0.12 ± 0.0033 0.249 0.408 ± 0.0092
M6 Social + SOA + Binary Env 0.215 ± 0.0054 0.413 0.58 ± 0.0072
M7 Social + SOA + Gaussian Env 0.199 ± 0.0054 0.393 0.577 ± 0.0077
M8 Social + SOA + Gaussian Env + QuadEnv 0.192 ± 0.0051 0.395 0.582 ± 0.0079
M9 Social + SOA + Fallow Gaussian Env 0.211 ± 0.0054 0.396 0.596 ± 0.0065
M10 Social + SOA + Woodland Gaussian Env 0.216 ± 0.0054 0.402 0.579 ± 0.0074
M11 Social + SOA + Fallow and Woodland Gaussian Env 0.21 ± 0.0054 0.402 0.572 ± 0.0073
M12 Social + SOA + Fallow Gaussian Env + QuadEnv 0.207 ± 0.0053 0.395 0.584 ± 0.0073
M13 Social + SOA + Woodland Gaussian Env + QuadEnv 0.211 ± 0.0054 0.393 0.575 ± 0.0077
M14 Social + SOA + Fallow and Woodland Gaussian Env + QuadEnv 0.202 ± 0.0052 0.395 0.566 ± 0.0077

Table 2. The results of performing fitting the parameters β1,…,β
n
 for a step-selection model (Eq. 1) for model M2 with the smoothed environ-

mental variables shown in the header. The parameters are fitted using conditional logistic regression with lasso penalties. The columns for 
pecans, developed low/med intensity and other crops were removed, as the corresponding parameters were all reduced to zero and were 
unimportant for pig movement.

Pig/Layer Corn Cotton Rice Soybeans Fallow Water Open space Wetland Woodland

1 0 2.564 −0.224 0 −1.275 1.132 −0.93 3.887 0.561
2 0.171 0 −1.434 −0.364 0 0 0 0 0.65
3 0 0 0 0 −1.155 1.347 0 0 0.421
4 0.808 0 0 −0.346 −0.151 1.311 0 0 0
5 0.112 0 −0.277 −0.037 0 1.179 −0.854 0 0.749
6 0 1.764 −0.793 0 −1.585 0.967 −1.07 0 0.408
7 1.709 0 −0.332 0 0.439 0 −0.525 0 1.389
8 0 1.949 −0.359 0 −1.222 0.927 −0.881 0 0.346
9 0 2.265 −0.318 0 −1.416 1.29 −0.494 1.16 0.516
10 1.724 0 −0.355 0 −0.185 1.966 0 0 0
11 0 0 0 0 −0.628 0 0 0 0.783
12 0.809 0 0 −0.088 0 0 −0.443 0 0.125
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Table 3. The results of performing fitting the parameters β1,…,β
n
 for a step-selection model (Eq. 1) for model M3 with the smoothed environmental variables shown in the headers. 

The parameters fitted are using conditional logistic regression with lasso penalties. The columns for developed low/med intensity and other crops were removed as they were all 
reduced to zero. This model can be compared with the model in Table 2 as it includes the quadratic values of each variable. A positive value for a parameter in the linear variable 
and a negative value in the quadratic variable would indicate that the pig is attracted to only the edge areas of the corresponding environment (Supporting information). Superscript 
‘2’ refers to the quadratic version of the variable.

Pig/Layer Corn Cotton Rice Soybeans Fallow Pecans Water Open space Wetland Woodland

1 0 1.189 0 0.685 −1.83 −3.115 3.618 −2.684 2.863 0
2 3.515 0 −1.596 0.093 0 0 0 0 0 2.845
3 0 0 0 0 0 0 2.352 0 0 0.774
4 0 0 0 −0.418 0.042 0 0.304 −2.044 0 0.459
5 0 0 −1.112 0.584 0. 0 1.317 −2.102 0 1.061
6 0 2.098 0 0 −0.311 −2.341 0.507 −2.169 1.152 0.142
7 0.54 0 0 0.262 0 0 −0.274 −3.208 0 0.77
8 0 0.623 0 1.259 −2.519 −4.711 3.659 −2.649 0.452 −0.765
9 0 0.48 0 0.278 −2.349 −2.481 2.268 −2.367 0.009 0
10 3.255 2.364 −2.684 0 −0.787 0 2.743 −0.393 0 0
11 0.94 0 0 1.621 0 0 1.948 −1.008 0 −0.074
12 0.106 0 −1.555 0.313 0.134 0 0 −2.517 0 −0.141

