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Abstract: We highlight what we believe to be a novel optical set-up which enables the
confinement of cold atoms in a finite set of sub-wavelength bottle traps. This involves two
counter-propagating vortex beams with the same winding number ℓ =±1 and the same circular
polarization (σ = ∓1). Strong focusing generates significant longitudinal field components
which become responsible for an on-axis standing wave enabling the axial confinement of far
blue-detuned atoms. The off-axis radial confinement is provided by the optical potential due to the
transverse components of the light. The trap characteristics are illustrated using experimentally
accessible parameters and are tunable by changing the power, focusing and ellipticity of the light.
Atoms trapped in such a set-up are useful for applications, including quantum simulation and
quantum information processing.
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1. Introduction

Optical vortex beams came to the fore in 1992 when Allen et al [1] showed that the photons
of a Laguerre-Gaussian (LG) mode carry a quantized orbital angular momentum (OAM), ℓℏ,
pointing along the propagation direction. Here, ℓ is the so-called winding number. Today, optical
vortex modes comprise a large family of coherent light beams, with the LG set and the Bessel set
of modes being the most prominent members [2]. The emergence of the area of optical vortices
stimulated huge theoretical and experimental investigations involving a very broad range of fields,
from mechanical effects on atoms and on small particles [3,4,6,11], to quantum communications
[13].

The fact that the photons of an optical vortex beam carry both linear momentum and orbital
angular momentum lent a fresh boost to the physics of mechanical effects of light on atoms and
small particles [3–13]. Optical vortex fields are not only capable of exerting forces and thus
affect the translational motion of a particle but they can also exert a torque on it and can thus
change its rotational motion around the beam propagation axis. Optical vortices have amplitude
and phase functions with very rich spatial structures. The helicoidal phase fronts which are
characteristic of these beams are inherently related to a zero intensity at all points on the axis in
the paraxial regime. Their spatially dependent intensity profile can be exploited for blue-detuned
(∆>0) and red-detuned (∆<0) optical dipole trapping of atoms in optical configurations with
a cylindrical symmetry around the beam axis. Here, ∆ = ω − ω0 is the difference between
the angular frequency of the light (ω) and that of the atomic resonance (ω0, also called Rabi
frequency). They can form various novel optical environments such as those for the optical Ferris
wheel (OFW) [14] in two dimensions and the helical optical tube (HOT) in three dimensions
[15].

#516270 https://doi.org/10.1364/OE.516270
Journal © 2024 Received 20 Dec 2023; revised 9 Feb 2024; accepted 18 Feb 2024; published 27 Mar 2024

https://orcid.org/0000-0002-2000-7782
https://orcid.org/0000-0001-8331-9380
https://orcid.org/0000-0003-0659-5247
https://orcid.org/0000-0002-6240-7151
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.516270&amp;domain=pdf&amp;date_stamp=2024-03-28


Research Article Vol. 32, No. 8 / 8 Apr 2024 / Optics Express 13451

Among the different trapping configurations is the so-called bottle beam configuration which
ensures a dark three-dimensional region in the shape of a bottle surrounded by light. In this
region atoms can be trapped using blue detuning which ensures a very low photon scattering rate
and a coherence time of the atoms that can reach up to several seconds compared to a red-detuned
bottle trap centered on the bright regions.

The first bottle beam configuration was suggested and realised by Arlt and Padgett [16]. They
used a computer-generated hologram to generate a superposition of two Laguerre–Gaussian
modes, with zero winding number, such that the two beams interfere destructively to give rise to
a (dark) beam focus which is surrounded in all directions by regions of higher intensity. Thus
such an optical environment can be exploited for the blue detuned trapping of atoms. In 2009
Isenhower et al [17] demonstrated such an optical bottle beam in which they managed to trap Cs
atoms. Their atom trap was created by the interference of two Gaussian beams with different
waists which created a harmonic potential only along the axial direction. In 2010 Xu et al [18]
demonstrated the trapping of a single Rb atom in an optical bottle beam trap formed by a strongly
focused blue-detuned laser beam, which passes through a computer-generated phase hologram
imprinted on a spatial light modulator. In 2012 Arnold used blue-detuned counter-propagating
Laguerre-Gaussian beams to localise ultra-cold atoms in dark regions [19]. In 2014 a theoretical
investigation of the trapping properties of the bottle beam created by Arlt and Padgett was
reported [20]. With the bottle trap boundaries defined by the light intensity maxima, the trapping
region was estimated to have an axial spatial size of around 40 µm (≈ 52λ), while the radial
trapping size was around 6 µm (≈ 7.8λ). In 2012 Li et al [21] demonstrated the trapping of
single Cs atoms in a bottle beam trap created by crossing two vortex beams. We note that all the
aforementioned bottle trapping schemes had only a single bottle-like trapping region. In 2020
Baredo and colleagues managed to create two such traps 40µm apart to study the dipole-dipole
coupling between individual Rydberg atoms using a holographic method [22]. These traps
provided a harmonic potential only in the axial direction. In 2021, Xiao et al. compared different
schemes for the generation of bottle beams used in tweezing experiments [23]. However, none of
those schemes managed to demonstrate trapping in sub-wavelength dimensions.

It is well known that the total angular momentum of a coherent paraxial light beam consists of
two parts, the OAM and the spin angular momentum (SAM). The latter is related to the two types
of circular polarizations, namely counter-clockwise and clockwise. Recent work has pointed
out that as the beam focusing becomes stronger, longitudinal components of the electric and the
magnetic fields can be comparable in magnitude to transverse components [24–27]. When the
beam carries a SAM the longitudinal components become responsible for the appearance of a
new term in the beam intensity in which the OAM is coupled to the SAM. This term displays a
sensitivity to the chirality of the circularly-polarized input beams since it reverses sign when
either OAM or SAM reverses sign. Under such conditions a strongly focused optical vortex beam
can generate optical dipole traps for atoms the characteristics of which depend crucially on the
beam properties [28].

This paper is concerned with optical traps involving twisted light in which the longitudinal field
components and the spin-orbit coupling play important roles. We aim to uncover the trapping
properties of the standing wave created by two counter-propagating strongly focused optical
vortices with winding numbers of the same magnitude and sign and the same circular polarization.
Our work shows that the intensity of this light field configuration, when the common winding
number is either ℓ = +1 or ℓ = −1 is characterized by a set of dark trapping potential wells
of sub-wavelength sizes with bottle-like three-dimensional shapes and so these regions can be
exploited for atom trapping in the dark. Significantly the characteristics of the trapping regions
as optical dipole traps for atoms are also tunable simply by the chirality of the optical vortex
beams as well as by other beam parameters.
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This article is organised as follows. In section 2 we specify the electric field associated with the
two counter-propagating vortex beams, emphasising the role of the longitudinal field components
which come into play under strong focusing. We consider in particular a Laguerre-Gaussian
beam configuration and proceed to evaluate the intensity distribution which is proportional to
the square of the modulus of the electric field vector. We identify the physical significance of
the different terms, and single out for special consideration a term, which arises entirely due
to having included the longitudinal field components. We point out that this term signifies the
presence of spin-orbit coupling. This is a special feature of the optical field in which it displays
chiral-sensitivity in the sense that any change of the sign of either the common winding number
ℓ, or the sign of the circular polarisation σ leads to different results. In section 3 we consider the
interaction of the two-level atom with the vortex field created by the two beams. We evaluate the
Rabi frequency, assuming that the atom is blue-detuned and from the Rabi frequency we deduce
the trapping potential experienced by the two-level atom immersed in the optical field. Analysis
of the trapping potential in section 4 reveals that it consists of a number of quantum wells in the
shape of three dimensional bottle traps. The special features of these traps are analysed further,
pointing out that it is the additional confinement due to the longitudinal field component that
led to the realisation of the bottle trap so that the atom faces deep potential walls in all three
directions and the size of each trap is unusually small (typically under a wavelength). Assuming
experimentally accessible parameters we illustrate the orders of magnitude involved in the depth
of the trap and its quantum features, including an estimate of the tunneling rate between adjacent
trapping sites (details of trap characteristics are listed in Table 1 and Table 2 of Appendix C).
Section 5 considers the tunability of the depth of the bottle traps as well as their use in creating
atom transport mechanisms. Section 6 contains a summary and discusses the features and results
of this work. We suggest that the main findings should be followed by experimental work on the
trapping of cold atoms in these miniature traps.

2. Optical vortex field

The optical environment is created by two counter-propagating Laguerre-Gaussian (LG) beams,
labelled 1 and 2. Both have the same frequency ω and with winding numbers ℓ1 = ℓ2 = ℓ, with
the beams 1 and 2 also denoted by (±) propagating along the ±z direction. The polarization of
the transverse components of the light beams is represented by two complex numbers α and β.
The individual electric fields are as follows [29]
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with u(ρ, z) the common amplitude function. For the LG beams, this is given by [11,30]
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and Θ(ρ, z) is the part of the phase functions which includes the Gouy and the curvature phases:
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Here w0 is the beam waist, zR = w2
0k/2 is the Rayleigh range, C |ℓ |,p =

√︁
p!/(p + |ℓ |)! and L |ℓ |

p
the associated Laguerre polynomial.

The above equations are based on the paraxial approximation for the transverse components,
but have been improved upon by the inclusion of the longitudinal components which becomes
important for strongly focused beams. However, we restrict ourselves to the case (kw0)

−1<1
which amounts to w0>λ/(2π) ≈ 0.16λ, so the above expressions are still valid for the waist
parameter we choose below (w0 = 0.9λ, or NA=λ/(πw0)=0.35) and there is no need to invoke
the full non-paraxial correction.

As outlined in Appendix A, for circularly-polarised optical vortex modes, the longitudinal (z−)
component of the electric field in Eq. (1) can be expressed in terms of cylindrical coordinates as
follows
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Together with the eiℓφ phase factor in E±, the longitudinal component then has a total phase
factor of ei(ℓ+σ)φ. This is the well-known spin-to-orbital angular momentum conversion effect
[31]. The two counter-propagating beams create a standing wave whose total electric field is
given by:
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The z- and ρ-dependence of the expression for Θ suggests that there is an effective wavelength
defined by keffz = kz − Θ(ρ, z). This wavelength λeff = 2π/keff not only depends on ℓ and p
but also on ρ and its spatial variations explain the fact that the positions of the traps due to the
standing wave are not exactly separated by λ/2 as we shall see below.