Pig/Layer Corn2 Cotton2 Rice2 Soybeans2 Fallow2 Pecans2 Water2 Open space2 Wetland2 Woodland2

1 0 0 −1.848 −2.6 −1.307 0 −7.607 0 0 −0.655
2 −3.384 0 0 −0.404 0 0 0 0 0 −2.124
3 0 0 0 −0.145 −1.502 0 0 0 0 0
4 0 0 −1.361 −1.283 −1.78 0 0 0 0 −1.767
5 −0.143 0 0 −1.29 −0.549 0 0 0 0 −0.734
6 0 0 −1.599 −0.713 −2.633 0 0 0 0 −0.234
7 0 0 −2.019 −1.89 −1.19 0 −1.942 0 0 −0.798
8 0 0.403 −2.067 −3.264 0 0 −6.991 0 0 0
9 0 0 −1.937 −2.312 −1.043 0 −4.597 0 0 −0.909
10 −1.47 0 0 −0.094 0.581 0 0 0 0 0
11 −0.419 0 −1.869 −1.636 −0.894 0 −3.078 0 0 1.091
12 0 0 0 −1.578 −1.104 0 0 0 0 −0.496

 1903220x, 0, Downloaded from https://nsojournals.onlinelibrary.wiley.com/doi/10.1002/wlb3.01247 by University Of Sheffield, Wiley Online Library on [23/04/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License
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Model selection by simulation

Simulations were used to understand whether a combina-
tion of both sociality and environmental layers create the best 
movement models for the wild pigs (Fig. 3). When includ-
ing both social interactions and the 12 environmental lay-
ers, the SSA results indicated that both an attraction toward 
woodland areas and away from fallow land is important to 
the majority of individuals, and we defined models M9–M14 
to reflect these behaviours. Table 1 shows each model with 
the BA indices averaged over all pigs. Overall, comparing the 
AKDE of both the empirical and simulated movement tracks 
provides the most similarity between simulations and data. 
However, all comparisons show the same pattern of best-
fitting models.

Including either a combination of environmental variables 
or social interactions improves the null model, but those that 
include social interactions generally fit best. Moreover, the 

model that consists of social interactions (model M4) is not 
improved when environment layers are added (models M6–
M14); this is indicated by comparisons (1) and (2) and is only 
improved slightly using comparison (3). Overall these find-
ings suggest that social interactions could be more important 
for pig movement decisions than the environmental variables.

We note that the null models do have a reasonably high 
level of overlap with the empirical data, particularly when 
comparing using AKDE. This may be due to some simula-
tion paths of the models hitting the edge of the simulated 
landscape, and these were particularly noticeable for the null 
model where 168/1000 simulations came within the edges of 
the landscape. In the Supporting information we report the 
number of simulations that hit the edge of the landscape for 
each model, where we see that the better fitting models (those 
that include social interactions) go within two cells of the 
boundaries for an average of 35 ± 8 simulations out of 1000 
(around 3.5% of the simulations).

Discussion

Estimating animal space use at both individual and popula-
tion levels focuses predominantly on analysing and predicting 
space use patterns based on interactions with static environ-
ments (Hoffmeister et al. 2005). In reality, animal space use 
is a result of movements in response to changing processes, 
and including these dynamics into spatial models can reveal 
behaviours that are unable to be discovered with correlative 
methods (Moorcroft  et  al. 2006). Our study reinforces the 
importance of including changing processes by demonstrat-
ing that movements and realized space use of wild pigs are 
influenced by the movements of other wild pigs, and that this 
selection is potentially stronger than the influence of various 
land cover types.