Consider now the modulus squared of the total field. Assuming that the LG modes are
circularly-polarised, we make use of the identities |α | = |β | = 1/

√
2, σ = i(αβ∗ − α∗β) = ±1

and αβ∗ + α∗β = 0 to obtain for |−→E |2:
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Here u is the common amplitude function defined in Eq. (4). Thus |

−→E |2 (and, hence, the
light intensity of the system of two counter-propagating LG modes) consists of two terms; one
proportional to cos2 (kz + Θ) and another proportional to sin2 (kz + Θ). This suggests that we
have two standing waves with shifted maxima. The standing wave proportional to cos2 (kz + Θ)
is mainly due to the interference of the transverse components and this standing wave continues
to exist in weak focusing conditions. The standing wave proportional to sin2 (kz + Θ) is entirely
due to the longitudinal field component and becomes significant when the magnitude of this field
component increases under strong focusing conditions. In addition, the displaced maxima are
also not exactly equally spaced because the effective wavelength of the light field now depends
on both z and ρ.

3. Interaction with atoms

We are now in a position to consider the interaction of two-level atoms with the above mentioned
field [32]. The two-level atom of mass M is characterised by its electric dipole moment

−→
d ,
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its excitation energy ℏω0 and the natural width of its excited state Γ. Under far off-resonance
conditions this interaction results in an optical dipole potential energy U, which is proportional
to the square of the Rabi frequency Ω = |

−→
d ·
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E |/ℏ. We have for the potential U:
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(9)
where ∆ = ω − ω0 is the detuning parameter and Ω0 is the Rabi frequency associated with the
field amplitude E0 of one of the two beams asΩ0 = dE0/ℏ. The Rabi frequencyΩ is proportional
to the total intensity of the light field according to I/Is = 2Ω2/Γ2, where Is is the saturation
intensity associated with the two-level transition and the intensity is proportional to |

−→E |2.
Equation (9) describes the potential landscape presented to a two-level atom whose excitation

frequency is blue-detuned from the frequency of the light. The significant new feature of this
potential landscape is that the light is strongly focused so that the longitudinal field components
of the LG modes are comparable to the transverse components. As pointed out earlier, the
longitudinal field components introduce an additional standing wave. This standing wave is
localised on the common beams’ axis when |ℓ | = 1, consistent with the requirement that ℓ+σ = 0.
The appearance of a spin-orbit coupling term endows the trapping potential landscape with
the chirality-sensitive property. We shall show that the trapping potential wells are not just
significantly deep, but constitute unusually small atom trapping regions of sub-wavelength
dimensions.

4. Miniature atom bottle traps

A plot of the spatial variations of the optical dipole potential, Eq. (9), reveals an optical lattice
landscape of peaks and troughs which exhibit dark regions of space surrounded by light and
each of which has a bottle-like form. Thus each region can form a three dimensional trap for
blue-detuned two-level atoms. To demonstrate this we find it convenient to use parameter values
similar to those presented in the experiment by Isenhower et al. [17]. In their work, Isenhower
et al. created the blue-detuned trap using two strongly focused Gaussian beams. One of their
beams had a waist w1 = 0.94λ and the other had a waist w2 = 1.77λ, where λ = 532nm (while
the atomic transition wavelength λ0 = 852.35nm). The resulting bottle trap had a trapping region
with an axial (along z-axis) size of about 11.2λ and a radial one of about 3.76λ, a maximum
axial intensity 8.8 × 108 Wm−2 and a maximum radial intensity 5.4 × 108 Wm−2.

Therefore, using parameters similar to those used by Isenhower et al. [17], we consider Cs
atoms subject to an overall optical power of P = 0.4 mW which corresponds to a Rabi frequency
Ω0 = 3.6 × 103Γ. We assume equal beam waists w0+ = w0− = w0 = 0.9λ. Note that this
is larger than w0 = 0.16λ (corresponding to (kw0)

−1 = 1), so the non-paraxial treatment is
unnecessary. We focus on the Cs 62S1/2 − 62P3/2 transition of wavelength λ0 = 852.35 nm
and Γ/2π = 5.18 MHz. The laser light wavelength is λ = 532 nm, which corresponds to
blue-detuning ∆ = 1.33 × 1015 Hz or ∆ = 4.1 × 107Γ. Finally, the counter-propagating beams
have a common winding number ℓ which can either be ℓ = +1, or ℓ = −1 for both beams.

In the first case when both beams have ℓ = +1, σ = −ℓ = −1 and using the parameters as
stated above, we obtain the potential profile and contour plots shown in Fig. 1. We see that among
the set of blue-detuned trap sites we have the first deep minimum at the origin z = 0, ρ = 0. This
has an approximate harmonic potential form which arises by Taylor expansions of the potential
about the point z = 0, ρ = 0. Retaining the leading term of such a three dimensional harmonic
oscillator potential [33], we have:

U(z = 0, ρ = 0) ≈
1
2
Kρ,0ρ

2 +
1
2
Kz,0z2, (10)
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where the spring constants have the values Kρ,0 = 9.32 × 10−15 N/m and Kz,0 = 2.38 × 10−14

N/m respectively. A Cs atom trapped in this region has a ground state energy equal to 28Erec.
The potential energy has an off-axis saddle point with a depth equal to 60Erec. The axial (along
the z-axis) tunnelling rate is 0.0017 Hz while at the saddle point it is 0.038 Hz. The maximum
restoring forces in this trap region are Fρ,max = 6 × 10−22N and Fz,max = 2 × 10−21N. A Taylor
expansion of the potential about the origin in terms of both ρ and z leads us to a relationship
between the axial and radial spring constants as follows:

Kz,0 = Kρ,0

(︃
1 −

2
kzR

)︃2
(1 − σ). (11)

The spring constants become equal, i.e. Kz,0 = Kρ,0 for σ = −1 and ℓ = 1 when w0 = 0.6λ.

Fig. 1. The potential landscape (left panel) and contour plot (middle panel) of the bottle
trapping potential (in recoil energy units Erec = ℏ2k2/2M) when both counter-propagating
doughnut beams have ℓ = +1 and σ = −1. Axes are scaled in wavelength units. In
the contour plot, the potential represented by a gradient of colours ranging from black
(minimum), through purple, red, orange, to white (maximum). The 3D bottle traps are
highlighted with red ovals. The right panel shows the corresponding three dimensional
trapping potential (with cutout to reveal the interior) for the on-axis trapping regions. The
bottle traps are dark space bounded by the doughnut-shaped light pattern radially and by the
off-setting standing wave light pattern on axis. See the main text for the parameter values
used to generate these figures.

The adjacent on-axis minimum in Fig. 1 is at z = 0.618λ and ρ = 0 and here, too, the potential
has an approximate harmonic form given by:

U(z = 0.618λ, ρ = 0) ≈
1
2
Kρ,1ρ

2 +
1
2
Kz,1z2, (12)

where Kρ,1 = 7.03 × 10−15 N/m and Kz,1 = 1.92 × 10−14 N/m. A Cs atom trapped in this region
has a ground state energy equal to 25Erec. The potential energy has an off-axis saddle point with a
depth equal to 50Erec. The axial (along the z-axis) tunnelling rate is 0.092 Hz while at the saddle
point it is 0.238 Hz. The maximum restoring forces in this trap region are Fρ,max = 5 × 10−22N
and Fz,max = 1.5 × 10−21N.

The central trapping region has a characteristic axial size of about ≈ 0.6λ and a characteristic
radial extent of about ≈ 1.2λ, both defined as the peak-to-peak distance axially and twice the
distance between the peak and the axis in the radial direction. The relative size cannot go below
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0.5λ and this is a consequence of the fact that strong focusing amounts to a higher effective
wavelength. The trapping volume of each of these bottle-like regions of the lattice is far smaller
than the size of previously reported bottle traps [17,18,22,23]. In addition to the small size
of the bottle traps, we see from Fig.1 (left panel) that the trap potential depth can be several
hundreds of recoil energies for a modest input power. Thus this arrangement combines desirable
features of an atom trap, namely a smaller trapping size, a deeper potential well and a negligible
inter-well tunnelling; an ideal scenario for atomic spectroscopy which also, as we explain below,
allows flexibly to tune the properties by adjusting the parameters, in order to probe several
physically-interesting regimes.

In the second case when both beams have ℓ = −1, we obtain a different potential profile as
shown in Fig. 2 where the bottle trapping regions have disappeared and the potential, near the
axis, has the form of a stack of doughnut trapping regions on the transverse plane. Note that
the only change made is the reversal of the sign of the winding number. A similar result would
be obtained if ℓ is kept the same but the sign of σ is reversed. The fact that we obtain different
results merely due to a change in the sign of the winding number ℓ, or the sign of σ, is indicative
of a chiral-sensitive behaviour. As we pointed earlier, this is entirely due to the presence of a
strongly focused longitudinal field component. In this case, the spin-to-orbit conversion involved
leads to ℓ + σ = −2, i.e. a longitudinal component with topological charge of -2. In this case
there is a vortex singularity on axis and the additional ρ dependent phase shift such as that
due to beam divergence causes the interference light pattern due to the longitudinal field to
merge with the interference light pattern due to the transverse components as shown in Fig. 2. It
should be noted that the longitudinal trapping will not entirely disappear in the case of a linearly
polarized light source for trapping because the linearly polarized light can be considered to be an
equal superposition of light with σ = 1 and that with σ = −1. So the spin-to-orbit conversion
mechanism still operates even for linearly-polarized light. But its contribution to the on-axis
potential barrier is roughly reduced to a quarter of the fully circularly polarized (σ = −1) beam,
because the amplitude of such beam is reduced by half as the other circularly polarized (σ = 1)
component does not contribute to the on-axis electric field. For more details, see the comparison
of the relevant trap characteristics in the last two columns of Table 1 of Appendix C.