Step-selection models can be thought of as extending 
resource-selection models to include movement mechanisms, 
allowing one to infer habitat selection with the knowledge of 
an animal’s location through time, now widely used in eco-
logical studies (Thurfjell et al. 2014b). Our modelling pro-
cess extends step-selection analysis to infer variable selection 
using lasso regression, rarely seen in the step-selection litera-
ture (Street et al. 2016). Furthermore, we extend a recently 
developed model selection process (Potts  et  al. 2022a) that 
selects models by comparing the estimated space use of simu-
lated step-selection tracks with empirical tracks using AKDE 
(Fleming et al. 2015). Estimating space use with AKDE can 
provide a more realistic pattern than traditional kernel den-
sity estimates by taking the autocorrelation of movements 
into account, providing a useful nonparametric way of com-
paring simulated tracks to data. However, estimations using 
AKDE come at high computational cost, and when com-
bined with 1000 simulations of the movement model, it may 
be more efficient to consider faster measures such as classical 
fixed-kernel methods. Overall, we use methods of combin-
ing model selection via spatial patterns with SSA, providing 
ecological inference of both the movement process and the 
resulting space use pattern.

Figure  3. Examples of simulated space use using the simulation 
rules shown in the Supporting information. Each panel represents a 
22.5 km2 area and simulations are performed over 30 days. Panels 
(a) and (b) show the GPS locations from Fig. 1 projected to the 
computational landscape with the smoothed fallow and woodland 
land covers respectively. Panels (c) and (d) show example ODs cal-
culated from simulated paths for models M9 and model M10 respec-
tively. Lastly panels (e) and (f ) show the average ODs calculated 
over 1000 simulations for models M9 and model M10 respectively.
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By modelling movement in response to social interactions 
without the environment layers we found that, although pigs 
are often attracted to areas used by conspecifics, this attrac-
tion only holds up to a point. Specifically, the attraction turns 
into repulsion if the areas are used a very large amount by 
other pigs (the negative quadratic terms in the Supporting 
information). This conspecific avoidance structure could be 
due to a number of factors; wild pigs are known to dam-
age native habitats dramatically (Schley et al. 2008), mean-
ing avoidance could be due to hindering resource depletion 
for the population (Held et al. 2005). Alternatively, the level 
of attraction towards or away from other individuals could 
depend on relatedness or social rank, which is a known driver 
of pig behaviour (Delcroix et al. 1990, Giersing et al. 2000).

Social dynamics of wild pigs have been shown to affect 
growth rate and feed intake (Bergsma  et  al. 2008), boar 
hormone balances (Giersing et al. 2000) and foraging time 
(Focardi  et  al. 2015). Furthermore, a link between social 
interactions, movement and hunting has been indicated in 
previous studies; the social structures of wild pig popula-
tions in Europe (Janeau et al. 1995, Rosell et al. 2004) are 
affected by mortality, which inevitably leads to unstable space 
use patterns (Scillitani et al. 2010) and avoidance of hunting 
areas (Amici et al. 2012). Alongside this study, the effect of 
social dynamics on the movements of these invasive animals 
prompts control measures to be more focused on understand-
ing group dynamics and predicting the areas that surviving 
populations might spread to, given an eradication attempt. 
African swine fever (Dixon et al. 2019) is a considerable risk 
to the US swine industry (Brown and Bevins 2018) and is 
affecting wild populations in Europe (Sauter-Louis  et  al. 
2021). A full understanding of how social dynamics influ-
ences pig movement would be extremely important for this 
potential disease transmission (Nunn et al. 2008, Craft 2015).

It is important to note that there may be a feature of the 
environment we have not analysed that manifests in the 
results as social preferences. Animals may be selecting for 
resources we have not identified, and by modelling selection 
for where other animals occur we may be indirectly capturing 
this unidentified effect via its role in shaping emergent move-
ment trajectories. It is also interesting that when including 
some environments into the social model (extensions of M4 
in Table 1), the fit to the data is actually worse, despite the 
modelling processes indicating that these land cover layers 
are important. However, these differences in fit are small (less 
than 0.02 difference in the BA index) and may be due to the 
parameter estimations from iSSA and simulated movements 
being calculated over slightly different landscapes. Despite 
this, simulating this social process allows one to ensure some 
useful predictive capability, even when we are not able to fully 
capture the hypothetical mechanism behind the small popu-
lation’s movements. Note, however, that a full understand-
ing would require knowledge of most or all pigs’ movement, 
whereas here we were only able to sample 12 from a much 
larger population.