Another equally interesting case arises when we consider that the counter-propagating LG
beams have a non-zero radial index p, in which case there are p + 1 bright rings on the transverse
plane. This has the following consequences. The bottle traps are still situated on the axis but
now they are surrounded by torroidal (ring-like) trapping regions. The axial positions of these
ring-like regions are shifted with respect to the axial positions of the bottle traps. Figure 3
displays the case in which p = 1, and ℓ = 1.

In the harmonic approximation a cold atom of mass M in a given bottle trap is an anisotropic
three dimensional harmonic oscillator possessing spring constants in both the radial and axial
directions. Given that the corresponding harmonic oscillator frequencies are ω̃x = ω̃y =√︁
Kρ/M, ω̃z =

√︁
Kz/M, the quantum states of the atom in the bottle trap are formed as products

of three one-dimensional harmonic oscillator wavefunctions. We have
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where Hni are Hermite polynomials and the subscript {ni} stands for nx, ny, nz, where ni ≥ 0 are
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along the i−axis. The corresponding energy eigenvalues are given as:
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Fig. 2. The potential landscape (left panel) and contour plot (middle panel) of the bottle
trapping potential (in recoil energy units Erec = ℏ2k2/2M) when both counter-propagating
doughnut beams have ℓ = −1 and σ = −1. Axes are scaled in wavelength units. In
the contour plot, the potential represented by a gradient of colours ranging from black
(minimum), through purple, red, orange, to white (maximum). The right panel shows the
corresponding three dimensional trapping potential (with cutout to reveal the interior) for
the on-axis trapping regions. We clearly see that the bottle trap regions exhibited in Fig. 1
do not exist in this case, as there is no light pattern to confine the atoms along the axis. See
the main text for the parameter values used to generate these figures.

Fig. 3. The potential landscape (left panel) and contour plot (middle panel) of the bottle
trapping potential (in recoil energy units Erec = ℏ2k2/2M) when both counter-propagating
doughnut beams have p = 1, ℓ = 1 and σ = −1. Axes are scaled in wavelength units.
In the contour plot, the potential represented by a gradient of colours ranging from black
(minimum), through purple, red, orange, to white (maximum). The 3D bottle traps are
highlighted with red ovals. The secondary ring-like 3D traps are indicated by the blue circles
and dashed blue ovals. The right panel shows the corresponding three dimensional trapping
potential (with cutout to reveal the interior) for the on-axis trapping regions. We clearly see
that the on-axis bottle trap regions are now accompanied by ring-like trapping regions. See
the main text for the parameter values used to generate these figures.
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The numerical examples we have shown concern very deep optical dipole potential where the
trapped atoms are in the so-called Mott-insulator regime [34]. Deep atom trapping is prerequisite
for achieving the so-called Lamb-Dicke limit which is ideal for atomic spectroscopy experiments
on trapped atoms as well as for use in the generation of quantum collisional gates [35]. By
reducing the intensity of the light fields we may have shallower bottle traps which allow tunneling
of atoms between adjacent traps. Note that, as the figures indicate, the trapping region is, in
general, ellipsoidal. The potential minima along the axial direction occur at different distances
from the origin than those in the radial direction.

5. Discussion

The optical dipole trapping potentials we have demonstrated are of sub-wavelength dimensions
mainly because the trapping is the result of an interference pattern arising from counter propagating
vortex beams. The three dimensional trapping is achieved by the transverse beam components for
the radial confinement and by the longitudinal field component for the axial confinement. The
utility of this physical environment can be extended in different ways, as the following examples
show [36].

5.1. Atom transport via moving traps

With a slight modification, the setup can be used for the coherent transport of trapped atomic
samples in an optical conveyor belt. This case arises if the two LG modes have slightly different
frequencies ω1, ω2, such that ω1 − ω2 = δ. In this case the phase angle Θ which appears in
Eq. (8) is replaced by Θ + δt/2 and the resulting intensity pattern becomes time-dependent and,
so, it moves in space [37]. Such a functionality can be used to perform a displacement of trapped
atoms over a known distance [38].

5.2. Trap tunability

We have so-far demonstrated the optical potential for a set of parameters similar to those used in
an earlier experiment [17] to highlight the feasibility of our approach. Focusing on our set of
parameters, we now explain that some of these parameters can be modified to tune the trapping
properties.

The simplest parameter to modify is the laser power. We have listed some examples of the
resulting trap characteristics in Table 1 of Appendix C. The other parameter is the ellipticity of
the polarisation of the trapping light, which can be varied from fully left-circularly-polarized
light to fully right-circularly polarized light, providing fine control over the inter-trap axial
interaction without affecting in a significant way the radial trapping characteristics. The use of
elliptical light introduces a breaking down of cylindrical symmetry (see the general expression
for the electric field expression in Eq. (7), but our simulation (see Appendix B) suggests that
the resulting azimuthal dependence is negligible for the on-axis trapping potential and hence
the on-axis trapping potential barrier height can be tuned from maximun (for σ = −ℓ = −1) to
zero (for σ = ℓ = 1) smoothly by changing the ellipticity of the light source used. Following our
analysis in Appendix B, a rough scaling relationship for on-axis potential barrier height with σ
can be used for guidance: Uaxial-barrier-height(1>σ> − 1) ∼ |(1 − σ)/2|2Uaxial-barrier-height(σ = −1),
assuming only σ = −1 circularly-polarized beam component contributes to on-axis potential
barrier in our examples. In Table 1 of Appendix C, the characteristics of possible bottle traps for
linear polarization are also given. As expected, the on-axis potential barrier is roughly 1/4 of the
maximum on-axis (axial) barrier height when the correctly circularly-polarised light (σ = −1) is
employed.

The third source of tunability control is the beam waist w0 which can be easily adjusted to
reduce the trapping depth and the tunnelling barrier, allowing the interaction strength to be
increased for atoms trapped in the neighbouring bottle-shaped wells. The relationship between
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the radial spring constant and the axial one is given by Eq. (11). This varies with the beam waist
w0 and we have explained that it is in principle possible to achieve an isotropic three dimensional
harmonic trap at w0 = 0.6λ. Interestingly, we find that the variation of the peak beam intensity
with the waist parameter w0 indicates that Kρ is smaller than Kz for larger w0. The relevant
controlling parameters for the transverse field components are not only their intensities, but also
the sizes of their spatial variations. While the diameter of the doughnut shape of the transverse
field scales with the beam waist, the standing wave pattern of the longitudinal components are
largely constrained to be always sub-wavelength in size.

Due to the variation of the barrier height surrounding the three dimensional bottle traps, the
trap depth is defined by the minimum potential barrier at the saddle points. We have checked by
explicit evaluations that as the beam waist increases from 0.9 λ (NA=0.35) to 1.3 λ (NA=0.25),
the trap depth, measured as the lowest potential barrier height at the saddle point, changes from
600 recoil energies down to about 200 recoil energies. A similar scaling relationship with the
beam waist exists for the tunnelling barriers between the bottle traps. For more details, see
Table 2 of Appendix C. This flexibility provided by the adjustable parameters opens the door
for the modification of the properties of the trapped atoms and their mutual interactions. For
example, the atoms trapped can be tuned as Mott-like to superfluid, due to the significant change
in the tunneling rates between central and its first nearest neighbour bottles.

5.3. Applications

The tunability of the miniature atomic bottle traps allows a range of cold atomic physics to be
investigated. Here we briefly mention a few examples. At sufficiently strong focusing, trapped
atoms can be in a Mott-insulator like state, with minimum tunnelling between the neighbouring
traps. This allows atoms to be treated as isolated and this situation would be useful for high
resolution spectroscopy [39]. As the on-axis trap barrier is lowered, one can adjust the strength of
the coupling of the atoms in the neighbouring traps to study the processes of quantum tunnelling
and quantum localization [43]. The conveyor-belt mechanism also allows the atomic potential to
be modified adiabatically. The coupling of the atoms inside a doughnut ring-like trap with the
atoms in the atomic bottle traps, as Fig. 3 indicates, raises the interesting possibility of studying
magnetic coupling in the presence of a magnetic field. With ingenuity, we expect that the list of
applications will be further expanded.

6. Conclusions

In conclusion, we have shown how a couple of strongly focused counter-propagating optical
vortex beams with the same winding number, either ℓ = +1 or ℓ = −1 and the same circular
polarisation, can generate a set of atom trapping quantum wells of bottle-like characters on-axis.
This means that their intensity profile, along the beams’ propagation axis is characterized by
ellipsoidal dark regions surrounded by light. The depth of the quantum wells depends either on
the sign of ℓ or the sign of σ. We have shown that the two cases yield different results, indicating
that the optical environment generated by the two beams exhibits chirality.

We began by specifying the electric field associated with the two counter-propagating vortex
beams, emphasising the role of the longitudinal field component which comes into play under
strong focusing conditions. Our treatment conforms with the main criterion for the extent of
focusing, namely that for tight focusing (kzw0)

−1>1. This amounts to w0<λ/(2π) ≈ 0.16λ. We
chose w0 = 0.9λ which is much larger than 0.16λ, confirming the suitability of our formalism in
dealing with the optical trap.

We concentrated on the case of Laguerre-Gaussian beams, taking full account of the spatial
dependence in the Gouy and curvature phases and of the finiteness of the Rayleigh range zR.
We proceeded to evaluate the intensity distribution which is proportional to the square of the
modulus of the electric field vector. We identified the different terms, and pointed out a term,
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which arises entirely due to having included the longitudinal field components. This involves
spin-orbit coupling which endows the field with chirality in the sense that any change of the
sign of either the common winding number ℓ, or the sign of the circular polarisation σ leads to
different results. The interaction of the two-level atom is in terms of the Rabi frequency which
led us to the trapping potential. The trapping potential is found to consist of a number of quantum
wells in the shape of three dimensional bottle traps. It is the additional confinement arising from
the on-axis longitudinal field component that led to the realisation of the bottle traps so that the
atom faces deep potential walls in all three directions and the size of each trap is unusually small
(typically under a wavelength). Using experimentally accessible parameters we illustrated the
orders of magnitude involved as regards the depth of the trap and its quantum features, including
an estimate of the tunneling rate between adjacent trapping sites, which we found to be extremely
small. This is because the optical dipole potential is very deep, so the trapped atoms are in the
Mott-insulator regime [34]. We suggest that these findings should be followed by experimental
work on cold atoms in these miniature traps.