Edge and overuse effects of pig movements were anal-
ysed by smoothing the USDA CropScape data layers that 

are formed of binary cells (values of either 0 or 1). Since 
social interactions have such a large effect on the pigs’ move-
ment we ran a separate step-selection analysis with only 
environmental layers (no social interactions), which showed 
most pigs are attracted to soybean fields, open water and 
woodland, yet away from fallow lands, rice fields and open 
space. We concluded this population of wild pigs generally 
select for intermediate values of land cover, which in some 
of the studied layers may represent the edges of habitats, a 
finding that is strengthened by previous studies. For exam-
ple, soil disturbance by invasive wild pigs in both Malaysia 
(Fujinuma and Harrison 2012) and Sweden (Thurfjell et al. 
2009) declines with distance from the forest cover. The 
attraction to the intermediate values of open water and soy-
bean are particularly interesting, since including only the 
linear variables for these environment layers in the analysis 
indicated a different conclusion: pigs are attracted to open 
water and away from soybean fields. Our results demon-
strate that is meaningful to understand not only which types 
of environment animals select for, but also how movement 
decisions are affected by specific land cover configurations as 
agricultural landscapes, something that is particularly nec-
essary with increasing habitat fragmentation (Haddad et al. 
2015). Effects of edges are well known to be present in ani-
mal responses to vegetation types (Malcolm 1994, Murcia 
1995), and modelling attraction or repulsion to edges has 
been investigated in a number of studies by calculating the 
‘distance to edge’, for example Holl and Lulow (1997), 
Thurfjell  et  al. (2009), Roever  et  al. (2010), Vales  et  al. 
(2022). However combinations of using ‘distance to edge’ 
variables alongside habitat structure variables can result 
in collinearity issues (Ruffell and Didham 2016). Rather 
than using the ‘distance to edge’ variable here, we chose 
to investigate intermediate values of the land cover layers 
which was more suited to varied landscape structures of the 
Cropscape layers (Supporting information) that varied from 
consisting of small patches where edges were unclear to very 
large patches where the intermediate values indicated edges 
(Supporting information).

Although we conclude here that the importance of social 
interactions potentially outweighs that of resource selection 
there is a possibility that there is a scale-dependent functional 
response that our modelling process does not sufficiently 
account for. For example, there may be a hierarchical selec-
tion process such that an abundance of resources means the 
main limiting factor of space use falls upon the social net-
work. A mechanistic link between second and third order 
selection has already been suggested for this population 
(Paolini  et  al. 2019). Thus, to understand this mechanistic 
link further, we would suggest a study similar to Rettie et al. 
(2000), where home ranges of sounders could be estimated 
using social interactions (second order), whilst environmental 
layers within home ranges (third order) could then be anal-
ysed to determine resource selection, or vice versa. In general, 
some level of hierarchical spatial selection has been indicated 
in a vast range of animal species from warblers (Chandler and 
King 2011) to wolves (McLoughlin et al. 2004) to rattlesnakes 
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(Harvey and Weatherhead 2006). Despite a large number of 
studies considering only one scale of selection, omitting the 
idea of either investigating hierarchically or modelling space 
use as a hierarchical process in resource selection may lead 
to analyses missing key limiting factors (Beasley et al. 2007, 
McGarigal et al. 2016). On the other hand, including hier-
archical selection could maximise the inference gained from 
location data, reduce anthropocentric bias and determine the 
relative significance of space use drivers (Rettie et al. 2000, 
Lipsey et al. 2017).

Our finding that movement decisions of wild pigs are 
influenced by social dynamics and selection for habitat edges 
is an important step towards controlling this invasive spe-
cies. We suggest that, when designing control methods, the 
social dynamics of targeted groups are considered to maxi-
mise eradication attempts. Furthermore, we advocate for 
field-based methods to approximate population densities 
to begin determining target areas. Overall, our results high-
light the importance of considering dynamic processes as 
drivers of movement which ultimately determine space use; 
an appeal also supported in the recent ecological literature 
(Hoffmeister  et  al. 2005, Börger  et  al. 2008, Kearney and 
Porter 2009, Potts and Lewis 2019, Potts and Börger 2023).
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