It should be noted that the dipole trapping potential for atoms discussed here could also
contribute to the gradient force trapping of particles whose electromagnetic response is dominated
by strong resonance absorption and whose size is small (i.e. of the order of a 10th of the light
wavelength, or smaller) as long as the dipole approximation assumed here is valid. Our
simpler free-space interference approach complements the more sophisticated micro-engineered
approaches based on metasurface optics [40], micro-optics [41] and diffraction from nanostructure
[42], which can produce deep sub-wavelength 3D traps, but does require a quality focusing lens
with a high numerical aperture.

The types of fields we have dealt with here, find useful application in dark atom trapping and
also could act as an optical conveyor belt for trapped cold atom samples. In situations where a
bichromatic field with large opposite detunings is set up we obtain the well-known form of a
one-dimensional lattice but the potential depth and its topology depend entirely on the winding
number and the polarization of the light field. The origin of these features due to this type of

Fig. 4. The bottle trapping potential (U, in recoil energy units Erec = ℏ2k2/2M) when both
counter-propagating doughnut beams are linearly-polarised along x̂ and both have p = 0,
ℓ = 1. Distances along the axes are scaled in wavelength units. The potential for different
ϕ-planes are shown as subplots either in pseudo-3D surface plots (the upper panels) or
pseudo-color 2D plots (the lower panel) at different azimuthal planes. The other parameter
values used here are the same as those used to generate the Figs. 1–3.
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light fields is the existence of a longitudinal field component, which, in the case of circularly
polarized light, is responsible for the coupling of light’s OAM to SAM which is significant. The
novel forms of the electromagnetic fields we have focused on here, Eq. (1), which we have used to
unveil their utility in the trapping of atoms in miniature atom traps, could also be exploited in the
study of the coherent mechanical effects of atoms, including atom diffraction in the Raman-Nath
regime, the Bragg and Stern-Gerlach effect [44], as well as in the studies of the Kapitza-Dirac
effect when atomic beams cross the standing light wave fields [45] and for the generation of
ponderomotive potentials on electrons [46], but such issues will not be elaborated on any further
here.

Although our concern here has been mainly with circularly-polarised counter-propagating
beams, the question arises as to what kind of trapping one gets if both beams are in general
elliptically polarised, including linearly-polarised. So we have considered this issue in Appendix
B. We find that the potential in this case acquires dependence on the azimuthal angular variable
ϕ. The potential for linear polarisation is displayed in Fig. 4 for different ϕ using the same
parameters as for the circularly polarised case. We conclude that the bottle potential with linearly
polarised beams is much reduced in comparison with the appropriately circularly-polarised case.

Appendix A: derivation of equation (6)

The first step in the derivation of Eq. (6) is to make use of the transformational relations:

∂f
∂x
=
∂ρ

∂x
∂f
∂ρ
+
∂ϕ

∂x
∂f
∂ϕ
= cos ϕ

∂f
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−
sin ϕ
ρ
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; (15)
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+
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∂f
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= sin ϕ

∂f
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+

cos ϕ
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∂f
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, (16)

given that x = ρ cos ϕ and y = ρ sin ϕ. For the vortex beams given in Eq. (1), we have ∂E±

∂φ = ilE±.
We can now consider the relevant expression in the third term of Eq. (1), as follows:
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For circularly-polarized beams, α = 1/
√

2, β = iσ/
√

2 where σ = ±1, we can then write
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where the subscript cp stands for circular polarisation. Finally, recognizing i(iσ cos ϕ − sin ϕ) =
−σ(cos ϕ + iσ sin ϕ), we have
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which leads us to the result in Eq. (6).
Another special case is that of linear polarization of the transverse components, for example,
α = 1 and β = 0, we have from Eq. (17),
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where the subscript lp stands for linear polarisation. This is consistent with the result for a pure
circular polarization, but this time the longitudinal contribution is equally divided between left-
and right-circularly polarized transverse components, as to be expected.

Appendix B: polarization effects

The case when our two counter-propagating beams are both linearly-polarised is a special but
illuminating case. The corresponding dipole potential can be directly derived by taking the
modulus-square of the electric field given in Eq. (7) and setting α = 1 and β = 0, which
correspond to linear polarisation along x̂. We have for U
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As cos2 ϕ = (1 + cos 2ϕ)/2 and sin2 ϕ = (1 − cos 2ϕ)/2, we have:
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(22)

One can see that the on-axis potential consists of a ϕ-independent term (the second term in
Eq. (22), which is just an average of the potentials due to two oppositely circularly-polarized
light beams) and a ϕ-dependent term (the last term in Eq. (22)). The azimuthal dependence of
the last three term in Eq. (22) can be traced back to the expression for the longitudinal field given
in Eq. (20) which is seen to be expressible as a superposition of terms containing eiφ and e−iφ.
They can be interpreted as the superposition of the spin-to-orbit longitudinal fields by right- and
left-circularly-polarized components of the linearly-polarized light. Thus, the ϕ-dependent set of
terms is the result of the interference of these two longitudinal terms.

The potential landscape is displayed in Fig. 4 when linearly-polarised light is used with
the parameters the same as those used to generate Fig. 1–3. The crucial on-axis ϕ-dependent
contribution to the overall potential was found to be small, so maybe neglected when considering
the potential for the bottle trap.

For the more general case, where the polarization of the beam is intermediate between the
two circular polarizations of opposite helicity (σ = ±1), it is straightforward to show that the
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trapping potential evolves with the ellipticity of the light in a non-trivial manner. As in the
linear polarization case, it consists of the sum of a ϕ-independent contribution defined by the
relative potential of the two oppositely circularly-polarized light and a ϕ-dependent term defined
by the interference of the longitudinal components and whose importance is maximized for the
linearly-polarized case. As the azimuthal contribution is small even for the linear polarization
case, we can expect the axial trapping potential to be linearly tunable from a maximum when
σ = −1 to zero when σ = 1, both with ℓ = 1. For the beam width we are considering (w0 = 0.9λ),
the amplitude of the longitudinal field component is still a fraction the magnitude of the transverse
field component.

Appendix C: examples of bottle trap characteristics

Table 1. Characteristics of the two adjacent main bottle traps. Each of the four
columns in the table concerns a bottle trap set-up with different values of laser power

and polarisation (σ). The common parameters are as follows: the atomic transition
wavelength λ0=852.35nm, the detuning = ∆ = 1.33 × 1015 Hz, beam NA = 0.35 and the

winding number ℓ = 1. By symmetry, the same bottle trap characteristics are
reproduced for light beams with ℓ = −1 and σ = −ℓ = 1 or σ = 0. Erec = ℏ2k2/2M)

Laser Power (mW) (Polarization σ) 0.4 (-1) 1 (-1) 4 (-1) 4 (0)

Central
bottle

Ground State Energy (Erec) 28 45 90 70

Saddle Point Potential Barrier
Height (Erec)

60 180 600 160

Saddle Point Tunnelling Rate
(Hz)

0.038 7x10−7 10−15 10−5

Axial Tunnelling Rate (Hz) 0.0017 10−8 10−20 6 x 10−8

Radial Spring Constant Kρ,0
(N/m)

9 x 10−15 2 x 10−14 9 x 10−14 5 x 10−14

Axial Spring Constant Kz,0
(N/m)

2 x 10−14 6 x 10−14 2 x 10−13 3 x 10−14

Nearest
neighbour
bottle

Ground State Energy (Erec) 25 40 79 61

Saddle Point Potential Barrier
Height (Erec)

50 149 500 100

Saddle Point Tunnelling Rate
(Hz)

0.092 2 x 10−5 5 x 10−13 4 x 10−4

Axial Tunnelling Rate (Hz) 0.65 7 x 10−8 4 x 10−15 3 x 10−5

Radial Spring Constant Kρ,1
(N/m)

7 x 10−15 2 x 10−14 7 x 10−14 7 x 10−14

Axial Spring Constant Kz,1
(N/m)

2 x 10−14 5 x 10−14 2 x 10−13 5 x 10−14
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Table 2. Characteristics of the two adjacent main bottle traps if laser
beams are focused using a lens. Each of the three columns concerns a

bottle trap set-up with different values of the Numerical Aperture (NA) of the
lens. The common parameters are as follows: the atomic transition

wavelength λ0=852.35nm, the detuning = ∆ = 1.33 × 1015 Hz and the winding
number ℓ = 1. By symmetry, the same bottle trap characteristics are

reproduced for light beams with ℓ = −1 and σ = −ℓ = 1. The laser power is
fixed at 4mW. Erec = ℏ2k2/2M)

Beam Width (w0(λ)) (NA) 1.3 (0.25) 1.1 (0.30) 0.9 (0.35)

Central
bottle

Ground State Energy (Erec) 48 67 90

Saddle Point Potential Barrier
Height (Erec)

200 350 600

Saddle Point Tunnelling Rate
(Hz)

7 x 10−7 2 x 10−11 10−15

Axial Tunnelling Rate (Hz) 7 x 10−9 2 x10−14 10−20

Radial Spring Constant Kρ,0
(N/m)

2 x 10−14 5 x 10−14 9 x 10−14

Axial Spring Constant Kz,0
(N/m)

8 x 10−14 1 x 10−13 2 x 10−13

Nearest
neighbour
bottle

Ground State Energy (Erec) 41 60 79

Saddle Point Potential Barrier
Height (Erec)

180 400 500

Saddle Point Tunnelling Rate
(Hz)

0.001 3 x 10−12 5 x 10−13

Axial Tunnelling Rate (Hz) 3 x 10−8 3 x 10−15 4 x 10−15

Radial Spring Constant Kρ,1
(N/m)

2 x 10−14 4 x 10−14 7 x 10−14

Axial Spring Constant Kz,1
(N/m)

5 x 10−14 1 x 10−13 2 x 10−13
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